Math 55: Discrete Mathematics, Fall 2008
Homework 2 Solutions

Problems marked * will be corrected fully, out of 10 points. The others will be checked quickly, for 2 points each.

2.3: 16. The following are not the only possible solutions but they are some of the simplest ones.
(a) \(f(n) = n + 1 \).
(b) \(f(0) = 0, f(n) = n - 1 \) if \(n > 0 \).
(c) \(f(0) = 1, f(1) = 0, f(n) = n \) if \(n > 1 \).
(d) \(f(0) = 1, f(n) = n \) if \(n > 0 \).

40. (a) \(f^{-1}(S \cup T) = \{ a \in A : f(a) \in S \cup T \} = \{ a \in A : f(a) \in S \text{ or } f(a) \in T \} = \{ a \in A : f(a) \in S \} \cup \{ a \in A : f(a) \in T \} = f^{-1}(S) \cup f^{-1}(T) \).
(b) Just change \(\cup \) to \(\cap \) and “or” to “and” in the above solution to part (a).

A more laborious but also correct way to do this is to verify in each part that the set on the left-hand side is a subset of the one on the right, and conversely.

*[5 pts each part] (C) (i) It is true that if \(f \circ g \) is one-to-one, then \(g \) is one-to-one. To prove it, suppose \(g(x) = g(y) \). Then \(f \circ g(x) = f \circ g(y) \), which implies \(x = y \) since \(f \circ g \) is one-to-one. We have shown that \(g(x) = g(y) \) implies \(x = y \), so \(g \) is one-to-one.

(ii) It is false that if \(f \circ g \) is one-to-one, then \(f \) is one-to-one. For a counterexample, define \(g : \{1\} \to \{1, 2\} \) by \(g(1) = 1 \), and define \(f : \{1, 2\} \to \{1\} \) by \(f(1) = f(2) = 1 \). Then \(f \circ g \) is the identity function on \(\{1\} \), which is one-to-one, but \(f \) is not one-to-one.

2.4: 32(b) \(S = \{-1, -3, -5, \ldots\} \) is countable, with an explicit bijection \(f : \mathbb{N} \to S \) given by \(f(n) = -2(n + 1) \).

(c) Uncountable. It has the same cardinality as the set of all real numbers.

*40. Suppose given bijections \(f : \mathbb{N} \to S \) and \(g : \mathbb{N} \to T \). We can define an onto function \(h : \mathbb{N} \to S \cup T \) by \(h(n) = f(n/2) \) if \(n \) is even, \(h(n) = f((n-1)/2) \) if \(n \) is odd. In other words, if the enumeration of \(S \) given by \(f \) is \(\{s_0, s_1, s_2, \ldots\} \) and that of \(T \) given by \(g \) is \(\{t_0, t_1, t_2, \ldots\} \), then we enumerate \(S \cup T \) in the order \(\{s_0, t_0, s_1, t_1, s_2, t_2, \ldots\} \).

If \(S \) and \(T \) are not disjoint, the function \(h \) is not one-to-one. To fix this, define \(g(n) \) to be the first element on the list \(\{s_0, t_0, s_1, t_1, s_2, t_2, \ldots\} \) that is not in the set \(\{g(1), g(2), \ldots, g(n-1)\} \). Note that there is always such an element because \(S \cup T \) is infinite. Then \(g \) is one-to-one by construction. Given any \(x \in S \cup T \), let \(n \) be the number of distinct elements on the list up to and including the first occurrence of \(x \). Then \(g(n) = x \), which shows that \(g \) is onto.

3.1: 24. Here is one possibility. Assume that the function is \(f : A \to B \) and that the input consists of a list \(a_1, \ldots, a_m \) of the elements of \(A \), a list \(b_1, \ldots, b_n \) of the elements of \(B \), and a list \(f(a_1), \ldots, f(a_n) \) of the function values.

\[
\text{input } a_1, \ldots, a_m; b_1, \ldots, b_n; f(a_1), \ldots, f(a_n) \\
\text{for } i = 1 \text{ to } n \text{ do:} \\
\quad k = 0 \text{ [this } k \text{ will count the number of elements mapped to } b_i] \\
\quad \text{for } j = 1 \text{ to } m \text{ do:}
\]

Homework 2 Solutions
if \(f(a_j) = b_i \) then \(k = k + 1 \)
if \(k > 1 \) return “Not one-to-one”
next \(j \)
next \(i \)
return “One-to-one” [the algorithm only reaches this point if \(f \) is one-to-one]

60. Suppose this were solvable by an algorithm \(S \). Then we could solve the halting problem for an algorithm \(A \) on input \(I \) as follows: From \(A \) construct algorithm \(B_A \) that runs \(A \) (discarding any output), and if \(A \) terminates, outputs 1. Then \(S(B_A, I) \) solves the halting problem for \(A \) on input \(I \).

*(A) The following is also unsolvable: given an algorithm \(A \) which is known in advance to halt on every input, to decide whether there exists an input \(I \) such that \(A \) eventually outputs the symbol “1” when run with input \(I \).

Suppose this were solvable by an algorithm \(T \). Then we could solve the halting problem for an algorithm \(B \) on input \(J \) as follows. From \(B \) and \(J \) construct algorithm \(A_{B,J} \) that takes as input a positive integer \(n \), runs \(B \) on \(J \) for \(n \) steps, then halts and outputs 1 if (and only if) \(B \) has halted by then. Note that \(A_{B,J} \) is known to halt on every input. Now run \(T \) on \(A_{B,J} \). Then \(T \) concludes that there exists an input \(n \) on which \(A_{B,J} \) halts, if and only if \(B \) halts on \(J \).

3.4: 4. Suppose \(a \mid b \) and \(b \mid c \). Then there are integers \(k \) and \(l \) such that \(b = ka \) and \(c = lb \). It follows that \(c = (kl)a \), so \(a \mid c \).

8. Counterexample: Take \(a = 6, b = 2, c = 3 \). Then \(a \mid bc \) (since of course 6 divides itself), but \(a \) does not divide \(b \) or \(c \).

*22. The congruence \(a \equiv b \) (mod \(m \)) means that \(m \mid b - a \). Say \(b - a = km \). Then \(bc - ac = kmc \), which shows that \(mc \mid bc - ac \), and thus \(ac \equiv bc \) (mod \(mc \)). [The hypothesis \(m \geq 2 \) in the problem is not necessary; the result is also valid for \(m = 1 \). Of course one always assumes \(m > 0 \) when working with congruences mod \(m \).]