
Math 55—Fall 2012
Homework 8 Solutions

4.6 #30. First Alice and Bob agree on the prime p = 101 and primitive root a = 2. Alice
sends Bob the number 27 mod 101, or 27, and Bob sends alice the number 29 mod 101, or
7. Now Alice calculates 77 mod 101, getting 90, and Bob calculates 279 mod 101, which is
also equal to 90. Alice and Bob then communicate using some conventional cipher based on
their shared secret key, 90.

Any eavesdropper will know p = 101, a = 2, and the numbers 27 and 7 transmitted by
Alice and Bob, but can only find out their chosen exponents k1 = 7 and k2 = 9, and thereby
learn their shared key 90, by solving a discrete logarithm problem modulo 101—not so hard
in this case, but believed to be impractical if a large prime (of 100 digits, say) were used.

4.6 #32. Alice first encodes her message by converting blocks of letters to numbers, e.g.
as 0120 2499 1314 2299, if she uses 0 to 25 for letters of the alphabet and 99 to indicate a
space. Next she applies her own private key to each block, and then Bob’s public key. For
the first block, for example, she computes 1201183 mod 2867 = 1665, and then computes
166521 mod 3127 = 2806.

When Bob receives this he first decrypts with his private key, recovering 28061149

mod 3127 = 1665. Then he applies Alice’s public key, recovering 16657 mod 2867 = 0120,
the first block of the original message. Alice and Bob communicate the other message blocks
in the same way.

Only Alice could have produced data which results in an intelligible message when her
public key is applied, so Bob knows not only the contents of the message but also that it is
genuinely from Alice.

5.1 #6. Basis step: for n = 0, both sides of the identity are equal to 0.
Induction step: for n > 0, assume by induction that the identity holds for n− 1, that is,

we have
1 · 1! + 2 · 2! + · · ·+ (n− 1) · (n− 1)! = n!− 1.

Adding n · n! to both sides gives

1 · 1! + 2 · 2! + · · ·+ n · n! = n · n! + n!− 1.

Now the right hand side is equal to (n + 1)n!− 1 = (n + 1)!− 1. The proof is complete.

5.1 #10. The formula is
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valid for n ≥ 0.
To prove this by induction, we observe as a basis step that it is correct for n = 0, where

both sides are equal to 0. The left hand side is an empty sum in this case.
For the induction step, with n > 1, we may assume that
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Adding 1/(n(n + 1)) to both sides, we need to verify that
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which is a bit of easy algebra.

5.1 #22. The inequality n2 ≤ n! holds for n = 0, n = 1 and n ≥ 4. To prove it for
n ≥ 4, our basis step is 42 = 16 ≤ 24 = 4!. For n > 4 we assume by induction that
(n − 1)2 ≤ (n − 1)!. Multiplying both sides by n gives n(n − 1)2 ≤ n!. Now we need
to show that n2 ≤ n(n − 1)2, and for this it is enough to show that n ≤ (n − 1)2. Now
(n−1)2−n = n2−3n+ 1 = (n−1)(n−2)−1. Since n > 4, this is positive, so n ≤ (n−1)2.

5.1 #50. The basis step is false. For n = 1, the left hand side is 1, but the right hand
side is 9/8.

5.1 #52. Basis step: if n = 1, then {1, . . . , n} = {1}, so the only function f from
{1, . . . ,m} to {1, . . . , n} is the constant function f(k) = 1. For m > 1, this is not injective.

Induction step: for n > 1, consider two cases.
Case I: f maps at least two elements of {1, . . . ,m} to n. Then f is not injective.
Case II: f maps at most one element of {1, . . . ,m} to n. If there is such an element, call

it k. Otherwise, let k be any element of {1, . . . ,m}, say k = m.
Now let g be a bijective function from {1, . . . ,m − 1} to {1, . . . ,m} − {k}, for example

g(i) = i for i < k, g(i) = i + 1 for k ≤ i < m. Since f maps all elements other than k
into {1, . . . , n − 1}, f ◦ g is a function from {1, . . . ,m − 1} to {1, . . . , n − 1}. Since m > n
implies m− 1 > n− 1, we can conclude by induction that f ◦ g is not injective. But since g
is bijective, if f were injective, then f ◦ g would be injective. So f is not injective.

A remark: the theorem in this problem might seem to be obvious, since by definition
the existence of an injective function from a set of cardinality m to a set of cardinality n
implies that m ≤ n. The point is that it is not a priori obvious that the definition of m ≤ n
for cardinalities agrees (in the case of finite cardinalities) with the arithmetical definition
of m ≤ n for natural numbers. Indeed, it is not even obvious that the sets {1, . . . ,m} and
{1, . . . , n} might not have the same cardinality, even though m 6= n.

That is what the theorem in this problem serves to show.

5.1 #64 The case n = 1 is tautological. Taking this as our basis step, we prove the
result for n > 1 by induction. We apply Lemma 2 of Section 4.3 (proved there using
Bezout’s theorem, which follows from the Euclidean algorithm) with a = p, b = an and
c = a1 · · · an−1. Since p is prime, we either have p|an, in which case we are done, or else
gcd(p, an) = 1, which is the hypothesis of Lemma 2. In this second case it then follows that
p|a1 · · · an−1, and we can conclude by induction that p|ai for some i between 1 and n− 1.

5.2 #6. With 3 and 10 cent stamps, we can form n cents postage for n =
0, 3, 6, 9, 10, 12, 13, 15, 16 and all n ≥ 18. You can check the possible amounts for n < 18
exhaustively. We’ll prove by (strong) induction that all amounts n ≥ 18 can be formed.

We assume by induction that k cents of postage can be formed for all 18 ≤ k < n. If
n ≥ 21, then 18 ≤ n − 3 < n, so we can form n − 3 cents of postage and add one 3 cent



stamp. We are left to verify the cases n = 18, 19, 20 directly: 18 = 6 × 3, 19 = 10 + 3 × 3,
20 = 2× 10.

5.2 #14. We assume by strong induction that the formula is correct for all piles of k
stones with 1 ≤ k < n. If n = 1, there is no splitting to be done, and we get the empty sum
0, which is equal to n(n− 1)/2 in this case. If n > 1, say we split the pile into piles of sizes
r and s, both of which are less than n. By induction, the contributions to the total from
further splitting of each of these two piles are r(r − 1)/2 and s(s− 1)/2, for a total of

rs + r(r − 1)/2 + s(s− 1)/2.

By a bit of algebra, this is equal to (r + s)(r + s − 1)/2. Since n = r + s, the total is
n(n− 1)/2, as we were to prove.


