Math 261A: Lie Groups, Fall 2010
Problems, Set 4

1. (a) Describe the map gl(n,R) = Lie(GL(n,R)) = M,(R) — Vect(R") given by the
infinitesimal action of GL,(R).

(b) Show that so(n,R) is equal to the subalgebra of gl(n, R) consisting of elements whose
infinitesimal action is a vector field tangential to the unit sphere in R".

2. Prove that if G is a connected Lie group, with Lie(G) = g, then the connected Lie
subgroup Z C G whose Lie algebra is the center of g is equal to the identity component of
the center of G.

3. (a) Show that if H is a normal Lie subgroup of G, then Lie(H) is an ideal in Lie(G).
(b) Show that if G is connected, the converse also holds.

4. Show that the kernel of a Lie group homomorphism G — H is a closed subgroup of
G whose Lie algebra is equal to the kernel of the induced map Lie(G) — Lie(H).

5. Show that the intersection of two Lie subgroups H;, Hs of a Lie group G can be given
a canonical structure of Lie subgroup so that its Lie algebra is Lie(H;) N Lie(Hy) C Lie(G).

6. Classify the 3-dimensional Lie algebras g over an algebraically closed field & of char-
acteristic zero by showing that if g is not a direct product of smaller Lie algebras, then
either

() g = sl(2,k),

(i) g is isomorphic to the nilpotent Heisenberq Lie algebra b with basis X, Y, Z such
that Z is central and [X,Y] = Z, or

(iii) g is isomorphic to a solvable algebra s which is the semidirect product of the abelian
algebra k? by an invertible derivation. In particular s has basis X, Y, Z such that [V, Z] = 0,
and ad X acts on kY + kZ by an invertible matrix, which, up to change of basis in kY + kZ
and rescaling X, can be taken to be either [{ 1], or [§ {] for some nonzero A € k.

7. (a) Show that the Heisenberg Lie algebra § in the preceding problem has the property
that Z acts nilpotently in every finite-dimensional module, and as zero in every simple
finite-dimensional module.

(b) Construct a simple infinite-dimensional h-module in which Z acts as a non-zero scalar.
Hint: take X and Y to be the operators d/dt and t on kt].

8. Construct a simple 2-dimensional module for the Heisenberg algebra h over any field
k of characteristic 2. In particular, if £ = k, this gives a counterexample to Lie’s theorem in
non-zero characteristic.

9. Let g be a finite-dimensional Lie algebra over a field of characteristic zero, t its radical.

(a) Prove that [g, ] is contained in the nilradical (largest nilpotent ideal) of t.

(b) Deduce that the nilradical of g is equal to the nilradical of ¢, and consists of all
elements = € v such that ad z is nilpotent (on g or equivalently on t).

10. (a) Show that Extb(g) (k, k) can be canonically identified with the dual space of g/Dg.



(b) Part (a) implies that (g/Dg)* is in canonical bijective correspondence with isomor-
phism classes of 2-dimensional g modules V' with a one-dimensional submodule W such that
both W and V/W are trivial g modules. Make this correspondence explicit.

11. Show that Ext(lj(g)(k, g) can be canonically identified with the space Der(g)/Inn(g)
of derivations of g, modulo derivations of the form ad x, and also with isomorphism classes
of Lie algebras containing g as a codimension 1 ideal.

12. Let F(d) be the free Lie algebra on generators Xi,..., X, It has a natural N?
grading in which F'(d)&,,. k) is spanned by bracket monomials containing k; occurences of
each generator X;. Use the PBW theorem to prove the generating function identity
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13. Words in the symbols X, ..., X, form a monoid under concatentation, with identity
the empty word. Define a primitive word to be a non-empty word that is not a power of a
shorter word. A primitive necklace is an equivalence class of primitive words under rotation.
Use the generating function identity in the preceding problem to prove that the dimension
of F(d)k, ...k, is equal to the number of primitive necklaces in which each symbol X; appears
k; times.

14. A Lyndon word is a primitive word that is the lexicographically least representative
of its primitive necklace.

(a) Prove that w is a Lyndon word if and only if w is lexicographically less than v for
every factorization w = uv such that v and v are non-empty.

(b) Prove that if w = ww is a Lyndon word of length > 1 and v is the longest proper right
factor of w which is itself a Lyndon word, then w is also a Lyndon word. This factorization
of w is called its right standard factorization.

(¢) To each Lyndon word w in symbols Xj,..., X, associate the bracket polynomial
pw = X; if w = X; has length 1, or, inductively, p, = [pu, py], Where w = uv is the right
standard factorization, if w has length > 1.

Prove that the elements p,, form a basis of F(d).

15. Prove that if ¢ is a power of a prime, then the dimension of the subspace of total
degree ky + --- + k, = n in F(q) is equal to the number of monic irreducible polynomials of
degree n over the field with g elements.

16. Show that if g acts by derivations on two algebras V' and W, then its action on V@ W
is also by derivations (with the algebra structure on V' ® W such that (v ® w)(v' ® w') =
v’ @ ww').

17. (a) Show that every finite-dimensional g module V' has a unique maximal submodule
which is a nil representation of g.

(b) Show that every finite-dimensional Lie algebra g has a unique ideal j such that j is a
nil representation of g, and the center of g/j is trivial.



18. Given ki + ... + k. = n, let h C gl,, be the subalgebra consisting of block upper-
triangular matrices with block sizes k;. Describe the radical ¢ of h and find a Levi decom-
position h = s X v, where s is a semisimple subalgebra. Take as known the fact that sl,, is
simple.

19. Let g be a finite dimensional Lie algebra over a field of characteristic zero, t its
radical. Prove that Dg Nt = [g,t]. (Hint: use Levi’s theorem).



