Math 261A: Lie Groups, Fall 2015
Problem Set 1

Problems from Varadarajan:

Chapter 1, Exercise 2.
Chapter 2, Exercises 2, 3, 4, 9(a), 11, 12(b,c), 16 (assuming as in the hint that a Lie
group with Lie algebra g/b exists), 18, 19, 20, 21, 22, 27, 39.

Other problems:

1. (a) For any object X in a category C, the functor hx = Homg(—, X) from C°P (the
category C' with arrows reversed) to Sets is called the functor represented by X. Suppose C
is a category with finite products. Show that to give an object G the structure of a group
object in C' is equivalent to giving a functor gg: C°°? — Groups such that hg = f o gg,
where f: Groups — Sets is the ‘forgetful functor’ sending a group to its underlying set.

(b) Show that to give an action of a group object G in C' on an object X in C' (that is,
an arrow G X X — X such that suitable diagrams corresponding to the usual definition of
a group action commute) is equivalent to giving a an action of the group go(7T) on the set
hx(T), for every object T" in C', which is functorial in 7.

(c¢) Show that when C' is the category of topological spaces, or of smooth, analytic or
holomorphic manifolds, G is a group object if and only if its underlying set is a group, in
such a way that that the group law and the map g — g~! are morphisms in the category,
that is, continuous, smooth, analytic or holomorphic maps.

(d) Show that in the categories of spaces in part (c) an action of a group object G on an
object X is the same as a group action of the underlying set of G on the underlying set of
X, such that the action map G x X — X is a morphism in the category.

2. Prove that if G is a manifold and a group such that the group operation is smooth (resp.
analytic, holomorphic), then the map i: g — ¢! is automatically smooth (resp. analytic,
holomorphic). Hint: show that the group operation y is a submersion, and deduce that the
graph of 7 is a regularly embedded submanifold of G x G.

3. (a) Show that the tangent space T, X of a real analytic manifold X at a point p is
canonically identified with the tangent space at p of X considered as a real smooth manifold.

(b) Show that if X is a complex holomorphic manifold, the tangent space 7,X, when
regarded as a real vector space, is canonically identified with the tangent space at p of X
considered as a real analytic manifold, of twice its complex dimension.

4. (a) Construct an isomorphism of Lie algebras s04(C) 2 s03(C) x s03(C).
(b) Construct a corresponding isogeny of Lie groups SO4(C) — SO3(C) x SO3(C) and
show that its kernel is {£14}.
5. (a) Show that the simply connected covering space of SLs(R) can be described as the
T = b

set SLy(R) of pairs (g, ), where g = J
the covering map being given by (g,0) — g.

€ SLy(R), and 6 € R is a value of arg(a + ib),



(b) Write down the group law on STQ(TR) explicitly in terms of g and #. (You will probably
find this impossible to express as a simple closed formula.)

6. Let G be the group of Euclidean motions of R"™, that is, the semidirect product
SO(n,R) x R", where R" acts on itself by translations. Describe the Lie algebra g = Lie(G)
and the exponential map exp: g — G.

7. Prove that for any Lie group G, if z,y € Lie(G) satisfy [z, y] = 0, then exp(z + y) =
exp(z)exp(y). (You might do this using either the Baker-Campbell-Hausdoff formula or
Chevalley’s subgroup theorem. If you use BCH you will need to deal with the fact that =,y
are not assumed to lie in a domain on which the formula converges.)

8. Calculate explicitly, in terms of matrix coordinates, the left and right invariant vector
fields A\, and p, on G = GL,, with value z € T.G = gl,, at the identity. Then verify directly
that [z, A\y] = Ay, where [z,y] is matrix commutator, and that [p,, py] = —pay-

9. In the situation of Problem 8, express the differential (d exp), of the exponential map
at x € gl, explicitly in terms of matrix coordinates. Use this to find the vector field &, on
gl,, which is related via exp to A, and verify that the result agrees with the formula

ad z
1 — efadx Y

&y(r) =

On what subset of g, is &, defined for all y? How is this related to the locus where d exp is
singular, and why?

10. Let T be the tensor algebra over Q on generators X, Y and let F' be the Lie subalgebra
of T generated by X and Y, with commuator in 7" as Lie bracket. Note that F'is a graded
subspace of T, that is, F' is the direct sum of its degree components F, = F' N T, since if
a € Ty, b€ T,, then [a,b] = ab—ba € Ty, 1 p.

For g € T, let ©(q) be the operator on F' given by subsituting (ad X) for X and (adY)
for Y in ¢. Define a Q-linear map W: 7" — F by V(1) =0 and ¥(¢Z) = ©(q)Z for Z = X, Y.

Explicitly, given a tensor monomial Z; ---Z,, € T, where each Z; is either X or Y, we
have

\I/(Zl cee Zn) = (ad Zl) cee (ad Zn—l)Zn-

(a) Using the fact that ad: F' — Endg(F) is a Lie algebra homomorphism, conclude that
O(q) =adqifqge F.

(b) Show that F,, = (ad X)F,,_1 + (adY)F,,_;. In other words, Lie bracket monomials
(ad Zy) - -~ (ad Z,,—1) Z,, span F' (but are not linearly independent).

(c) Prove that W(p) = np if p € F),, by induction on n, using (a) and (b).

(d) Let B(X,Y) =X +Y 4 3[X,Y] + --- be the Baker-Campbell-Hausdorff series. We
can consider B(tX,tY) = (X +Y)t + [X,Y]t? + --- as a formal power series in ¢ whose
coefficient of " belongs to F, and thus to T,. As such, it is just the formal logarithm
log(e™Xe'), where log(1 + ¢(t)) = > o (—=1)*"1¢(t)* /k for any series ¢(t) with coefficients
in 7" and zero constant term.



Use this to obtain the explicit formula, due to Dynkin,

X (_1\k—1 PLYa ... XPkY
B(tX,tY):Z¢ 3 (XY XPY'®) IR
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k=1 p1tq1>1,...,ppt+qr>1

11. (a) Let ¢: S? — CP! be the map given by stereographic projection from the north
pole of S? to the complex plane C, with ¢ mapping the south pole to 0, the equator to the unit
circle {|z| = 1}, and the north pole to co. Verify that ¢ is an isometry between the standard
angle metric on S? and the Fubini-Study metric on CP! given by d(z,y) = 2cos™ ! |(z,v)|,
where x,y € C? are unit vectors.

(b) Work out the resulting Lie group homomorphism ¢ : U(2) — SO(3) in explicit coor-
dinates, i.e., find the entries of the 3 x 3 real orthogonal matrix 1(A) in terms of the entries
of the 2 x 2 complex unitary matrix A.

12. Construct an isomorphism of GL(n,C) (as a Lie group and an algebraic group) with
a closed subgroup of SL(n+1,C).

13. Show that the map C* x SL(n,C) — GL(n,C) given by (z,g) — zg is a surjective
homomorphism of Lie and algebraic groups, find its kernel, and describe the corresponding
homomorphism of Lie algebras.

14. The free Lie algebra on generators X; over a field k is a Lie algebra F over k
with generators X; and only the relations that follow from the Lie algebra axioms. More
precisely, F', together with its distinguished elements X, is characterized by the property
that for every Lie algebra g over k£ and system of elements x; € g, there is a unique Lie
algebra homomorphism F' — g sending X; to z;.

(a) Show that an F' module is just a vector space V' together with arbitrary endomor-
phisms & = p(X;).

(b) Deduce that the universal enveloping algebra of F' is the tensor algebra 1" over k on
the generators X;. (This is slightly subtle. It is clear from (a) that the associative algebras
T and A(F') have canonically equivalent categories of modules, but not entirely obvious that
this implies that 7" and 2((F) are isomorphic.)

(c) Using Poincaré-Birkhoff-Witt, deduce that F is isomorphic to the Lie subalgebra of
T generated by the elements X;, where we regard T as a Lie algebra with commutator as
the Lie bracket.

(d) Assume now that the set of generators X; is a finite set {Xj,..., X, }, so that the
graded algebras T" and F' have finite dimension in each degree. In particular, t; = dim(7y) =
nd is the number of words (or tensor monomials) of length d in the n letters X;, with

generating function
1
tazt = :
Z 4% 1—nz
d
Show that f; = dim(Fy) is characterized by the identity

m—. - !
(1—zd)fa  1—nz

d




(e) Derive the explicit formula fy = (1/d) >y, u(d/k) n*. Here p(m) is the classical
Mébius function, equal to (—1)" if m is a product of r distinct primes, or 0 if m is divisible
by a square, which is characterized by the Mdbius inversion formula aq = 37, , p(k/d)by if
by = ka ay, for any sequence ap, as, . . ..

(f) A word w in the letters Xy, ..., X, is aperiodic if all rotations of w are distinct. Show
that f; is equal to the number of rotation classees of non-empty aperiodic words of length d
in n letters.

(g) A Lyndon word is a non-empty aperiodic word which is lexicographically least in its
rotation class. Thus f; is the number of Lyndon words of length d in n letters. Show that
every Lyndon word w of length d > 1 can be factored (not necessarily uniquely) as w = uwv,
where u and v are Lyndon. Hint: it works to take for v the right factor such that vu is the
lexicographically least rotation of w other than w itself.

(h) Fix one Lyndon factorization w = uwv for each Lyndon word w of length d > 1,
and define a Lie bracket monomial [w] € F' inductively by [w] = X; if w = X, otherwise
[w] = [[u], [v]], where w = wv is the chosen factorization. Show that the lexicographically
least term of [w], considered as an element of T', is w.

(i) Deduce that the Lie bracket monomials [w] for all Lyndon words w form a basis of
the free Lie algebra F (for any given choice of the factorizations w = uv).

(j) Show that if n is a power of a prime, so there exists a finite field F of order n, then f;
is equal to the number of distinct monic irreducible polynomials g(x) of degree d over F. Is
this purely a numerical coincidence, or can some deeper connection with the free Lie algebra
be found?

15. Prove that if g is a solvable Lie algebra over R, then every finite-dimensional irre-
ducible g module has dimension at most 2.

16. Construct an example of a solvable Lie algebra g over a field of characteristic 2 such
that the derived subalgebra [g, g] is not nilpotent. Hint: start with the the 2-dimensional non-
nil module V' for the 3-dimensional Heisenberg algebra b, and form the semidirect product
of h with V', regarded as an abelian Lie algebra.



