
MATH 55, FALL 2008
SUPPLEMENTARY NOTES ON ERROR-CORRECTING CODES

In these notes we give an introduction to the basic theory of error-correcting codes. These are
coding schemes designed to preserve information despite the possibility of errors occurring during
its transmission or storage and retrieval.

We will first discuss the general principles behind error correcting codes.
Next, using some basic facts about probability, we will work out a simplified version of Claude

Shannon’s information theory, which provides a precise theoretical limit on the rate at which
information can be reliably transmitted over a noisy channel.

The Shannon theoretical limit can be achieved by codes constructed at random, but these are
infeasible to use in practice. Therefore we will also consider more practical types of codes. The
most important of these are the linear codes, whose general principles we discuss in Section 3.

Finally we describe one form of Reed-Solomon code, with its algorithms for encoding and decoding
with error correction. Reed-Solomon codes are widely used in practice, for example to record data
in CD or DVD format, and to communicate by radio with spacecraft.

1. Error correcting and error detecting codes

In an error correcting code, a message M is encoded as a sequence of symbols a1a2 . . . an, called
a codeword. The set of possible symbols is fixed in advance; for instance each symbol might be
a byte (8 bits) of binary data. The code incorporates some redundancy, so that if some of the
symbols in a codeword are changed, we can still figure out what the original message must have
been. Usually, the number of symbols in the codeword, n, is also fixed, so each message carries a
fixed amount of data. To encode larger amounts of data, one would break it up into a number of
messages and encode each one separately.

The simplest example of an error correcting code is the triple-redundancy code. In this code, the
message M consists of a single symbol a, and we encode it by repeating the symbol three times, as
aaa. Suppose one symbol in the codeword is changed, so we receive a word baa or aba or aab. We
can still recover the original symbol a by taking a majority vote of the three symbols received. If
errors result in two symbols being changed, we might receive a word like abc. In that case we can’t
correct the errors and recover the original message, but we can at least detect the fact that errors
occurred. However, with this code we cannot always detect two errors. If the codeword was aaa,
two errors might change it to something like bba. This received word would be miscorrected by the
majority vote decoding algorithm, giving the wrong message symbol b.

By repeating the message more times, we can achieve higher rates of error correction: with
five repetitions we can correct two errors per codeword, and with seven repetitions we can correct
three. These simple-minded error correcting codes are very inefficient, however, since we have to
store or transmit three, five or seven times the amount of data in the message itself. Using more
sophisticated mathematical techniques, we will be able to achieve greater efficiency.

Date: November, 2008.

1

2 MATH 55, FALL 2008 SUPPLEMENTARY NOTES ON ERROR-CORRECTING CODES

1.1. Hamming distance. An obvious strategy for decoding any error correcting code is, if we
receive a word B that is not a codeword, to find the codeword A that is “closest” to B, and
then decode A to get the message. For example, majority-vote decoding in the triple-redundancy
code follows this strategy. If we receive a word such as baa, the closest codeword is aaa, since it
differs from the received word in only one place, while any other codeword xxx differs from the
received word baa in at least two places. It is useful to make a precise definition of this concept of
“closeness.”

Definition 1. The Hamming distance d(A, B) between two words A = a1a2 . . . an and B =
b1b2 . . . bn is the number of places where they differ. In other words d(A, B) is the number of
indices i such that ai 6= bi.

The Hamming distance satisfies the following inequality, called the triangle inequality (because
it is also satisfied by the lengths of the sides of a triangle):

(1) d(A, C) ≤ d(A, B) + d(B, C) for all words A, B, C.

To see why the triangle inequality holds, observe that we can change A into B by altering d(A, B)
symbols, and then change B into C by altering another d(B, C) symbols. So we can change A
into C by altering at most d(A, B) + d(B, C) symbols (perhaps fewer, since in changing B to C we
might undo some of the changes from A to B).

The standard decoding algorithm is as follows. Given a received word B, find the codeword or
codewords A that minimize the Hamming distance d(A, B). If there is just one such codeword A,
decode it to get the message. If there is more than one such codeword, report that an uncorrectable
error has been detected. Our first theorem tells us how many errors a code can correct or detect
using the standard decoding algorithm.

Theorem 1. Let d be the minimum Hamming distance between pairs of distinct codewords of a code
C. If d ≥ 2e + 1, the standard decoding algorithm for C can correct up to e errors. If d ≥ 2e + 2,
it can correct up to e errors and detect e + 1 errors.

Proof. Suppose we cannot correct up to e errors. This means there is a codeword A, and some
combination of at most e errors that changes A to a word B which is either miscorrected or
uncorrectable. The fact that we can change A to B with at most e errors means that d(A, B) ≤ e.
If B is miscorrected or uncorrectable, it means there is a word C 6= A with d(C, B) ≤ d(A, B),
and therefore d(C, B) ≤ e. By the triangle inequality, we have d(A, C) ≤ 2e, contradicting the
hypothesis that d ≥ 2e + 1.

For the second part of the theorem, observe that if d ≥ 2e + 2 then we can correct up to e errors
by the first part. Suppose that we cannot also detect e + 1 errors. Then there is a codeword A
and a combination of e + 1 errors that changes A to a word B which will be miscorrected. For
that to happen there must be a codeword C with d(B, C) ≤ e. Since d(A, B) = e + 1, the triangle
inequality gives d(A, C) ≤ 2e + 1, contradicting the hypothesis d ≥ 2e + 2. �

Example. Consider the n-fold redundancy code, where the message is a single symbol a, and the
corresponding codeword is n copies aa . . . a. The Hamming distance between any two distinct
codewords is d(aa . . . a, bb . . . b) = n, so the minimum distance d for this code is equal to n. If n
is odd, equal to 2e + 1, then we can correct e errors, as we have seen before: triple-redundancy
corrects one error, quintuple redundancy corrects two, and so on. If n is even, equal to 2e+ 2, then
we can also detect e + 1 errors. So the quadruple redundancy code can correct one error, just like

MATH 55, FALL 2008 SUPPLEMENTARY NOTES ON ERROR-CORRECTING CODES 3

the triple redundancy code, but it can also detect any two errors, which the triple redundancy code
cannot do.

There are several practical difficulties in using Theorem 1 to construct error correcting codes.
The first difficulty is that of determining the minimum Hamming distance d between codewords.
For a completely arbitrary code, the only way to do this is by comparing every two codewords.
However, for practical applications, we want to design codes in which a substantial amount of data
is contained in each message. This means that the number of possible messages, and therefore the
number of possible codewords, will be enormous. It then becomes impractical to find the minimum
Hamming distance by comparing all possible pairs of codewords.

A second difficulty, which is related to the first one, is that we need an efficient means of
encoding. If our code is completely arbitrary, the only way to encode is by means of a table listing
the codeword for every message. Once again, if we wish to design a code in which each message
contains a substantial amount of data, and so there are a huge number of possible messages, it
becomes impractical to keep a table of codewords for all the possible messages.

The third difficulty is that the standard decoding algorithm is impractical to carry out for an
arbitrary code. If we receive a word B that is not a codeword, and we want to locate the closest
codeword A, the best we can do is to first try every possible one-symbol change to B, then every
possible two-symbol change, and so on, until we find one or more codewords. This could require a
very long search to decode just one single message.

The difficulty of encoding is easily overcome with the help of linear codes, which we will discuss
in more detail in Section 3, below. However, not all linear codes help much with the difficulties
involved in determining the minimum distance and efficient decoding. For that, we need codes with
even more special properties, known generally as algebraic codes. Reed-Solomon codes, which we
will study in the last sections of these notes, are examples of algebraic codes.

2. Shannon’s information theory

As mentioned in the previous section, practical codes need to have some special structure to
facilitate encoding and decoding. Nevertheless, important theoretical conclusions can be drawn
from considering random codes.

For simplicity, we will model the occurrence of errors by assuming that messages are transmitted
or stored as a sequence of binary bits 0 or 1, and that each bit is received incorrectly with probability
p. Note that an error probability p > 1/2 would mean that most bits are complemented. In that
case we could complement all bits before transmission and obtain an error probability less than
1/2. So we assume without loss of generality that p ≤ 1/2.

We also assume that the events that different bits are received in error are independent. In
practice, the independence assumption is not very realistic, because bursts of noise or damaged
areas on a recording medium are likely to cause many errors close together. It is possible to
analyze such situations with more sophisticated probabilistic models than we will consider here.

Our assumptions mean that if we transmit a word of n bits, the error positions in the received
word are governed by n Bernoulli trials with probability p of error on each bit. Let X be the
random variable which is the number of errors that occur. If we transmit a codeword C and receive
a word R, then the Hamming distance d(C, R) is equal to X.

As we know, for Bernoulli trials, the expectation of X is given by

E(X) = np.

4 MATH 55, FALL 2008 SUPPLEMENTARY NOTES ON ERROR-CORRECTING CODES

The variance of a single trial is easily computed to be p(1− p). Since the trials are independent, it
follows that the variance of X is given by

V (X) = np(1− p).

Using this information and Chebyshev’s Inequality, we arrive at the following bounds on the prob-
ability that the number of errors differs by more than a relatively small amount from the expected
value np.

Theorem 2. Let C be a word of length n transmitted over a binary channel with independent error
probability p for each bit. Let R be the received word, and d(C, R) = X the Hamming distance
between the transmitted and received words. Then we have:

(i)
p(X ≤ np−√np) ≤ 1− p.

(ii) For any s > 0,
p(X ≥ np + s

√
np) ≤ (1− p)/s2.

Proof. For (i), we have p(X ≤ np−√np) ≤ p(|X−np| ≥ √np) ≤ V (X)/np = (1−p) by Chebyshev’s
Inequality. The proof of (ii) is similar. �

Another fact we will need is the following weak form of Stirling’s approximation for n!.

Lemma 1. We have
ln(n!) = n ln(n)− n + O(ln(n)),

where the term O(ln(n)) denotes a quantity whose absolute value is at most a constant times ln(n).
In particular, for n large, this term is much smaller than the other terms in the expression.

We say two non-zero functions f(n), g(n) of n are asymptotic for n large, denoted f(n) ∼ g(n),
if the ratio f(n)/g(n) approaches 1 as n → ∞. A consequence of Stirling’s approximation is the
following asymptotic approximation for the log of the binomial coefficient

(
n
k

)
when k is asymptotic

to np.

Corollary 1. For k ∼ np, we have

log2

(
n

k

)
∼ nh,

where
h = −p log2 p− (1− p) log2(1− p)

Proof. By Lemma 1, we have

log2

(
n

k

)
= log2(n!)− log2(k!)− log2((n− k)!)

= (1/ ln(2))
(
ln(n!)− ln(k!)− ln((n− k)!)

)
= (1/ ln(2))

(
n ln n− k ln(k)− (n− k) ln(n− k) + O(ln n)

)
∼ (1/ ln(2))

(
n ln n− np ln(n)− np ln(p)− n(1− p) ln(n)− n(1− p) ln(1− p)

)
∼ (1/ ln(2))(−p ln p− (1− p) ln(1− p))
= nh

�

MATH 55, FALL 2008 SUPPLEMENTARY NOTES ON ERROR-CORRECTING CODES 5

Definition 2. The quantity h = −p log2 p− (1−p) log2(1−p) in Corollary 1 is called the Shannon
entropy of the binary channel with error probability p.

Note that when p = 1/2, the entropy h is equal to 1. When p = 0, the quantity log2 p is
undefined, but the limit of p log2 p as p→ 0 is zero, so we see that h approaches zero as p→ 0.

2.1. The Shannon upper bound. Our first goal will be to find an upper bound on the fraction
m/n of message bits m that can be reliably transmitted over our channel using codewords of length
n, for large n.

To encode m message bits, we need 2m codewords. Any decoding algorithm must assign some
subset D(C) of the 2n possible received words to each codeword C. If the decoding algorithm is to
be reliable, then for every codeword C, we need the probability that the received word R falls in
the set D(C) to approach 1 as n→∞

Now, the probability of any given word R being received when C is transmitted is pk(1− p)n−k

if d(C, R) = k. Since we are assuming p ≤ 1/2, and therefore p ≤ 1− p, this probability decreases
with increasing k. Hence for any given M , the set D of size M which has the highest probability
of containing R is a “Hamming ball” consisting of all words up to some Hamming distance K from
C (plus enough words at distance K + 1 to make a total of M elements).

Suppose every codeword C is decodable with probability approaching 1. By Theorem 2, part (i),
this requires that for large n the decoding set D(C) must have a greater probability of containing
the received word than does the Hamming ball DK(C) = {S : d(C, S) ≤ K}, where K = np−√np.
By what we observed in the preceding paragraph, this implies that D(C) must have at least as
many elements as DK(C). Since this holds for all 2m codewords, we must have 2m|DK(C)| ≤ 2n,
or, taking logs,

m ≤ n− log2 |DK(C)|.
By Corollary 1, we have log2 |DK(C)| ≥ log2

(
n
K

)
∼ nh. Therefore we obtain the Shannon upper

bound
m ≤ n(1− h)

on the number of message bits that can be transmitted reliably using n code bits.
Another way to express this is that the transmission rate t = m/n, or more precisely its limit as

n grows large, cannot exceed 1− h.
As examples, let us first consider two extreme cases. If our channel is error-free, we have p = 0,

h = 0, and 1− h = 1. As we would expect, the Shannon upper bound on the transmission rate is
then 100%, which of course we can achieve on an error-free channel with no encoding at all.

At the opposite extreme, suppose p = 1/2. Then h = 1 and the maximum transmission rate is
zero. This also makes sense, since p = 1/2 means every bit we receive is completely random and
carries no information at all about the word that was originally transmitted.

For a more realistic example, if p = .1, we get h ≈ 0.468996. Thus on a channel which transmits
10% of bits erroneously, we are limited to a reliable transmission rate of about 53.1%.

2.2. Achieving the Shannon upper bound. Next we investigate whether it is possible to ac-
tually achieve the Shannon upper limit on the transmission rate, at least in principle.

For this we suppose that our code consists of 2m n-bit binary words chosen at random. Such a
code would be difficult to use in practice, but has the advantage that we can readily estimate the
probability that a random message transmitted in our code, then subjected to random errors, can
be decoded correctly.

6 MATH 55, FALL 2008 SUPPLEMENTARY NOTES ON ERROR-CORRECTING CODES

Lemma 2. Pick any s > 0 and any 0 < t < 1−h. Let C be a random subset of the set of all binary
strings of length n, with size |C| = 2m where m < tn. For n large, the probability that C contains a
word C at distance d(C, R) < np + s

√
np from any given word R approaches zero.

Proof. Let K = bnp+s
√

npc. The number of words C such that d(C, R) < np+s
√

np is
∑

k<K

(
n
k

)
≤

K
(

n
K

)
≤ n

(
n
K

)
. Since C has probability 2m/2n to contain each of these words, the expected number

of words C ∈ C such that d(C, R) < np + s
√

np is at most

E(N) ≤ 2m−nn

(
n

K

)
.

Taking logs and noting that log2(n) is small compared to the other terms, we get from Corollary 1
that

log2 E(N) ≤ log2 2m−nn

(
n

K

)
∼ m− n(1− h) < n(t− 1 + h).

By assumption, t− 1 + h < 0. Therefore, for n large, log2 E(N)→ −∞, and hence E(N)→ 0. By
Markov’s Inequality, since N ≥ 0, we have p(N ≥ 1) ≤ E(N), so this probability also approaches
zero. �

The idea in the above lemma is that we should pick s as large as we like, in order to get a
small probability in Theorem 2, part (ii), and t as close as we like to 1− h, as t is going to be the
transmission rate achieved by our code.

Suppose now that we construct a code C by choosing it at random as in the lemma. Pick any
word C ∈ C, and let R be the received word when C is transmitted with errors. By Theorem 2,
part (ii), if we choose a large value of s we can make the probability as close as we like to 1 that
d(C, R) < np + s

√
np, since the probability of the complementary event is close to zero.

Applying the lemma to the set C \ {C} of codewords other than C, which is itself just a random
subset of all possible words, we find that for large n the probability also approaches 1 that none of
these other codewords C ′ has distance d(C ′, R) < np + s

√
np. Hence with probability approaching

1, our original codeword C will be the unique codeword with distance less than np + s
√

np from R,
and the standard decoding algorithm, which picks the codeword nearest to R, will decode correctly
to C.

What the above argument actually shows is that, once we choose a large enough n and a random
code C of size 2m, where m ∼ tn and t < 1 − h, the probability approaches 1 that any randomly
chosen codeword C ∈ C will decode correctly after being transmitted with possible errors. It does
not show, however, that every codeword C ∈ C has a high probability of correct decoding. In
fact, one can show the opposite, that with high probability, a random code contains some “bad”
codewords which are unlikely to decode correctly. However, since our argument shows that a
randomly chosen codeword has low probability of being bad, the proportion of bad codewords
approaches zero as n becomes large. It follows that, at least in theory, we can also construct codes
in which every codeword can be reliably decoded, simply by first constructing a random code, and
then deleting the small subset of bad codewords.

MATH 55, FALL 2008 SUPPLEMENTARY NOTES ON ERROR-CORRECTING CODES 7

3. Linear codes

For the linear codes we are going to study, the code symbols a will be integers (mod p), for a
fixed prime number p. We use the notation

Zp = set of all congruence classes (mod p).

To be definite, we represent every integer by its remainder (mod p), so there are p different symbols
a ∈ Zp, represented by the p numbers 0, 1, 2, . . . , p − 1. Using modular arithmetic, we can add,
subtract, and multiply these symbols. Because p is prime, every symbol a 6= 0 has a multiplicative
inverse a−1, so we can also “divide” symbols.

The set Zp with its arithmetic operations is an example of what mathematicians call a field: a
system with addition, subtraction, multiplication, and division (except by zero) obeying the usual
identities of algebra. Since it is a finite set, Zp is a finite field. In more advanced algebra courses,
other examples of finite fields are constructed, which may also be used as the set of symbols for
a linear code. It turns out that there is a finite field with pd elements for every prime number p
and every positive integer d. The Reed-Solomon codes most commonly encountered in practice are
based on the field with 28 = 256 elements, so the symbols can be conveniently represented by 8-bit
binary bytes. To keep things simple, in these notes we will only study codes based on Zp. However,
the same concepts apply to codes based on other finite fields.

A 1× n matrix—that is, a matrix with one row—is called a row vector. A word a1a2 . . . an with
symbols ai ∈ Zp, can (and will) be represented by the row vector[

a1 a2 . . . an

]
.

Definition 3. Fix positive integers m < n, and an m× n matrix C with entries in Zp. The code
in which a message vector

[
x1 x2 . . . xm

]
is encoded by the code vector[

a1 a2 . . . an

]
=
[
x1 x2 . . . xm

]
·C

is called a linear code with m message symbols and n codeword symbols.

For a linear code to be any use at all, we must be sure that the encoding function from message
vectors x to code vectors a = xC is one-to-one, that is, we can recover the message from the code.
One way to ensure this is to use a matrix C that is in normal form, meaning that the first m
columns of C form an m×m identity matrix:

C =
[
Im | P

]
,

where P is an m × (n −m) matrix. Then from the rules of matrix multiplication we deduce that
the message a = xC will have the form a =

[
x | c

]
, where c = xP. In other words, the codeword

is just the message word, follow by some additional check symbols c. In this case, we can obviously
recover x from a if there are no errors, just by looking at the first m symbols.

One important point about linear codes is that by their very definition, there is an easy algorithm
for encoding a message: just multiply it by the code matrix C. A second important point is that
for linear codes there is a theorem that allows us to determine the minimum Hamming distance
between codewords without checking every possible pair. Before giving the theorem, we first need
the following lemma, which expresses a key property of linear codes.

Lemma 3. If a and b are two codewords in a linear code C, then a+b and a−b are also codewords,
and more generally so is c a + d b, for any scalars c, d in the base field Zp.

8 MATH 55, FALL 2008 SUPPLEMENTARY NOTES ON ERROR-CORRECTING CODES

Proof. By definition, there exist message vectors x and y such that a = xC and b = yC. Then
from the rules of matrix multiplication we see that

c a + d b = (c x + d y)C.

Now c x+d y is again a 1×m row vector, and thus a possible message vector, so therefore c a+d b
is a code vector. To get the special cases a± b take c = 1 and d = ±1. �

Now for the theorem about Hamming distance.

Theorem 3. The minimum Hamming distance d between codewords in a linear code C is equal to
the minimum number of non-zero symbols in a code vector a 6= 0 of C.

Proof. Let b and c be distinct code vectors with minimum distance d(b, c) = d. Then a = b − c
is a code vector, by Lemma 3, and the number of non-zero symbols in a is equal to d. This shows
that the minimum number of non-zero symbols in a code vector is less than or equal to d. To prove
the opposite inequality, note that Lemma 3 implies that 0 is a code vector. For every code vector
a, we have d(a, 0) equal to the number of non-zero symbols in a, so this number is greater than or
equal to d. �

Definition 4. The weight of a code vector is the number of non-zero symbols in it. The weight
of a linear code is the minimum weight of a non-zero code vector. Thus Theorem 3 says that the
minimum Hamming distance in a linear code is equal to its weight. Combining this with Theorem 1,
we see that a linear code with odd weight 2e + 1 can correct e errors, and a linear code with even
weight 2e + 2 can correct e errors and detect e + 1 errors.

4. Reed-Solomon codes

All linear codes offer the advantages that they are easy to encode, and the minimum Hamming
distance reduces to a simpler concept, the weight. However, the weight of an arbitrary linear code
is still not easy to determine. Also, the mere fact that a code is linear doesn’t help all that much
in applying the standard decoding algorithm. In order to compute the weight and decode more
easily, we need to use linear codes with special properties. Usually the special properties are based
on algebra, in which case the code is called an algebraic code. The Reed-Solomon codes that we
will now define are examples of algebraic codes.

Definition 5. Let p be a prime number and let m ≤ n ≤ p. The Reed-Solomon code over the
field Zp with m message symbols and n code symbols is defined as follows. Given a message vector[
x1 x2 . . . xm

]
, let P (t) be the polynomial

P (t) = xmtm−1 + xm−1t
m−2 + · · ·+ x2t + x1

with coefficients given by the message symbols. Thus P (t) is a polynomial of degree at most m− 1
in one variable t, with coefficients in Zp. Then the code vector a for this message vector is the list
of the first n values of the polynomial P (t):

a =
[
a1 a2 . . . an

]
=
[
P (0) P (1) . . . P (n− 1)

]
(evaluated using modular arithmetic in Zp).

From this definition it might not be obvious that Reed-Solomon codes are in fact linear codes.
However, using the definition of matrix multiplication, we can deduce the following linear presen-
tation of the Reed-Solomon code.

MATH 55, FALL 2008 SUPPLEMENTARY NOTES ON ERROR-CORRECTING CODES 9

Theorem 4. The Reed-Solomon code over Zp with m message symbols and n code symbols is the
linear code with matrix

C =


1 1 1 . . . 1
0 1 2 . . . n− 1
02 12 22 . . . (n− 1)2
...

...
...

...
0m−1 1m−1 2m−1 . . . (n− 1)m−1

 ,

all entries taken (mod p).

Although the code matrix C for a Reed-Solomon code is not in normal form, we will see shortly
that it does define a one-to-one encoding function.

Next we want to compute the weight of a Reed-Solomon code. To do this we first have to
recall some facts about polynomials that you learned in high school algebra. Of course, when you
learned algebra in high school, you learned about polynomials with coefficients in the field of real
numbers (or maybe the field of rational numbers). Now we are working with polynomials that have
coefficients in Zp. However, what you learned in high school is still valid in this situation, because
Zp is a field, and the facts we will now recall depend only on laws of algebra that hold in every
field. Here they are.

Lemma 4. If a is a root of a polynomial P (t), that is, if P (a) = 0, then P (t) can be factored as
P (t) = (t− a)Q(t). Note that the degree of Q(t) is one less than the degree of P (t).

Proof. You probably learned the proof of this in high school, although you might not have realized
at the time that what you were learning was the proof of a theorem. I’ll just remind you quickly
how it works. Regardless of whether or not a is a root of P (t), you can always divide P (t) by (t−a)
using long division, obtaining a quotient polynomial Q(t) and a remainder c, which is a constant.
Then P (t) = (t− a)Q(t) + c, and substituting t = a in this identity shows that c = P (a). So if a is
a root of P (t) then c = 0, and the result follows. �

Theorem 5. If P (t) has d distinct roots and is not identically zero, then P (t) has degree at least
d.

Proof. Suppose a1, . . . , ad are distinct roots of P (t). By Lemma 4, we can factor P (t) = (t −
ad)Q1(t), and substituting t = ai into this for i 6= d shows that a1, . . . , ad−1 are roots of Q1(t). In
turn we can factor Q1(t) = (t − ad−1)Q2(t), where a1, . . . , ad−2 are roots of Q2(t). Repeating this
process we eventually get P (t) = (t− ad)(t− ad−1) · · · (t− a1)Qd(t). If P (t) is not identically zero,
then neither is Qd(t), so the factorization shows that P (t) has degree at least d. �

Now we are ready to determine the weights of our codes.

Theorem 6. The weight of the Reed-Solomon code over Zp with m message symbols and n code
symbols is equal to n−m + 1.

Proof. First we’ll show that the weight is at least n−m+1. By the definition of the Reed-Solomon
code, this is equivalent to saying that for every non-zero polynomial P (t) of degree at most m− 1,
when we evaluate it at the elements 0, 1, . . . , n − 1 of Zp, we will get at least n −m + 1 non-zero
values. Supposing to the contrary that we get at most n−m non-zero values, we see that P (t) has
at least m roots among the elements 0, 1, . . . , n − 1. Note that n ≤ p by definition, so these roots

10 MATH 55, FALL 2008 SUPPLEMENTARY NOTES ON ERROR-CORRECTING CODES

are distinct elements of Zp. But by Theorem 5 this is impossible if P (t) has degree less than m
and is not identically zero.

To show that the weight is at most n − m + 1 and complete the proof, we just have to find
an example of a code vector with weight exactly n −m + 1. Again by the definition of the code,
this is equivalent to finding an example of a polynomial P (t) with degree at most m − 1 such
that exactly m− 1 of the values P (0), . . . , P (n− 1) are zero. An example of such a polynomial is
P (t) = t(t− 1)(t− 2) · · · (t− (m− 2)). �

Corollary 2. A Reed-Solomon code with m message symbols and n = m + 2e code symbols can
correct e errors.

Example. A Reed-Solomon code with 15 code symbols can transmit 11 message symbols, while
correcting errors in any two of the code symbols. By contrast, using a quintuple redundancy code
to achieve two-error correction, we can only transmit 3 message symbols with 15 code symbols.

To complete up our discussion of encoding, we will now show, as promised earlier, that the
encoding function is one-to-one. This amounts to saying that if two message polynomials P1(t) and
P2(t) give the same code vector, that is, if

P1(i) = P2(i) for i = 0, 1, . . . , n− 1,

then we must have P1(t) = P2(t) identically. To see this, observe that P1(t)−P2(t) is a polynomial
of degree less than m, and it has at least n distinct roots in Zp, namely 0, 1, . . . , n−1. Since m ≤ n
by definition, we must have P1(t)− P2(t) = 0, by Theorem 5.

5. Decoding Reed-Solomon codes

What makes Reed-Solomon codes really useful is the existence of a simple algorithm for correcting
errors and decoding. The algorithm we will discuss was discovered by Berlekamp and Welch. Rather
than publish it in a mathematical or engineering journal, they patented it in 1983. More on that
at the end.

The discussion in this section will always refer to the Reed-Solomon code over Zp with

m = number of message symbols,
n = number of code symbols

= m + 2e,

e = number of errors the code can correct.

The decoding procedure relies on two lemmas, which we can prove using Theorem 5.

Lemma 5. Let the transmitted code vector be[
P (0) P (1) . . . P (n− 1)

]
,

and the received vector be [
R0 R1 . . . Rn−1

]
.

Assume there are at most e errors, that is, at most e values i such that Ri 6= P (i). Then there exist
non-zero polynomials

E(t) of degree ≤ e

Q(t) of degree ≤ m + e− 1,

MATH 55, FALL 2008 SUPPLEMENTARY NOTES ON ERROR-CORRECTING CODES 11

such that

(2) Q(i) = RiE(i) for all i = 0, 1, . . . , n.

Proof. Let {i1, i2, . . . , ik} be the set of error positions, that is, i is a member of this set if Ri 6= P (i).
Let

E(t) = (t− i1)(t− i2) · · · (t− ik),

Q(t) = P (t)E(t).

Clearly E(t) has degree k, which is less than or equal to e by assumption. Since P (t) has degree
≤ m− 1, it also follows that Q(t) has degree ≤ m + e− 1.

To see why equation (2) holds for every i, consider two cases. The first case is that i is not an
error position. Then Ri = P (i), so Q(i) = P (i)E(i) = RiE(i). The second case is that i is an error
position, so it belongs to the set {i1, i2, . . . , ik}. From our definition of E(t) we see that in this case
E(i) = 0, and therefore Q(i) = P (i)E(i) = 0 = RiE(i). So equation (2) holds in either case. �

Equation (2) is called the key equation for the decoding algorithm. Lemma 5 tells us that it has a
non-zero solution. However, the solution we wrote down to prove the lemma can only be calculated
explicitly if we already know the error positions. In practice, we have to solve the key equation by
interpreting it as a system of linear equations for the unknown coefficients of the polynomials E(t)
and Q(t). The lemma guarantees that a non-zero solution of this linear system must exist.

The next lemma shows that after solving the key equation, we can calculate the original message
polynomial P (t).

Lemma 6. If E(t) and Q(t) satisfy the key equation (2) in Lemma 5, and the number of errors is
at most e, then Q(t) = P (t)E(t). Hence we can compute P (t) as Q(t)/E(t).

Proof. In the course of proving Lemma 5 we showed that there exists a solution of (2) with Q(t) =
P (t)E(t), but now we must show that every solution has this property.

Observe that both Q(t) and P (t)E(t) are polynomials of degree ≤ m + e − 1, and hence so
is their difference Q(t) − P (t)E(t). If i is not an error position, then P (i) = Ri, and therefore
Q(i)−P (i)E(i) = 0. There are at least n−e non-error positions, so the polynomial Q(t)−P (t)E(t)
has at least n − e = m + e distinct roots in Zp. Since its degree is less than m + e, we must have
Q(t)− P (t)E(t) = 0 identically, by Theorem 5. �

Based on these two lemmas we can describe the decoding algorithm.

Decoding algorithm. Suppose the received vector is[
R0 R1 . . . Rn−1

]
.

Introduce variables u0, u1, . . . , um+e−1 and v0, v1, . . . , ve to stand for the coefficients of Q(t) and
E(t), so

Q(t) = um+e−1t
m+e−1 + um+e−2t

m+e−2 + · · ·+ u1t + u0,

E(t) = vet
e + ve−1t

e−1 + · · ·+ v1t + v0.

For each i = 0, 1, . . . , n− 1, substitute t = i in Q(t) and E(t) to evaluate the key equation

Q(i) = RiE(i).

12 MATH 55, FALL 2008 SUPPLEMENTARY NOTES ON ERROR-CORRECTING CODES

This results in a system of n linear equations for the unknown coefficients uj and vk. Find a non-
zero solution of this system, and plug in the result to get Q(t) and E(t) explicitly. Finally, divide
Q(t) by E(t) to recover the message polynomial P (t).

What might go wrong if there are more than e errors in the received vector? The first main step
in the algorithm is to solve n linear equations for the n + 1 unknowns uj and vk. It is a general
theorem of linear algebra that this is always possible. The second main step is to divide Q(t) by
E(t) to find P (t). On doing this we might find that there is a remainder, and therefore no solution
of Q(t) = P (t)E(t). If that occurs, then Lemma 6 implies that there must have been more than
e errors. We cannot correct them, but at least we have detected them. Not every combination of
more than e errors can be detected, of course—some will simply result in incorrect decoding.

6. An improvement to the decoding algorithm

Most of the work in the decoding algorithm lies in solving n linear equations for the n + 1
unknowns uj and vk, a straightforward but fairly complex task that must be repeated for every
message vector. In practice one often wants to decode data at high rates, so a reduction in the com-
plexity per message is desirable. In this section we will see how to use some ideas from polynomial
interpolation theory to simplify decoding.

The general theory described in the previous sections can be applied to Reed-Solomon codes over
any finite field, but the method I will now describe is a special one for the fields Zp. We begin with
a classical technique for predicting all the values of a polynomial function from the first few.

Definition 6. The first difference of a sequence

a1, a2, a3, . . .

is the sequence
∆ai = ai+1 − ai.

The first difference of the first differences is called the second difference and denoted ∆2ai; similarly
we have third differences ∆3ai and so on.

Here is an example. We’ll start with the sequence of integer cubes and below it write its successive
differences.

a : 0, 1, 8, 27, 64, 125, 216, . . .

∆a : 1, 7, 19, 37, 61, 91, . . .

∆2a : 6, 12, 18, 24, 30, . . .

∆3a : 6, 6, 6, 6, . . .

∆4a : 0, 0, 0, . . .

The obvious thing to notice here is that the fourth difference is identically zero. This is a general
fact.

Theorem 7. If f(0), f(1), . . . is the sequence of values of a polynomial of degree d, then its first
difference ∆f(i) = g(i) is given by a polynomial g of degree less than d, or is zero if d = 0.

MATH 55, FALL 2008 SUPPLEMENTARY NOTES ON ERROR-CORRECTING CODES 13

Proof. If d = 0 then f is constant, so the first differences are clearly zero. If f(x) = xd then its first
difference is given by (x + 1)d − xd. Now (x + 1)d is a polynomial of degree d with highest term
xd, so subtracting xd leaves a polynomial of degree less than d. If f(x) is a general polynomial of
degree d, say

f(x) = cdx
d + cd−1x

d−1 + · · ·+ c0,

then
∆f(x) = cd∆xd + cd−1∆xd−1 + · · ·∆c0.

By our calculation of ∆xk, this is a sum of polynomials of degree less than d and so is itself a
polynomial of degree less than d. �

Repeated application of the preceding theorem (or more precisely, mathematical induction) gives
the following corollary.

Corollary 3. If k > d then the k-th difference ∆kf(i) of a polynomial f of degree d is identically
zero.

This result provides a way of solving the key equation (2) in the decoding algorithm for E(t),
without having to compute Q(t) at the same time.

Corollary 4. Let the received vector be[
R0 R1 . . . Rn−1

]
,

and let a(j) be the sequence
0jR0, 1jR1, . . . , (n− 1)jRn−1.

Note that the (m + e)-th difference ∆m+ea(j) is a sequence of length n− (m + e) = e. Let B be the
e× (e + 1) matrix whose j-th column contains the entries

bij = ∆m+ea
(j)
i

of the sequence ∆m+ea(j), for j = 0, 1, . . . , e. Then the coefficients vk of the polynomial E(t) in the
decoding algorithm are given by the matrix equation

(3) B


v0

v1
...
ve

 = 0.

Proof. There isn’t much to prove here, beyond unraveling what all the notation means. Since Q(t)
is a polynomial of degree m + e− 1 or less, the (m + e)-th difference of the sequence of values Q(i)
must be zero. Therefore the key equation gives

∆(m+e)(RiE(i)) = 0.

Writing this out in terms of the coefficients of the polynomial E(t) leads directly to the matrix
equation (3). �

14 MATH 55, FALL 2008 SUPPLEMENTARY NOTES ON ERROR-CORRECTING CODES

In most applications the error correction number e is much smaller than the code length n, so
solving the system (3) of e linear equations in e + 1 unknowns is much quicker than solving the n
equations in n + 1 unknowns resulting from the original key equation (2). However, we still have
to find Q(t) in order to compute P (t). At this point we know the values Q(0), . . . , Q(n− 1), since
the key equation gives

Q(i) = RiE(i)
and we have found E(t). So our remaining difficulty is to compute the coefficients of Q(t) from its
values. This ancient problem has a beautiful solution in terms of differences.

Theorem 8. Let Ck(x) be the degree k polynomial

Ck(x) = x(x− 1) · · · (x− k + 1)/k!,

with C0(x) defined to be 1. Let f(x) be any polynomial of degree at most d. Then f(x) can be
computed from its successive differences by the formula

(4) f(x) = f(0)C0(x) + ∆f(0)C1(x) + · · ·+ ∆df(0)Cd(x).

Proof. We prove the theorem by mathematical induction on d. The base case d = 0 is trivial.
For the general case, since ∆f(x) has degree less than d we can use induction to apply formula

(4) to ∆f(x), obtaining

∆f(x) = ∆f(0)C0(x) + ∆2f(0)C1(x) + · · ·+ ∆d+1f(0)Cd(x).

Let g(x) denote the expression on the right-hand side of formula (4). By direct calculation we can
show that ∆Ck(x) = Ck−1(x) for all k > 0, and of course ∆C0(x) = 0. Using this we can calculate

∆g(x) = ∆f(0)C0(x) + ∆2f(0)C1(x) + · · ·+ ∆d+1f(0)Cd(x),

which is equal to ∆f(x). In other words, ∆(f(x) − g(x)) = 0, so f(x) − g(x) is a constant. Now
Ck(0) = 0 for all k > 0 and C0(0) = 1, so g(0) = f(0). This shows that the constant f(x)− g(x) is
equal to zero, proving the formula f(x) = g(x). �

Example. Looking back at the difference table for f(x) = x3 in our earlier example, we see that
f(0) = 0, ∆f(0) = 1, ∆2f(0) = 6, ∆3f(0) = 6. According to the formula, we should have

x3 = C1(x) + 6C2(x) + 6C3(x),

which you can check is true by doing the algebra.

A bit of care is required when using formula (4) on polynomials with coefficients in Zp. In the
definition of Ck(x), we must understand the factor 1/k! to mean the inverse of k! (mod p). This
inverse exists as long as k < p, and the formula works fine for polynomials of degree less than p.
It does not work for higher degree polynomials. However, the polynomial Q(t) we are trying to
find in the decoding algorithm has degree m + e− 1, which is less than n, and n ≤ p by definition.
Putting it all together, we get the improved algorithm.

Improved decoding algorithm. Given the received vector[
R0 R1 . . . Rn−1

]
,

compute the matrix B in Corollary 4, and find a non-zero solution of the resulting e linear equations
for the e+1 unknown coefficients vj of E(t). Compute the sequence of values Q(i) = RiE(i) and its

MATH 55, FALL 2008 SUPPLEMENTARY NOTES ON ERROR-CORRECTING CODES 15

difference table to find Q(0), ∆Q(0), . . . , ∆m+e−1Q(0). Finally use formula (4) to compute Q(t),
and divide by E(t) as before to find P (t).

Example. We’ll use a Reed-Solomon code over Z7 with m = 3 message symbols and n = 7 code
symbols to correct e = 2 errors. Say the message vector is[

2 3 4
]
.

The message polynomial is then
P (t) = 4t2 + 3t + 2,

and the code vector
[
P (0) P (1) . . . P (6)

]
is[

2 2 3 5 1 5 3
]
.

All the arithmetic here is (mod 7), of course. Suppose we receive the vector with two errors as[
2 2 6 5 3 5 3

]
.

This is our vector
[
R0 R1 . . . R6

]
. Following the recipe in Corollary 4, with m + e = 5, we

compute the fifth difference sequences

∆5Ri =
[
2 0

]
∆5iRi =

[
5 5

]
∆5i2Ri =

[
0 2

]
,

yielding the matrix equation [
2 5 0
0 5 2

]v0

v1

v2

 = 0.

A nonzero solution (mod 7) is v0

v1

v2

 =

1
1
1

 ,

giving E(t) = t2 + t + 1. Now we compute the sequence Q(i) = RiE(i) to be

2, 6, 0, 2, 0, 1, 3.

Its difference table is
2 6 0 2 0 1 3
4 1 2 5 1 2
4 1 3 3 1
4 2 0 5
5 5 5.

Note that the next row would be the fifth difference, which is automatically zero because that
was the condition we imposed to solve for E(t). From the first column of the difference table and
formula (4), we get

Q(t) = 2C0(t) + 4C1(t) + 4C2(t) + 4C3(t) + 5C4(t),

16 MATH 55, FALL 2008 SUPPLEMENTARY NOTES ON ERROR-CORRECTING CODES

and expanding out each Ck(t) (mod 7), we find that this is equal to

Q(t) = 4t4 + 2t2 + 5t + 2 = (4t2 + 3t + 2)(t2 + t + 1).

As expected, the polynomial E(t) = t2 + t + 1 factors out exactly, and the quotient Q(t)/E(t) =
4t2 + 3t + 2 is the original message polynomial P (t), recovered correctly despite the two errors.

The most complicated part of this whole procedure is the computation of the polynomials Ck(t).
Observe, however, that if we intended to decode many messages with the same code, we could
compute these polynomials once and for all in advance, and quickly look up the result each time.

7. Can you patent a mathematical algorithm?

Historically, U.S. courts held that “laws of nature, natural phenomena, and abstract ideas” could
not be patented. Mathematical algorithms were considered to be abstract ideas and therefore
unpatentable. A computer program is a form of mathematical algorithm, and so, although the
code for an individual program could be protected by copyright, the underlying algorithm could
not be patented.

In the 1980’s and 90’s, patent attorneys for software companies began to file for patents on
inventions consisting in part or entirely of algorithms, in a gradual effort to get the patent of-
fice and the courts to expand the definition of patentable inventions until it would include pure
algorithms. In one famous case, ATT in 1988 patented an algorithm for linear programming de-
veloped by N. Karmarkar, a researcher at its Bell laboratories. Karmarkar’s algorithm was an
important mathematical development and the effort to patent it created much controversy, partic-
ularly because before the patent was applied for, Karmarkar and ATT boasted about how well the
algorithm worked while refusing to reveal any details. The earlier Berlekamp-Welch patent seems
to have attracted less attention.

When these patents were granted in the 80’s, their validity was doubtful, as courts then still
held mathematical algorithms per se to be unpatentable. However, the broadening of the definition
has continued to the point that under U.S. law today, there are effectively no barriers to patenting
software and algorithms. If an algorithm has “some type of practical application,” the courts no
longer consider it an unpatentable abstract idea.

In my opinion and that of many other mathematicians, and also software developers, the present
state of affairs is a bad one. In mathematics, claims of ownership over ideas serve no useful purpose
and only impede progress. In commerce and industry, patents are supposed to serve the public
interest by providing a reward for innovation. However, many observers have made the case that
software patents have the opposite overall effect, stifling innovation by threatening in effect to make
much non-commercial software development illegal.

Patents and copyrights are often spoken of today as intellectual property. This rather loaded
term carries with it the suggestion that it is natural or desirable for individuals or corporations to
own ideas and control their dissemination and use, prohibiting their sharing in the public domain.
Historically, however, the basis of patent law is not the concept of natural property but that of
a social contract, in which society grants to inventors a temporary monopoly on the use of their
inventions in return for publicizing those inventions and as an incentive to invent. It’s interesting to
note that the basis for the authority of Congress to establish patents and copyrights is the following
clause in Article I, Section 8 of the U.S. Constitution, which explicitly specifies the temporary nature
of such rights and the social interest that they should serve:

MATH 55, FALL 2008 SUPPLEMENTARY NOTES ON ERROR-CORRECTING CODES 17

The Congress shall have the power. . . To promote the Progress of Science and useful
Arts, by securing for limited Times to Authors and Inventors the exclusive Right to
their respective Writings and Discoveries;

When patents on algorithms, software, genes, and life forms begin to obstruct more than to promote
the “Progress of Science and useful Arts,” perhaps the rules governing them need reconsideration.

Here are some sources of additional information and opinions on this subject
progfree.org

(League for Programming Freedom web site)
www.softwarepatents.co.uk

(UK Resource on Software Patents: web site about UK and European software patents
also discusses the U.S. experience)
http://eupat.ffii.org/index.en.html

(Foundation for a Free Information Infrastructure: German web site about European
software patents)

8. Exercises

1. Consider F (t) = 2t5 + t3 + 8t2 + 1 and G(t) = t2 + 3 as polynomials with coefficients in Z11.
Use long division to find a quotient Q(t) and remainder R(t) such that F (t) = Q(t)G(t) +R(t) and
R(t) has smaller degree than G(t).

2. Show that the polynomials Ck(x) in Theorem 8 are uniquely determined by the properties (i)
Ck(x) has degree k, (ii) Ck(i) = 0 for i = 0, 1, . . . , k − 1, (iii) Ck(k) = 1.

3. Use the properties of Ck(x) in Exercise 2 to show that ∆Ck(x) = Ck−1(x) for k > 0.
4. Show that a polynomial f(x) has integer values f(n) for every integer n if and only if it can

be written as
f(x) = a0C0(x) + a1C1(x) + · · ·+ adCd(x)

for some d and integer coefficients a0, a1, . . . , ad.
5. Show that for integers n ≥ 0, the value Ck(n) is equal to the binomial coefficient

(
n
k

)
.

6. If you know that 1, 1, 2, 3, 3 is the beginning of the sequence of values f(0), f(1), f(2), . . . of a
polynomial of degree 3, find the next four terms in the sequence. [Hint: make a difference table,
then extend each row four more terms, starting at the bottom.]

7. Find the polynomial f(x) that produces the sequence in Exercise 6.
8. The Hamming code of order k is a linear code over Z2 with n = 2k − 1 code symbols and

m = 2k − k − 1 message symbols, given by the code matrix

C =
[
Im | B

]
,

where B is an m× k matrix whose rows are all the possible row vectors of length k with entries 0
and 1, and at least two 1’s (note that the number of possible vectors is equal to m).

(a) Write out the code matrix for a Hamming code of order 3.
(b) Show that the Hamming code of order k has weight 3, and therefore can correct one error.

[Hint: this amounts to showing that every non-zero vector obtained as a sum of rows in C has at
least three 1’s in it.]

9. Show that the Hamming codes in Exercise 8 are perfect single-error correcting codes: every
vector is either a code vector or has Hamming distance 1 from a code vector. This implies that no

18 MATH 55, FALL 2008 SUPPLEMENTARY NOTES ON ERROR-CORRECTING CODES

single-error correcting code over Z2 of the same length n can have more message symbols than the
Hamming code.

10. Show that a Reed-Solomon code with 1 message symbol and n code symbols is just an n-fold
redundancy code.

11. (a) Write out the code matrix C for the two-error correcting Reed-Solomon code over Z7

with 7 code symbols (the code used in the example in Section 6).
(b) Use the code matrix to encode the same message vector

[
2 3 4

]
as in the example, and

check that your answer agrees with the one there.
12. For a linear code with m × n code matrix C =

[
Im|P

]
, show that a received vector r is a

code vector (i.e., has no errors) if and only if rS = 0, where

S =
[

P
−In−m

]
.

13. Using a single-error correcting Reed-Solomon code over Z11 with 3 message symbols and
5 code symbols, you receive the vector

[
9 2 9 1 7

]
. Where is the error and what were the

transmitted code vector and the original message polynomial?
14. The data rate of an error correcting code is the fraction (number of message

symbols)/(number of code symbols). The error rate of a transmission channel is the fraction
of the code symbols transmitted in error. What is the maximum data rate achievable by a Reed-
Solomon code if it must be able to tolerate a maximum error rate of 1/3? How is this better than
a triple-redundancy code?

