
Math 261A: Lie Groups, Fall 2010
Problems, Set 4

1. (a) Describe the map gl(n,R) = Lie(GL(n,R)) = Mn(R) → Vect(Rn) given by the
infinitesimal action of GLn(R).

(b) Show that so(n,R) is equal to the subalgebra of gl(n,R) consisting of elements whose
infinitesimal action is a vector field tangential to the unit sphere in Rn.

2. Prove that if G is a connected Lie group, with Lie(G) = g, then the connected Lie
subgroup Z ⊆ G whose Lie algebra is the center of g is equal to the identity component of
the center of G.

3. (a) Show that if H is a normal Lie subgroup of G, then Lie(H) is an ideal in Lie(G).
(b) Show that if G is connected, the converse also holds.

4. Show that the kernel of a Lie group homomorphism G → H is a closed subgroup of
G whose Lie algebra is equal to the kernel of the induced map Lie(G)→ Lie(H).

5. Show that the intersection of two Lie subgroups H1, H2 of a Lie group G can be given
a canonical structure of Lie subgroup so that its Lie algebra is Lie(H1) ∩ Lie(H2) ⊆ Lie(G).

6. Classify the 3-dimensional Lie algebras g over an algebraically closed field k of char-
acteristic zero by showing that if g is not a direct product of smaller Lie algebras, then
either

(i) g ∼= sl(2, k),
(ii) g is isomorphic to the nilpotent Heisenberg Lie algebra h with basis X, Y , Z such

that Z is central and [X, Y ] = Z, or
(iii) g is isomorphic to a solvable algebra s which is the semidirect product of the abelian

algebra k2 by an invertible derivation. In particular s has basis X, Y , Z such that [Y, Z] = 0,
and adX acts on kY + kZ by an invertible matrix, which, up to change of basis in kY + kZ
and rescaling X, can be taken to be either [ 1 1

0 1 ], or [ λ 0
0 1 ] for some nonzero λ ∈ k.

7. (a) Show that the Heisenberg Lie algebra h in the preceding problem has the property
that Z acts nilpotently in every finite-dimensional module, and as zero in every simple
finite-dimensional module.

(b) Construct a simple infinite-dimensional h-module in which Z acts as a non-zero scalar.
Hint: take X and Y to be the operators d/dt and t on k[t].

8. Construct a simple 2-dimensional module for the Heisenberg algebra h over any field
k of characteristic 2. In particular, if k = k, this gives a counterexample to Lie’s theorem in
non-zero characteristic.

9. Let g be a finite-dimensional Lie algebra over a field of characteristic zero, r its radical.
(a) Prove that [g, r] is contained in the nilradical (largest nilpotent ideal) of r.
(b) Deduce that the nilradical of g is equal to the nilradical of r, and consists of all

elements x ∈ r such that ad x is nilpotent (on g or equivalently on r).

10. (a) Show that Ext1
U(g)(k, k) can be canonically identified with the dual space of g/Dg.



(b) Part (a) implies that (g/Dg)∗ is in canonical bijective correspondence with isomor-
phism classes of 2-dimensional g modules V with a one-dimensional submodule W such that
both W and V/W are trivial g modules. Make this correspondence explicit.

11. Show that Ext1
U(g)(k, g) can be canonically identified with the space Der(g)/ Inn(g)

of derivations of g, modulo derivations of the form adx, and also with isomorphism classes
of Lie algebras containing g as a codimension 1 ideal.

12. Let F (d) be the free Lie algebra on generators X1, . . . , Xd. It has a natural Nd

grading in which F (d)(k1,...,kd) is spanned by bracket monomials containing ki occurences of
each generator Xi. Use the PBW theorem to prove the generating function identity∏
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.

13. Words in the symbols X1, . . . , Xd form a monoid under concatentation, with identity
the empty word. Define a primitive word to be a non-empty word that is not a power of a
shorter word. A primitive necklace is an equivalence class of primitive words under rotation.
Use the generating function identity in the preceding problem to prove that the dimension
of F (d)k1,...,kd

is equal to the number of primitive necklaces in which each symbol Xi appears
ki times.

14. A Lyndon word is a primitive word that is the lexicographically least representative
of its primitive necklace.

(a) Prove that w is a Lyndon word if and only if w is lexicographically less than v for
every factorization w = uv such that u and v are non-empty.

(b) Prove that if w = uv is a Lyndon word of length > 1 and v is the longest proper right
factor of w which is itself a Lyndon word, then u is also a Lyndon word. This factorization
of w is called its right standard factorization.

(c) To each Lyndon word w in symbols X1, . . . , Xd associate the bracket polynomial
pw = Xi if w = Xi has length 1, or, inductively, pw = [pu, pv], where w = uv is the right
standard factorization, if w has length > 1.

Prove that the elements pw form a basis of F (d).

15. Prove that if q is a power of a prime, then the dimension of the subspace of total
degree k1 + · · ·+ kq = n in F (q) is equal to the number of monic irreducible polynomials of
degree n over the field with q elements.

16. Show that if g acts by derivations on two algebras V and W , then its action on V ⊗W
is also by derivations (with the algebra structure on V ⊗W such that (v ⊗ w)(v′ ⊗ w′) =
vv′ ⊗ ww′).

17. (a) Show that every finite-dimensional g module V has a unique maximal submodule
which is a nil representation of g.

(b) Show that every finite-dimensional Lie algebra g has a unique ideal j such that j is a
nil representation of g, and the center of g/j is trivial.



18. Given k1 + ... + kr = n, let h ⊆ gln be the subalgebra consisting of block upper-
triangular matrices with block sizes ki. Describe the radical r of h and find a Levi decom-
position h = s n r, where s is a semisimple subalgebra. Take as known the fact that slm is
simple.

19. Let g be a finite dimensional Lie algebra over a field of characteristic zero, r its
radical. Prove that Dg ∩ r = [g, r]. (Hint: use Levi’s theorem).


