
Math 55: Discrete Mathematics, Fall 2008
Homework 3 Solutions

3.5: 6. There are 24 zeroes at the end of 100!. To see this, let e be the exponent of 2
and f exponent of 5 in the prime factorization of 100!. Then the largest power of 10 that
divides 100! is 10min(e,f). To calculate f , observe that 20 of the factors in 100! = 1 · 2 · · · 100
are multiples of 5, and of those, four (25, 50, 75, and 100) contain an extra factor of 5. Since
none of them contains a factor 53, we get f = 24. Since there are 50 even factors, we see
that e ≥ 50, and therefore the minimum of e and f is 24, without further calculating e.

*18. We can assume n > 1, so n is not relatively prime to itself. Therefore φ(n) is equal
to the number of members of the set {1, 2, . . . , n − 1} that are relatively prime to n, and
thus φ(n) = n− 1 if and only if every positive integer less than n is relatively prime to n. If
n is prime, then clearly this condition holds. Conversely, if the condition holds, then n has
no divisor 1 < d < n, since then d would not be relatively prime to n. So n is prime.

26. The lcm is 24345 · 711 by 3.5 Theorem 5.

(B) The two possibilities for the two numbers (without regard to order) are {a, b} =
{23345, 24345 · 711} or {a, b} = {23345 · 711, 24345}. To see this, suppose a = 2d13d25d37d4 and
b = 2e13e25e37e4 . We know the minimum and the sum of each pair di, ei, and that determines
the pair apart from order. Specifically, {d1, e1} = {3, 4}, d2 = e2 = 4, d3 = e3 = 1, and
{d4, e4} = {0, 11}. Without loss of generality, by switching a and b we can assume d1 = 3.
The only remaining choice is d4 = 0 or 11, giving the answer above.

34. n = 6 is a counterexample: 2 · 3 · 5 · 7 · 11 · 13 + 1 = 59 · 509.

3.6: 22. 1231001 ≡ 22 (mod 101). (An easier way to get this than by the algorithm is
using Fermat’s Little Theorem, since 101 is prime).

24(f) gcd(11111, 111111) = 1. This is found after just one step of the Euclidean algorithm
(if I had noticed this, I would have assigned a different problem).

30. A stronger result is that if n = dk · · · d2d1d0 in decimal, then n ≡ (d0 + d2 + · · · ) −
(d1 + d3 + · · · ) =

∑
i(−1)idi (mod 11). The proof is immediate from the meaning of the

decimal representation, namely n =
∑

i 10idi, and the fact that 10 ≡ −1 (mod 11).

*3.7: 8. 144−1 ≡ 89 (mod 233)

10. Suppose a has inverse s modulo m, that is, 1 ≡ sa (mod m). Then m|1 − sa, so
there is an integer t such that 1 = sa + tm. If gcd(a,m) = d, then d divides sa + tm, so
d = 1.

20. The solution is x ≡ 23 (mod 30). The given congruences do not have pairwise
relatively prime moduli, but we can construct from them another system of congruences
that do, as follows: the first two of the given congruences imply x ≡ 1 (mod 2), the second
two imply x ≡ 3 (mod 5), and the first and third imply x ≡ 2 (mod 3). Now we can
apply the Chinese Remainder Theorem and find that the solution of of these three new
congruences is x ≡ 23 (mod 30). Therefore any solution of the three given congruences also
satisfies x ≡ 23 (mod 30), and one checks immediately that, conversely, any such x is a
solution of the three given conguences.



*[5 pts each part] 28(a) 3302 ≡ 32 ≡ 4 (mod 5), 3302 ≡ 32 ≡ 2 (mod 7), 3302 ≡ 32 ≡ 9
(mod 11).

(b) Since 9 ≡ 4 (mod 5), 9 ≡ 2 (mod 7), 9 ≡ 9 (mod 11), the Chinese Remainder
Theorem implies that 3302 ≡ 9 (mod 5 · 7 · 11).

52. The quadratic residues modulo 11 are {1, 3, 4, 5, 9}.
54. We use the result from Exercise 53: for each a 6≡ 0 (mod p), if there is an x such

that x2 ≡ a (mod p), that is, if a is a quadratic residue, then there are exactly two solutions
modulo p of the congruence x2 ≡ a (mod p), namely x and −x. Another way to say the same
thing is that the function f(x) = x2 mod p maps the set S = {1, 2, . . . , p − 1} surjectively
onto the set of quadratic residues, and maps exactly 2 elements of S onto each quadratic
residue. Hence the number of quadratic residues is one-half the number of elements of S, or
(p− 1)/2.

*Chapter 3 Supplementary Exercise 40 (p. 260). Suppose (x, y) were an integer solution
to x2 − 5y2 = 2. Then x2 ≡ 2 (mod 5). But the quadratic residues modulo 5 are {1, 4}, so
this has no solution.


