
Math 261A: Lie Groups, Fall 2015
Problem Set 1

Problems from Varadarajan:

Chapter 1, Exercise 2.
Chapter 2, Exercises 2, 3, 4, 9(a), 11, 12(b,c), 16 (assuming as in the hint that a Lie

group with Lie algebra g/h exists), 18, 19, 20, 21, 22, 27, 39.

Other problems:

1. (a) For any object X in a category C, the functor hX = HomC(−, X) from Cop (the
category C with arrows reversed) to Sets is called the functor represented by X. Suppose C
is a category with finite products. Show that to give an object G the structure of a group
object in C is equivalent to giving a functor gG : Cop → Groups such that hG = f ◦ gG,
where f : Groups→ Sets is the ‘forgetful functor’ sending a group to its underlying set.

(b) Show that to give an action of a group object G in C on an object X in C (that is,
an arrow G ×X → X such that suitable diagrams corresponding to the usual definition of
a group action commute) is equivalent to giving a an action of the group gG(T ) on the set
hX(T ), for every object T in C, which is functorial in T .

(c) Show that when C is the category of topological spaces, or of smooth, analytic or
holomorphic manifolds, G is a group object if and only if its underlying set is a group, in
such a way that that the group law and the map g 7→ g−1 are morphisms in the category,
that is, continuous, smooth, analytic or holomorphic maps.

(d) Show that in the categories of spaces in part (c) an action of a group object G on an
object X is the same as a group action of the underlying set of G on the underlying set of
X, such that the action map G×X → X is a morphism in the category.

2. Prove that ifG is a manifold and a group such that the group operation is smooth (resp.
analytic, holomorphic), then the map i : g 7→ g−1 is automatically smooth (resp. analytic,
holomorphic). Hint: show that the group operation µ is a submersion, and deduce that the
graph of i is a regularly embedded submanifold of G×G.

3. (a) Show that the tangent space TpX of a real analytic manifold X at a point p is
canonically identified with the tangent space at p of X considered as a real smooth manifold.

(b) Show that if X is a complex holomorphic manifold, the tangent space TpX, when
regarded as a real vector space, is canonically identified with the tangent space at p of X
considered as a real analytic manifold, of twice its complex dimension.

4. (a) Construct an isomorphism of Lie algebras so4(C) ∼= so3(C)× so3(C).
(b) Construct a corresponding isogeny of Lie groups SO4(C) → SO3(C) × SO3(C) and

show that its kernel is {±I4}.
5. (a) Show that the simply connected covering space of SL2(R) can be described as the

set ŜL2(R) of pairs (g, θ), where g =

(
a b
c d

)
∈ SL2(R), and θ ∈ R is a value of arg(a+ ib),

the covering map being given by (g, θ) 7→ g.



(b) Write down the group law on ŜL2(R) explicitly in terms of g and θ. (You will probably
find this impossible to express as a simple closed formula.)

6. Let G be the group of Euclidean motions of Rn, that is, the semidirect product
SO(n,R)nRn, where Rn acts on itself by translations. Describe the Lie algebra g = Lie(G)
and the exponential map exp: g→ G.

7. Prove that for any Lie group G, if x, y ∈ Lie(G) satisfy [x, y] = 0, then exp(x + y) =
exp(x) exp(y). (You might do this using either the Baker-Campbell-Hausdoff formula or
Chevalley’s subgroup theorem. If you use BCH you will need to deal with the fact that x, y
are not assumed to lie in a domain on which the formula converges.)

8. Calculate explicitly, in terms of matrix coordinates, the left and right invariant vector
fields λx and ρx on G = GLn with value x ∈ TeG = gln at the identity. Then verify directly
that [λx, λy] = λ[x,y], where [x, y] is matrix commutator, and that [ρx, ρy] = −ρ[x,y].

9. In the situation of Problem 8, express the differential (d exp)x of the exponential map
at x ∈ gln explicitly in terms of matrix coordinates. Use this to find the vector field ξy on
gln which is related via exp to λy, and verify that the result agrees with the formula

ξy(x) =
adx

1− e− adx
y.

On what subset of gn is ξy defined for all y? How is this related to the locus where d exp is
singular, and why?

10. Let T be the tensor algebra over Q on generators X, Y and let F be the Lie subalgebra
of T generated by X and Y , with commuator in T as Lie bracket. Note that F is a graded
subspace of T , that is, F is the direct sum of its degree components Fn = F ∩ Tn, since if
a ∈ Tm, b ∈ Tn, then [a, b] = ab− ba ∈ Tm+n.

For q ∈ T , let Θ(q) be the operator on F given by subsituting (adX) for X and (adY )
for Y in q. Define a Q-linear map Ψ: T → F by Ψ(1) = 0 and Ψ(qZ) = Θ(q)Z for Z = X, Y .

Explicitly, given a tensor monomial Z1 · · ·Zn ∈ T , where each Zi is either X or Y , we
have

Ψ(Z1 · · ·Zn) = (adZ1) · · · (adZn−1)Zn.

(a) Using the fact that ad: F → EndQ(F ) is a Lie algebra homomorphism, conclude that
Θ(q) = ad q if q ∈ F .

(b) Show that Fn = (adX)Fn−1 + (adY )Fn−1. In other words, Lie bracket monomials
(adZ1) · · · (adZn−1)Zn span F (but are not linearly independent).

(c) Prove that Ψ(p) = np if p ∈ Fn, by induction on n, using (a) and (b).

(d) Let B(X, Y ) = X + Y + 1
2
[X, Y ] + · · · be the Baker-Campbell-Hausdorff series. We

can consider B(tX, tY ) = (X + Y )t + 1
2
[X, Y ]t2 + · · · as a formal power series in t whose

coefficient of tn belongs to Fn and thus to Tn. As such, it is just the formal logarithm
log(etXetY ), where log(1 + φ(t)) =

∑∞
k=1(−1)k−1φ(t)k/k for any series φ(t) with coefficients

in T and zero constant term.



Use this to obtain the explicit formula, due to Dynkin,

B(tX, tY ) =
∞∑
k=1

(−1)k−1

k

∑
p1+q1≥1,...,pk+qk≥1

Ψ(Xp1Y q1 · · ·XpkY qk)

p1!q1! · · · pk!qk!(
∑
pi +

∑
qi)
t
∑

pi+
∑

qi

11. (a) Let φ : S2 → CP1 be the map given by stereographic projection from the north
pole of S2 to the complex plane C, with φ mapping the south pole to 0, the equator to the unit
circle {|z| = 1}, and the north pole to∞. Verify that φ is an isometry between the standard
angle metric on S2 and the Fubini-Study metric on CP1 given by d(x, y) = 2 cos−1 |(x, y)|,
where x, y ∈ C2 are unit vectors.

(b) Work out the resulting Lie group homomorphism ψ : U(2)→ SO(3) in explicit coor-
dinates, i.e., find the entries of the 3× 3 real orthogonal matrix ψ(A) in terms of the entries
of the 2× 2 complex unitary matrix A.

12. Construct an isomorphism of GL(n,C) (as a Lie group and an algebraic group) with
a closed subgroup of SL(n+ 1,C).

13. Show that the map C∗ × SL(n,C) → GL(n,C) given by (z, g) 7→ zg is a surjective
homomorphism of Lie and algebraic groups, find its kernel, and describe the corresponding
homomorphism of Lie algebras.

14. The free Lie algebra on generators Xi over a field k is a Lie algebra F over k
with generators Xi and only the relations that follow from the Lie algebra axioms. More
precisely, F , together with its distinguished elements Xi, is characterized by the property
that for every Lie algebra g over k and system of elements xi ∈ g, there is a unique Lie
algebra homomorphism F → g sending Xi to xi.

(a) Show that an F module is just a vector space V together with arbitrary endomor-
phisms ξi = ρ(Xi).

(b) Deduce that the universal enveloping algebra of F is the tensor algebra T over k on
the generators Xi. (This is slightly subtle. It is clear from (a) that the associative algebras
T and A(F ) have canonically equivalent categories of modules, but not entirely obvious that
this implies that T and A(F ) are isomorphic.)

(c) Using Poincaré-Birkhoff-Witt, deduce that F is isomorphic to the Lie subalgebra of
T generated by the elements Xi, where we regard T as a Lie algebra with commutator as
the Lie bracket.

(d) Assume now that the set of generators Xi is a finite set {X1, . . . , Xn}, so that the
graded algebras T and F have finite dimension in each degree. In particular, td = dim(Td) =
nd is the number of words (or tensor monomials) of length d in the n letters Xi, with
generating function ∑

d

td z
d =

1

1− nz
.

Show that fd = dim(Fd) is characterized by the identity∏
d

1

(1− zd)fd
=

1

1− nz
.



(e) Derive the explicit formula fd = (1/d)
∑

k|d µ(d/k)nk. Here µ(m) is the classical

Möbius function, equal to (−1)r if m is a product of r distinct primes, or 0 if m is divisible
by a square, which is characterized by the Möbius inversion formula ad =

∑
k|d µ(k/d)bk if

bd =
∑

k|d ak, for any sequence a1, a2, . . ..

(f) A word w in the letters X1, . . . , Xn is aperiodic if all rotations of w are distinct. Show
that fd is equal to the number of rotation classees of non-empty aperiodic words of length d
in n letters.

(g) A Lyndon word is a non-empty aperiodic word which is lexicographically least in its
rotation class. Thus fd is the number of Lyndon words of length d in n letters. Show that
every Lyndon word w of length d > 1 can be factored (not necessarily uniquely) as w = uv,
where u and v are Lyndon. Hint: it works to take for v the right factor such that vu is the
lexicographically least rotation of w other than w itself.

(h) Fix one Lyndon factorization w = uv for each Lyndon word w of length d > 1,
and define a Lie bracket monomial [w] ∈ F inductively by [w] = Xi if w = Xi, otherwise
[w] = [[u], [v]], where w = uv is the chosen factorization. Show that the lexicographically
least term of [w], considered as an element of T , is w.

(i) Deduce that the Lie bracket monomials [w] for all Lyndon words w form a basis of
the free Lie algebra F (for any given choice of the factorizations w = uv).

(j) Show that if n is a power of a prime, so there exists a finite field F of order n, then fd
is equal to the number of distinct monic irreducible polynomials g(x) of degree d over F. Is
this purely a numerical coincidence, or can some deeper connection with the free Lie algebra
be found?

15. Prove that if g is a solvable Lie algebra over R, then every finite-dimensional irre-
ducible g module has dimension at most 2.

16. Construct an example of a solvable Lie algebra g over a field of characteristic 2 such
that the derived subalgebra [g, g] is not nilpotent. Hint: start with the the 2-dimensional non-
nil module V for the 3-dimensional Heisenberg algebra h, and form the semidirect product
of h with V , regarded as an abelian Lie algebra.


