1. (a) Show that the polynomial ring \(A = \mathbb{Z}[x_1, \ldots, x_n] \) has a unique structure of Hopf algebra over \(\mathbb{Z} \) such that the variables \(x_i \) are primitive, meaning that \(\Delta x_i = x_1 \otimes 1 + 1 \otimes x_i \), the antipode is \(S(x_i) = -x_i \), and the co-unit is \(\varepsilon(f) = f(0) \).

(b) If \(K \) is an algebraically closed field, \(K \otimes_{\mathbb{Z}} A \) becomes the coordinate ring of the additive group \(\mathbb{G}_m(K) \). Show that this is a special case of the more general property that for any commutative ring \(R \), the Hopf algebra structure on \(A \) gives the set of ring homomorphisms \(A \rightarrow R \) the structure of a group isomorphic to \((R^n, +) \).

(c) Verify that the group structure in part (b) is functorial with respect to ring homomorphisms \(R \rightarrow R' \).

In the language of algebraic geometry, there is an affine scheme \(\text{Spec}(A) \) over \(\mathbb{Z} \) associated to \(A \). Any scheme \(X \) over a commutative ring \(k \) induces a functor \(X(\mathbb{Z}) \) from \(\mathbb{Z} \)-algebras \(R \) to sets, where \(X(R) \) is the set of \(k \)-scheme morphisms \(\text{Spec}(R) \rightarrow X \), also called the set of \(R \)-valued points of \(X \). Morphisms of affine \(k \)-schemes \(\text{Spec}(R) \rightarrow \text{Spec}(A) \) are in functorial one-to-one correspondence with \(k \)-algebra homomorphisms \(A \rightarrow R \). Note that every commutative ring is a \(\mathbb{Z} \)-algebra in a unique way.

What this problem shows is that for \(A \) as in part (a), \(\text{Spec}(A) \) is a group scheme \(\mathbb{G}_m \) over \(\mathbb{Z} \) whose functor of points send \(R \) to the additive group \(R^n \).

2. Work out the analog of Problem 1 for the Laurent polynomial ring \(A = \mathbb{Z}[x_1^{\pm 1}, \ldots, x_n^{\pm 1}] \), with each variable grouplike, meaning that \(\Delta x_i = x_i \otimes x_i \), and with antipode \(S(x_i) = x_i^{-1} \) and co-unit \(\varepsilon(f) = f(1) \).

3. The axioms of a non-commutative Hopf algebra (over a commutative ground ring \(k \)) are essentially the same as in the commutative case, except that the antipode \(S \) is required to be an \(k \)-algebra antihomomorphism (i.e., it reverses multiplication). The coproduct \(\Delta: A \rightarrow A \otimes A \) and co-unit \(\varepsilon: A \rightarrow k \) are ordinary algebra homomorphisms.

(a) Write down the axioms explicitly, using Sweedler notation \(\Delta f = \sum f_{(1)} \otimes f_{(2)} \) for the coproduct, recalling that they should formally make \(A \) a group object in the opposite of the category of \(k \)-algebras, with \(\otimes \) playing the role of a product.

(b) Show that, even in the commutative case, the antipode is a homomorphism from the coproduct to the opposite coproduct.

(c) Show that the axioms are self-dual. Hence, in particular, if \(k \) is a field and \(A \) is a finite-dimensional Hopf algebra, then \(A^* \) has the structure of a Hopf algebra.

(d) Prove that if the antipode \(S \) in a Hopf algebra \(A \) is invertible (this holds automatically in some cases, including commutative and co-commutative Hopf algebras), then \(S^{-1} \) is the antipode for the same algebra with opposite coproduct, and also the antipode for the algebra with the same coproduct and the opposite product. In particular, if \(A \) is either commutative or co-commutative, then \(S^2 \) is the identity.

4. Show that the group algebra \(kG \) of a finite group \(G \) has a co-commutative Hopf algebra structure in which the elements of \(g \) are grouplike, and that this makes \(kG \) dual to the Hopf algebra of \(k \)-valued functions on \(G \). This works for any commutative ring \(k \).
5. If A is an infinite-dimensional Hopf algebra over a field k, its dual space A^* becomes an algebra, but not a co-algebra, because $\Delta^*: A^* \to (A \otimes A)^*$ need not map A^* into $A^* \otimes A^*$, which is a proper subspace of $(A \otimes A)^*$.

Let $A^* \subseteq A^*$ be the preimage $(\Delta^*)^{-1}(A^* \otimes A^*)$. Show that A^* is a subalgebra of A^* and that the Hopf algebra structure on A induces a dual Hopf algebra structure on A^*. This algebra is called the Hopf dual of A.

6. Show that the free abelian group generated by the elements $x^n/n!$ in $\mathbb{Q}[x]$ is a \mathbb{Z}-subalgebra $D \subseteq \mathbb{Q}[x]$, called the divided power algebra in one variable. Show that D has a natural co-commutative Hopf algebra structure, dual to the Hopf algebra structure on $\mathbb{Z}[x]$ in which x is primitive. Duality in this case means a perfect pairing $D \otimes_{\mathbb{Z}} \mathbb{Z}[x] \to \mathbb{Z}$ such that the coproduct, co-unit and antipode in each algebra are dual to the product, unit and antipode in the other.

7. Consider the case of the pair of dual Hopf algebras kG and $\mathcal{O}(G)$ in Problem 4, where $\mathcal{O}(G)$ is the algebra of functions $G \to k$, when k is a field of characteristic p and $G = \mathbb{Z}/p\mathbb{Z}$ is a cyclic group of order p.

(a) Show that $k(G) = k[x]/(x^p - 1)$, with x group-like. We can think of it as $\mathcal{O}(\mu_p)$ for the non-reduced group scheme of `p-th roots of unity' over k.

(b) Show that linear representations of G over k, or kG modules, are the same as $\mathcal{O}(G)$ comodules, and that except for the fact that G is not connected group, it behaves just like a unipotent linear algebraic group, in the equivalent senses that (i) the only irreducible kG module is the trivial representation; (ii) in every finite-dimensional representation, G acts by upper unitriangular matrices in some basis; (iii) G acts unipotently on $\mathcal{O}(G)$.

(c) Show that $\mathcal{O}(G)$ modules, or kG comodules, are the same as $(\mathbb{Z}/p\mathbb{Z})$-graded vector spaces. In particular, $\mathcal{O}(G)$ has p distinct non-isomorphic one-dimensional irreducible modules, and every module is a direct sum of these. In this sense the group scheme μ_p is `reductive' and its representation theory in any characteristic resembles the characteristic zero representation theory of a cyclic group of order p.

8. (a) Write out explicitly the axioms of a right coaction $W \to W \otimes A$, where A is a Hopf algebra over k and W is a k module, dual to the axioms of a group action. You can assume k is a field if you like, but the axioms are the same over any commutative ring.

(b) Verify in detail that if $G \times V \to V$ is a linear algebraic action of an affine algebraic group on a finite dimensional vector space V (considered as an algebraic variety), and $\rho: \mathcal{O}(V) \to \mathcal{O}(V) \otimes \mathcal{O}(G)$ is the corresponding homomorphism of algebras of functions, then ρ maps V^* into $V^* \otimes \mathcal{O}(G)$ and makes V^* a $\mathcal{O}(G)$ comodule. Note that V^* is the subspace of $\mathcal{O}(V)$ consisting of linear functions.

(c) Verify in detail that every finite-dimensional right $\mathcal{O}(G)$ comodule W arises from a unique linear algebraic action of G on $V = W^*$ as in part (b), and more explicitly, that the right action of $g \in G$ on W dual to the left action on V is given by composing $\rho: W \to W \otimes \mathcal{O}(G)$ with the evaluation map $ev_g: \mathcal{O}(G) \to k$.

9. (a) Show that if G is an algebraic group, the grouplike elements of the Hopf algebra $\mathcal{O}(G)$ are the 1-dimensional characters of G, that is, the group homomorphisms
$G \to \mathbb{G}_m(K) = K^\times$, considered as functions on G.

(b) More generally, show that if A is a Hopf algebra over a commutative ring k, then grouplike elements of A correspond naturally to A comodules isomorphic to k as a k module.

10. Let A be a Hopf algebra over k. Show that a k-linear map $\lambda: A \to k$ is a grouplike element of the Hopf dual of A if and only if is an algebra homomorphism.

In the case $A = \mathcal{O}(G)$ for an affine algebraic group G, this means that the grouplike elements of the Hopf dual of A correspond to the group elements $g \in G$.

11. Let G be an affine algebraic group and let $A = \mathcal{O}(G)$. Recall that G embeds in the the algebra A^* by $g \to \text{ev}_g$ and that its Lie algebra $\mathfrak{g} = T_eG$ embeds in A^* as the space of linear functionals that kill the ideal \mathfrak{m}_e^2 and the constant functions. Verify in detail that the adjoint action of G on \mathfrak{g}, given for $g \in G$ by the differential at e of conjugation by g on G, corresponds to conjugation by G on \mathfrak{g} in A^*.

12. Show that in characteristic zero, the finite dimensional representations of $GL_2(K)$ are completely reducible, and the irreducible representations are the standard representations on homogeneous polynomials of each degree d in $K[x,y]$, tensored with integer powers of the 1-dimensional representation whose character is the determinant. More precisely, with $T \subset B \subset GL_2$ the diagonal and upper triangular matrices, the weight lattice is $X = \mathbb{Z}^2$, the dominant weights are (λ_1, λ_2) such that $\lambda_1 \geq \lambda_2$, and $V_\lambda = (\det)^{\otimes \lambda_1} \otimes K[x,y]_{\lambda_1-\lambda_2}$ is the irreducible representation with highest weight λ.

More explicitly, show that the coordinate ring $\mathcal{O}(GL_2)$ decomposes into a direct sum of subspaces spanned by the matrix coefficients of the representations described above. This and the irreducibility of these representations implies the other conclusions.