
Math 55—Fall 2012
Homework 6 Solutions

4.3 #6. We need to figure out the largest power of 10 that divides 100!. To do this,
we find the largest powers of 2 and 5 that do so. Of the numbers 1 through 100, twenty
are multiples of 5. Of these, four are multiples of 25 = 52. In the product, 100!, the four
multiples of 25 contribute a factor 58, and the the other 16 multiples of 5 contriubte 516. So
the largest power of 5 that divides 100! is 524. In a similar way, we can find the largest power
of 2 that divides 100!, but we don’t need to do this precisely: it is at least 250, since fifty of
the factors are even, and this exponent is already larger than the exponent in the power of
5. Therefore, using unique factoriztion into primes, the largest power of 10 that divides 100!
is 1024 = 224524. In other words, 100! written in decimal ends with 24 zeroes.

4.3 #12. Following the hint, let’s consider the n integers (n + 1)! + k, as k goes from 2
to n + 1. Since every such k divides (n + 1)!, k divides (n + 1)! + k, hence (n + 1)! + k is
composite for all 2 ≤ k ≤ n + 1. [Note that it would also work if we used the lcm of the
numbers 2 through n + 1 in place of (n + 1)! in this construction.]

4.3 #28. This is easiest to do using prime factorization: 1000 = 2353, 625 = 54, so
gcd(1000, 625) = 53 = 125, and lcm(1000, 625) = 2354 = 5000. Check: 1000 · 625 =
125 · 5000 = 625000.

4.3 #40(f). Leaving the details to you, the answer is gcd(124, 323) = 1 = −112 · 124 +
43 · 323.

4.3 #50. Let d = gcd(a,m) and e = gcd(b,m). By hypothesis, m divides a − b, hence
d divides a − b, and since d divides a, it follows that d divides b. Since d also divides m, d
divides e = gcd(b,m). By the same reasoning with a and b swapped, e divides d. Since d
and e divide each other, d = e.

4.3 #54. Following the hint, if q1, . . . , qn are primes, each qi ≡ −1 (mod 3) (which is
the same as saying qi is of the form 3k + 2), we’ll show that there is another prime p ≡ −1
(mod 3) which is not one of the qi. Then it follows that the set of all primes congruent to
−1 (mod 3) is infinite.

To do this, let M = 3q1 · · · qn− 1. Since M ≡ −1 (mod 3), the prime 3 is not a factor of
M , and at least one prime factor p of M must have p ≡ −1 (mod 3). Otherwise, all prime
factors of M would be congruent to 1 (mod 3), which would imply M ≡ 1 (mod 3). But
M ≡ −1 (mod qi) for each qi, so no qi is a prime factor of M . Thus p is not one of the qi,
and the argument is complete.

4.4 #8. Let d = gcd(a,m) > 1. Let a = rd and m = sd. Note that 1 < s < m,
so s 6≡ 0 (mod m). Now sa = rsd = rm ≡ 0 (mod m). If a had a multiplicative inverse
modulo m, we could multiply both sides of sa ≡ 0 (mod m) by a−1 to get s ≡ 0 (mod m),
a contradiction.

4.4 #12(b). Using the Euclidean algorithm, we find 1 = 89 · 144 − 55 · 233, so 89 is an
inverse of 144 (mod 233). Multiplying by 89 on both sides of 144x ≡ 4 (mod 233), we get
x ≡ 4 · 89 ≡ 123 (mod 233).



4.4 #24. See solution to 4.4 #21 in back of book for answer.

4.4 #32. A multiple of 5 which is congruent to 1 (mod 3) is 10. By Chinese Remainder
Theorem, all the multiples of 5 which are congruent to 1 (mod 3) are the integers x ≡ 10
(mod 15).

Additional Problem. Theorem: if n ≡ 7 (mod 8), then n is not a sum of three perfect
squares.

Proof. First calculate the squares of all elements of Z8, to conclude that every perfect
square is congruent to 0, 1 or 4 (mod 8). Now observe that no sum of three of these numbers
is congruent to 7 (mod 8).


