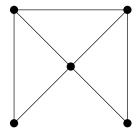
Math 55: Discrete Mathematics, Fall 2008 Homework 14 Solutions


8.6: 6. (a) and (c) are posets, (b) and (d) are not. 22 (c) 10 25 15 10 25 15 11 2 5 336 (a) $(\mathbb{R}_{\geq 0}, \leq)$ (b) $(\mathbb{R}_{\geq 0}, \geq)$ (c) (\mathbb{R}, \leq) .

9.2: 18. Suppose there are *n* vertices. The possible degrees are then 0 through n - 1. If no two vertices have the same degree, there must be one of each degree. But if there is a vertex of degree n - 1, then every other vertex is adjacent to it, so there is no vertex of degree 0, if $n \ge 2$.

26(a)
$$K_n$$
 is bipartite for $n = 1$ or 2.

(b) C_n is bipartite for n even.

34. It has (4+3+3+2+2)/2 = 7 edges.

* 58. Suppose the two parts have k and l vertices respectively. Then k + l = v, and $e \le kl$. Therefore $v^2/4 - e \ge (k+l)^2/4 - kl = (k-l)^2/4 \ge 0$, so $e \le v^2/4$.

9.3: 38. Isomorphic, via $u_1 \mapsto v_1$, $u_2 \mapsto v_3$, $u_3 \mapsto v_2$, $u_4 \mapsto v_5$, $u_5 \mapsto v_4$ (other isomorphisms also exist).

44. Not isomorphic. One way to distinguish them is that in the v graph, the five vertices adjacent to each vertex v_i contain a circuit of length 4, while in the u graph, they do not.

* 9.4: 18. G has a Hamiltonian circuit (i.e., one passing through all the vertices) but H does not.

54. There are 10 allowable states. The graph is the union of two paths of length 8 from the initial to the finnal state, which overlap in paths of length 3 at the beginning and the end. Each path is thus a solution in seven crossings. Part (e) of the problem seems to be a mistake, as both solutions have the same number of crossings with an animal.

9.7: 6. A planar drawing can be made by switching the positions of c and f, drawing af above b, and cd below e.

* 8. Not planar, because the induced subgraph on vertices a through f is a $K_{3,3}$.

9.8: 12 (for graphs 5 and 9 only). Graph 5 has chromatic number 3, which decreases to 2 if you remove a, b or c. Graph 9 has chromatic number 2, and it clearly cannot be decrease to 1 by removing a vertex.

18. The graph has chromatic number 3, hence 3 channels are needed.

(A) The linear extensions are $\{a, b, c\}$ in any order, followed by g, followed by $\{d, e, f\}$ in any order. Thus there are $6 \times 6 = 36$ of them.

(B) One example is the wheel W_5 . Since the outer circuit has odd length, it needs 3 colors, and then the central vertex needs a fourth color.