Homework 1 Solutions

For odd-numbered problems, see solutions in the book, with exceptions noted below.

1.1 #42 (a) “Are you a liar?” doesn’t work because a truth-teller or a liar will both answer “no.”
(b) Ask “Are you a cannibal?” to get the truth-teller to say “yes,” the liar “no.”

1.3 #23 (f) \((\forall x F(x)) \lor (\exists x \neg P(x)) \). The answer in the book is wrong.

1.3 #30 (a) Let \(D(x) \) be “\(x \) is a dog,” and let \(F(x) \) be “\(x \) has a tail.”

(d) Let \(M(x) \) be “\(x \) is a monkey” and let \(F(x) \) be “\(x \) can speak French.” The statement is \(\exists x (M(x) \land F(x)) \). Its negation is \(\forall x (M(x) \land F(x)) \), or “there is a monkey that can speak French.”

(e) Let \(P(x) \) be “\(x \) is a pig,” \(S(x) \) “\(x \) can swim,” and \(F(x) \) “\(x \) can catch fish.” The statement is \(\exists x (P(x) \land S(x) \land F(x)) \). Its negation, written without negated quantifiers, is \(\forall x (P(x) \land S(x) \land F(x)) \), or “no pig can swim and catch fish.”

1.4 #9 (j) A better answer is \(\exists x \forall y (L(x, y) \land x = y) \). The answer in the book is more accurately expressed as “there is someone who loves himself or herself and nobody else.”

2.1 #4:

```plaintext
procedure maxdiff(a_1, \ldots, a_n: integers)
    m := 0
    for i = 1, \ldots, n - 1
        if \(|a_{i+1} - a_i| > m\) then m := \(|a_{i+1} - a_i|\)
    return m := maximum absolute difference
```

If instead we wanted the maximum signed-difference \(a_{i+1} - a_i \), we would start with \(m := a_2 - a_1 \), let \(i \) go from 2 to \(n - 1 \), and drop the absolute-value signs in the “if…then” line.

2.2 #2, #23 (a) \(17x + 11 \) is \(O(x^2) \) and not \(\Omega(x^2) \) or \(\Theta(x^2) \).
(b) \(x^2 + 1000 \) is \(\Theta(x^2) \).
(c) \(x \log x \) is \(O(x^2) \) and not \(\Omega(x^2) \) or \(\Theta(x^2) \).
(d) \(x^4/2 \) is \(\Omega(x^2) \) and not \(O(x^2) \) or \(\Theta(x^2) \).
(e) \(2^x \) is \(\Omega(x^2) \) and not \(O(x^2) \) or \(\Theta(x^2) \).
(f) \(\lfloor x \rfloor \cdot \lfloor x \rfloor \) is \(\Theta(x^2) \).

2.2 #18: Note that \(k \) is a fixed constant, and we are considering

\[1^k + 2^k + \cdots + n^k \]

as a function of \(n \). There are \(n \) terms, and each term is \(O(n^k) \), so the whole sum is \(O(n)O(n^k) \), or \(O(n^{k+1}) \).

Extra problem for 2.3:
(A) The inner loop takes \(O(i) \) steps, and we always have \(i \leq n \), so the inner loop takes \(O(n) \) steps. The outer loop performs the inner loop \(O(n) \) times, for a total running time of \(O(n^2) \). This analysis is for the worst-case, when the input has no duplicates. At the opposite extreme, if it happens that \(a_1 = a_2 \), the algorithm takes constant time.
(B) A better solution is to sort the list first. After that, any duplicates will be adjacent, and we only need a linear-time scan to see if \(a_i = a_{i+1} \) for some \(i \). The sort takes \(O(n \log n) \) steps and the scan takes \(O(n) \). Since \(n \log n \) and \(n \) are both positive, and \(n \log n \) is larger, the total time is \(O(n \log n) \).