Question 1. [10 pts each] Mark each of the following statements True or False and briefly explain each of your answers (one or two sentences). Complete proofs are not required.

(a) The compound proposition \((p \rightarrow q) \land (q \rightarrow r) \rightarrow (p \rightarrow r)\) is a tautology.

True, because the inference \(p \rightarrow r\) from premises \(p \rightarrow q\) and \(q \rightarrow r\) is a valid rule of inference. [Or: make a truth table and check.]

(b) If \(x\) and \(y\) are irrational real numbers, then \(x + y\) is irrational.

False. One possible counter-example is \(x = \sqrt{2}, y = -\sqrt{2}\), \(x + y = 0\).

(c) For every integer \(n\) there is a unique integer \(m\) such that \(0 \leq m \leq 5\) and \(m \equiv n \pmod{5}\).

False, because \(m\) exists but is not unique. For example, if \(n = 5\), then \(m = 0\) and \(m = 5\) are both solutions.

(d) The set of prime numbers is countably infinite.

True. Proved in the book and in class to be infinite. Has to be countable because it is a subset of \(\mathbb{Z}^+\).
Question 2. (a) \(10\) pts Prove or disprove: if \(A, B\) and \(C\) are sets, and \(B \subseteq C\), then
\[(A \cup B) \cap C = (A \cap C) \cup B.\]

Proof
(i) To show \((A \cup B) \cap C \subseteq (A \cap C) \cup B\), let \(x \in (A \cup B) \cap C\). Then \(x \in C\), and either \(x \in A\) or \(x \in B\). If \(x \in A\), then \(x \in A \cap C \subseteq (A \cap C) \cup B\). If \(x \in B\), then again \(x \in (A \cap C) \cup B\).
(ii) To show \((A \cup B) \cap C \supseteq (A \cap C) \cup B\), let \(x \in (A \cap C) \cup B\). Then \(x \in B\) or \(x \in A \cap C\). If \(x \in B\), then \(x \in A \cup B\), and \(B \subseteq C\) implies \(x \in C\), so \(x \in (A \cup B) \cap C\). If \(x \in A \cap C\), then \(x \in A \subseteq A \cup B\) and \(x \in C\), so \(x \in (A \cup B) \cap C\).

(b) \(10\) pts Prove or disprove: the same identity as in part (a) for arbitrary sets \(A, B\) and \(C\), when we do not assume that \(B \subseteq C\).

The identity is false without assuming \(B \subseteq C\), although the containment \((A \cup B) \cap C \subseteq (A \cap C) \cup B\) is still true, as part (i) of the proof above shows.

For a counterexample, we can take \(B = \mathbb{N}\), \(C = \emptyset\), and any set \(A\) that we like. Then
\[
(A \cup B) \cap C = \emptyset
\]
\[(A \cap C) \cup B = \mathbb{N}.\]
Question 3. Compute $2^{100} \mod 7$, showing enough work to justify your answer. Hint: first compute $2^3 \mod 7$.

$$2^3 = 8 \equiv 1 \pmod{7}$$

$$2^{99} = (2^3)^{33} \equiv 1^{33} \equiv 1 \pmod{7}$$

$$2^{100} = 2 \cdot 2^{99} \equiv 2 \pmod{7}.$$

Since $0 \leq 2 < 7$, this shows that $2^{100} \mod 7 = 2.$
Question 4. [20 pts] Prove that if an integer \(n \) is a sum of two squares, then \(n \not\equiv 3 \pmod{4} \).
Of course, 'square' in this question means the square of an integer.

The simplest method is to compute

\[
0^2 \equiv 2^2 \equiv 0 \pmod{4}, \\
1^2 \equiv 3^2 \equiv 1 \pmod{4},
\]

hence every square is \(\equiv \) to 0 or 1 \(\pmod{4} \).

If \(n \) is a sum of two squares, it follows that

\(n \) is \(\equiv \) to \(0+0=0, \ 0+1=1, \ \text{or} \ 1+1=2 \pmod{4} \),

and therefore \(n \not\equiv 3 \pmod{4} \).

A somewhat more complicated alternative is to let

\(n = k^2 + l^2 \)

and consider each case when \(k \) or \(l \) is even or odd.