Math 274—Quantum Groups—Fall 2004

More exercises

8. Let G be an algebraic group over k, $\operatorname{Der}(\mathcal{O}(G))$ the space of k-derivations $\xi \colon \mathcal{O}(G) \to \mathcal{O}(G)$, and $\operatorname{Der}^{G}(\mathcal{O}(G))$ the space of left-invariant derivations (*i.e.*, ξ commutes with the action of G on $\mathcal{O}(G)$ corresponding to the action of G on itself by left multiplication). Let $\operatorname{Der}_{\epsilon}(\mathcal{O}(G), k)$ be the space of ϵ -derivations $\zeta \colon \mathcal{O}(G) \to k$, where $\epsilon \colon \mathcal{O}(G) \to k$ is the counit (the algebra homomorphism given by evaluation at $1 \in G$). Let $\mathcal{O}(G)^{\circ}$ be the Hopf dual and $\mathcal{O}(G)^{\circ}_{\mathrm{pr}}$ be its subspace of primitive elements (*i.e.*, x such that $\Delta x = x \otimes 1 + 1 \otimes x$).

(a) Verify that the commutator of two derivations is a derivation, giving $Der(\mathcal{O}(G))$ the structure of a Lie algebra.

(b) Verify that $\operatorname{Der}^{G}(\mathcal{O}(G))$ is a Lie subalgebra of $\operatorname{Der}(\mathcal{O}(G))$.

(c) Verify that the natural map $\operatorname{Der}^{G}(\mathcal{O}(G)) \to \operatorname{Der}_{\epsilon}(\mathcal{O}(G))$ given by evaluation at 1 is a linear isomorphism.

(d) Verify that the primitive elements of any Hopf algebra form a Lie algebra, with the bracket given by commutator in that Hopf algebra.

(e) Verify that the inclusion $\operatorname{Der}_{\epsilon}(\mathcal{O}(G)) \subseteq \mathcal{O}(G)^*$ maps $\operatorname{Der}_{\epsilon}(\mathcal{O}(G))$ isomorphically onto $\mathcal{O}(G)^{\circ}_{\operatorname{pr}}$.

(f) Via the isomorphisms in (c) and (e), the space $\text{Der}_{\epsilon}(\mathcal{O}(G))$ acquires two Lie algebra structures. Show that they are the same. (Geometrically, $\text{Der}_{\epsilon}(\mathcal{O}(G))$ is the tangent space to G at 1. The Lie algebra structure given by (c) is the one usually taken as the definition, although (e) is more natural from a Hopf algebra point of view.)

9. Fix a basis e_1, \ldots, e_{2n} of k^{2n} and let $\langle -, - \rangle$ be the antisymmetric form such that $\langle e_i, e_{2n+1-i} \rangle = 1$ for $i = 1, \ldots, n$, and $\langle e_i, e_j \rangle = 0$ if $j \neq 2n + 1 - i$. (In other words, the matrix J of the form is antidiagonal with 1's in the upper half and -1's in the lower half).

The symplectic group $Sp_{2n}(k)$ is the subgroup of $GL_{2n}(k)$ consisting of elements that preserve the symplectic form $\langle -, - \rangle$. The upper triangular matrices in $Sp_{2n}(k)$ form a Borel subgroup B, and the diagonal matrices for a maximal torus $T \subseteq B$.

(a) Show that the Lie algebra $\mathfrak{s}p_{2n}$ of Sp_{2n} consists of matrices of the block form

$$\begin{bmatrix} A & B = B^R \\ C = C^R & -A^R \end{bmatrix},$$

where A^R denotes the transpose of A about the antidiagonal.

(b) Describe the character lattice X = X(T), cocharacter lattice Y, roots, coroots, simple roots and simple coroots, root lattice Q and coroot lattice Q^{\vee} . Determine the Cartan matrix and the corresponding Dynkin diagram.

(c) Is Sp_{2n} simply connected? Is it adjoint? Describe all the reductive algebraic groups isogenous to Sp_{2n} (*i.e.*, they have the same Lie algebra).

10. Show that the even orthogonal groups SO_{2n} are neither adjoint nor simply connected. Show that the corresponding adjoint group is $SO_{2n}/\{\pm 1\}$. The simply connected cover is called Spin_{2n} . Show that if n is odd, then SO_{2n} is the only intermediate group between Spin_{2n} and $SO_{2n}/\{\pm 1\}$, but if n is even, there are two others, isomorphic to each other via an isomorphism that induces a nontrivial automorphism of the Lie algebra. 11. Let V be a representation of an algebraic group, or of a quantum group, which has a decomposition $V = \bigoplus_{\lambda \in X} V_{\lambda}$ into finite-dimensional weight spaces. Define the *character* χ_V to be the formal sum $\sum_{\lambda} \dim(V_{\lambda})e^{\lambda}$ in k[X], where I denote the image in k[X] of $\lambda \in X$ by e^{λ} to stress that the additive group law in X is written as multiplication in k[X], that is, $e^{\lambda+\mu} = e^{\lambda}e^{\mu}$. Prove that if V is integrable then χ_V is invariant under the action of the Weyl group on k[X] induced by its action on X.

(In the Kac-Moody case, V might be infinite-dimensional but everything still makes sense as long as it has finite-dimensional weight spaces.)

12. Prove that the only possible coproducts on $U_q(\mathfrak{sl}_2)$ of the form $\Delta E = E \otimes a(K) + b(K) \otimes E$, $\Delta F = F \otimes c(K) + d(K) \otimes F$ are the usual Δ , the coproduct $\overline{\Delta}$ obtained by interchanging K and K^{-1} in the usual one, and their opposites Δ^{op} and $\overline{\Delta}^{\mathrm{op}}$.

13. Let L_m denote the irreducible representation of $U_q(\mathfrak{sl}_2)$ with highest weight m (*i.e.*, K acts as q^m). Show that the decomposition into irreducibles of tensor products is given by

$$L_m \otimes L_n \cong L_{|m-n|} \oplus L_{|m-n|+2} \oplus \cdots \oplus L_{m+n-2} \oplus L_{m+n}.$$

(This is easy, using characters.)

14. Let ϵ be a primitive *l*-th root of unity, where l > 1 is odd (so ϵ^2 is also a primitive *l*-th root of unity). We can define an algebra $U_{\epsilon}(\mathfrak{s}l_2)$ with the same generators and relations as for $U_q(\mathfrak{s}l_2)$ but with q replaced by ϵ .

(a) Show that for any numbers α, β and $\gamma \neq 0$, this algebra has an *l*-dimensional module $L_{\alpha,\beta,\gamma}$ on which e^l and f^l act as the scalars α and β , and K acts with eigenvalues $\gamma, \epsilon^2 \gamma, \ldots, \epsilon^{2l-2} \gamma$.

(b) Show that $L_{\alpha,\beta,\gamma}$ is irreducible unless $\alpha = \beta = 0$ and $\gamma^{2l} = 1$.

15. Let $U = U_q(\mathfrak{sl}_2)$, and recall that the element $\Theta \in (U_- \otimes U_+)$ such that $\Theta \overline{\Delta}(x) = \Delta(x)\Theta$ for all $x \in U$ is given by

$$\Theta = \sum_{n=0}^{\infty} (-1)^n q^{-\binom{n}{2}} (q - q^{-1})^n [n]_q! f^{(n)} \otimes e^{(n)}.$$

Show that $\Theta = \overline{T}T^{-1}$, where

$$T = \sum_{n=0}^{\infty} q^{n^2} f^{(n)} \otimes e^{(n)},$$

and \overline{T} is the same with q replaced by q^{-1} .