SYNOPSIS OF MATERIAL FROM EGA CHAPTER IV, §§4.1-4.6

4. BASE CHANGE FOR ALGEBRAIC PRESCHEMES

4.1. Dimension of algebraic preschemes.

Dimension theory for general preschemes is in §5. A more elementary version is given here
in the algebraic case.
The notation deg. tr (L) refers to the transcendence degree of a field extension.

Definition (4.1.1). — Let X be a prescheme locally of finite type over a field k. We define
the dimension of X to be

(4.1.1.1) dim X = supdeg. tr, k()

for x among the maximal points of X.

We will see later (5.2.2) that dim X only seems to depend on the base field k, and coincides
with the topological dimension of the underlying space of X. We clearly have dim X =
dim X, red-

Since each k(z) is a finitely generated extension of k, deg. tr;, k(z) is finite. If X is of finite
type, then, being Noetherian, it has a finite number of irreducible components, so dim X is
finite. For the empty variety, we set

dim(0) = —o0.

If (X,) is the family of induced reduced subschemes on the irreducible components of X
(I, 5.2.1), then

(4.1.1.2) dim(X) = supdim(X,,).
This reduces the computation of the dimension to the case of integral preschemes locally of
finite type over k.

We also have
(4.1.1.3) dim(X) = dim(U)

for any dense open U C X. This ultimately reduces the notion of dimension to the case of
affine schemes of finite type over k.

Theorem (4.1.2). — Let f: X — Y be a k-morphism of preschemes locally of finite type
over a field k.

(i) If f is quasi-compact and dominant, then dim(Y) < dim(X).

(i1) If f is quasi-finite, then dim(X) < dim(Y).

(11i) Suppose X is of finite type over k. A necessary and sufficient condition to have
dim(X) > n (resp. < n, resp. = n) is that there exist a dense open U C X and a
surjective (resp. finite, resp. finite and surjective) k-morphism g: U — A}. [Nowadays
A} = Spec(k[T1,...,T,]) is standard notation, but EGA uses V (k™) or V} here instead.]
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Corollary (4.1.2.1). — Let Y be a k-prescheme locally of finite type. For every sub-
prescheme Z C'Y we have dim(Z) < dim(Y'). If all irreducible components of Y have the
same dimension [Y is equidimensional/, then dim(Z) < dim(Y") if and only if the complement
of Z is dense in'Y .

[The proof of (i) is easy; (ii) reduces to Corollary (4.1.2.1); the proof of the latter and (iii)
are based on the Noether normalization lemma.]

Remark (4.1.3). — Corollary (4.1.2.1) implies that formula (4.1.1.1) also holds with x
ranging over all points of X.

Corollary (4.1.4). — Let X be a prescheme locally of finite type over k, and k C K a field
extension. Then dim(X ®; K) = dim(X).

Corollary (4.1.5). — Let X and Y be a preschemes locally of finite type over a field k.
Then dim(X x; Y) = dim(X) + dim(Y).

4.2. Associated prime cycles on algebraic preschemes.

Proposition (4.2.1). — Let K and L be extensions of a field k, such that K ® L is
Noetherian. Then the associated prime ideals of K ® L are all minimal, and if E is the
residue field at such an ideal, we have

(4.2.1.1) deg.try E = deg. tr, L, deg.tr; £ = deg. tr, K,
and hence
(4.2.1.2) deg. tr, £ = deg. tr, K + deg. tr), L.
Corollary (4.2.2). — Under the hypotheses of (3.3.6), if the preschemes T, are locally

Noetherian, they have no embedded associated prime cycles.

Corollary (4.2.3). — Under the hypotheses of (3.3.6) (resp. (3.3.7)), if the T, are locally
Noetherian, and if F and the Gs for s € S (resp. F and G) have no embedded associated
prime cycles, then neither does F ®g G.

Proposition (4.2.4). — Let k be a field and X,Y locally Noetherian k-preschemes such
that X ® Y is locally Noetherian. Suppose further that X and Y are integral. Then:

(i) X XY has no embedded associated prime cycles, each irreducible component of X XY
dominates X and Y, and these components are in bijective correspondence with those of
Spec(R(X)®x R(Y')) (that is, with the minimal primes of R(X)®xR(Y')), where R(X), R(Y)
are the fields of rational functions on X,Y .

(i1) Given a mazimal point z € X Xy Y corresponding to a minimal prime p of R(X) ®
R(Y), the local ring Oxy,y, = is isomorphic to the localization (R(X) @k R(Y)),. In partic-
ular, if either R(X) or R(Y") is separable over k, then X X, Y is reduced.

(11i) If, in addition, X and Y are locally of finite type over k, then every irreducible
component of X X Y has dimension dim(X) + dim(Y).
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Proposition (4.2.5). — Let k be a field, X,Y locally Noetherian k-preschemes, F (resp.
G) a quasi-coherent Ox-Module (resp. Oy-Module). Let (Z3) (resp. (Z})) be the family of
associated prime cycles of F (resp. G), or, using the same notation, the induced reduced sub-
schemes on these cycles. Then, if Z) xy Z] is locally Noetherian, the irreducible components
Zw of Zy Xy Z), dominate Z) and Z};, and (Zx.) is the family of distinct associated prime
cycles of F Q1 G.

Corollary (4.2.6). — Let k be a field and X,Y locally Noetherian k-preschemes such
that X x; Y is locally Noetherian. Let (Z)) (resp. (Z)])) be the family of induced reduced
subschemes on the irreducible components of X (resp. Y). Then the irreducible components
Zyw of Z3 Xy Z), dominate Z), and Z, and (Zxu) is the family of irreducible components
OfX Xk Y.

Proposition (4.2.7). — Let k C K be a field extension and X a k-prescheme such that
X ® K is locally Noetherian, F a quasi-coherent Ox-Module, ' a point of X ® K, and x
its image in X.

(i) Let (Z)) be the family of induced reduced subschemes on the associated prime cycles of
F. Then the irreducible components Zy, of the Z @ K are the associated prime cycles of
F @i K, and Zy, dominates Zx; moreover Zy, is embedded if and only if Zy is.

(ii) The point x belongs to an embedded associated prime cycle of F if and only if '
belongs to an embedded associated prime cycle of F @ K; and F has no embedded associated
prime cycles if and only if the same is true for F Q@ K.

(1i1) The X such that © € Z are those for which there exists an index p such that x' € Zy,.
In particular, if x' belongs to a unique associated prime cycle of F @ K, then x belongs to
a unique associated prime cycle of F.

(w) If X is locally of finite type over k, then dim(Z,) = dim(Z)).

Corollary (4.2.8). — If X is locally of finite type over k, the set of dimensions of associated
prime cycles is the same for F and F @ K. The set of dimensions of irreducible components
1s the same for X and X ®; K.

Proposition (4.2.9). — Given the hypotheses of (4.2.5), suppose further that F and G are
coherent. Let (Fx)aer, and (G,)uem be trredundant decompositions of F and G. For each
(A, ) € Lx M, let (’C/\W)ves(/\,u) be a reduced irredundant decomposition of F\®y G, where
S\, 1) = Ass(Fa®xGy) (3.2.5). Then (Ky,.w), over all the triples (X, pu,v), is an irredundant
decomposition of F @y G, reduced if (F\) and (G,) are.

Corollary (4.2.10). — Under the hypotheses of (4.2.7), suppose further that F is coherent,
and let (Fy)rer be an irredundant decompostion of F. For each \ € L, let (f)\“)ueAss(]:,\@kK)
be an irredundant decomposition of F\ ®y K. Then (Fy,) is an irredundant decomposition

of F @y K, reduced if (Fy) is.
4.3. Review on tensor products of fields.

(4.3.1). A field extension k C L is primary if the largest separable algebraic extension of
kin L is k itself.



Proposition (4.3.2). — Let k C K, L be field extensions. If k C L is primary, then
Spec(L ®y, K) is irreducible, and if £ is its generic point, then k() is a primary extension
of K. Conversely, if Spec(L ®y K) is irreducible for every k C K, then k C L is a primary
extension.

Corollary (4.3.3). — If k is separably closed (i.e., if its algebraic closure is radicial over
k), then Spec(L ®y K) is irreducible for all extensions k C K, L, and conversely.

Corollary (4.3.4). — Let k C L be a field extension and Ly the separable algebraic closure
of k in L, that is, the largest separable algebraic extension of k contained in L. Suppose
the degree [Lg : k] is finite, and let k C K be a Galois extension containing Ls. Then
Spec(L ®i K) has [Lg : k] irreducible components, they are disjoint, and the residue field at
each of their generic points is a primary extension of K.

Proposition (4.3.5). — Let k C K, L be field extensions. If k C L is separable, then
Spec(L ®y, K) is reduced. Conversely, if Spec(L ®y K) is reduced for every radicial extension
k C K, then k C L is a separable extension.

Corollary (4.3.6). — If k is perfect, then Spec(L @y K) is reduced for all extensions
k C K, L, and conversely.

Corollary (4.3.7). — Let k C K, L be field extensions such that k C L is separable and
either K or L is finite over k. Then the residue fields of the semi-local ring L ®; K are
separable extensions of K.

Corollary (4.3.8). — Ifk C K, L are finite separable field extensions, then the ring L&y K
1s a direct product of finitely many separable extensions of k.

Proposition (4.3.9). — If k is algebraically closed, then L ®y K is an integral domain for
all extensions k C K, L, and conversely.

4.4. Irreducible and connected preschemes over an algebraically closed field.

(4.4.1). Let k C K be a field extension and X a k-prescheme. Using (2.4.9), (2.2.13)
and (2.3.5), one shows that each irreducible component of X ®; K dominates an irreducible
component of X, and the the resulting map between the sets of irreducible components is
surjective. Since p: X ®; K — X is surjective and continuous, it also induces a surjective
map between the sets of connected components.

Each irreducible (resp. connected) component Z" of X ®; K is therefore contained in a
unique set p~!(Z), where Z is an irreducible (resp. connected) component of X. Denoting
also by Z any subscheme of X with underlying space Z, we have that Z’ is an irreducible
(resp. connected) component of Z ®j K.

If X ® K has a finite number n (resp. n’) of irreducible (resp. connected) components—for
instance, if X is of finite type over k, in which case X ®; K is of finite type over K and
thus Noetherian—then X has at most n (resp. n’) irreducible (resp. connected) components,
with equality holding if and only if, for the induced reduced prescheme Z on each irreducible
(resp. connected) component of X, we have Z ®; K irreducible (resp. connected).
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In particular if X ®j K is irreducible (resp. connected), then so is X. If X ®; K is reduced
(resp. integral), then so is X because p is faithfully flat (2.1.13).

In this section and the next we study more closely how the irreducible or connected
components of X ®, K vary with K; what we have just seen is that the number of components
increases with extension of fields.

Lemma (4.4.2). — Let f: X' — X be a continuous map of topological spaces satisfying
the conditions:

(i) f is open and surjective (resp. f is such that X can be identified with the quotient space
of X by the equivalence relation defined by f).

(ii) For all x € X, f~Y(X) is irreducible (resp. connected).

Then X' is irreducible (resp. connected) if and only if X is.

Remark (4.4.3). — If X does not have the quotient topology, X and every f~'(x) can
even be irreducible without X’ being connected. Example: X = A}, X’ is the disjoint union
of z and X — z for a closed point z € X.

If X has the quotient topology, but f is not open, X and every f~!(z) can be irreducible
without X’ being so. Example: X’ = (A} x {y}) U ({2} x P{) C Al x; P., and f is the
projection on X = A}. Then f is surjective and proper, hence closed, so X has the quotient
topology, every fiber is either a point or P}, but X’ is reducible.

Theorem (4.4.4). — Let k be an algebraically closed field and X a k-prescheme. If X is
irreducible (resp. connected), then so is X ®y K for every extension k C K.

Corollary (4.4.5). — Let k be an algebraically closed field, X a k-prescheme, K an ez-
tension of k, and p: X ®p K — X the canonical projection. If Z is an irreducible (resp.
connected) subset of X, then so is p~*(Z). In particular, if Xy is an irreducible (resp.
connected) component of X containing Z, then p~'(Xy) is an irreducible (resp. connected)
component of X @ K containing p~*(Z).

Corollary (4.4.6). — With the hypotheses and notation of (4.4.5), the map Z — p~*(Z)
is a bijection from the set of irreducible (resp. connected) components of X to that of X',
with inverse Z' — p(Z").

4.5. Geometrically irreducible and geometrically connected preschemes.

Proposition (4.5.1). — Let k be a field, X a k-prescheme, Q an algebraically closed exten-
sion of k. The cardinality n (resp. n') of the set of irreducible (resp. connected) components
of X ®i Q is independent of ). For any extension K of k, the cardinality of the set of
irreducible (resp. connected) components of X @y K is <n (resp. <n').

Definition (4.5.2). — The cardinal n (resp. n’) in (4.5.1) is called the geometric number
of irreducible components (resp. connected components) of X | relative to k. If n = 1 (resp.
n’ = 1), we say that X is a geometrically irreducible (resp. geometrically connected) k-

prescheme.

By (4.5.1), the following are equivalent:



(a) X is geometrically irreducible (resp. geometrically connected).
(b) For some algebraically closed extension k C Q, X ®; € is irreducible (resp. connected).
(c) For every extension k C K, X ®; K is irreducible (resp. connected).

(4.5.3). Let X be a k-prescheme and Z C X a locally closed subset, or any subscheme
with underlying space Z. By (I, 5.1.8), for any extension k C K, the number of irreducible
(resp. connected) components of Z ®; K depends only on the subspace Z. Thus we can
define the geometric number of irreducible or connected components of Z to be that of any
sub-prescheme of X having underlying space Z.

Proposition (4.5.4). — Let f: X =Y be a surjective k-morphism of k-preschemes. If X
is geometrically irreducible (resp. geometrically connected), then so is'Y .

Definition (4.5.5). — A morphism of preschemes f: X — Y is irreducible (resp. connected)
if the k(y)-prescheme f~!(y) is geometrically irreducible (resp. connected) for every y € Y.

[For clarity most people now prefer to say that the fibers of f are geometrically irreducible
(resp. geometrically connected).]

Proposition (4.5.6). — (i) Let X be a k-prescheme and k C K a field extension. Then the
geometric number of irreducible (resp. connected) components of X (k) relative to K is equal
to that of X relative to k. In particular, the K-prescheme X ) is geometrically irreducible
(resp. connected) if and only if the k-prescheme X is.

Proposition (4.5.7). — Let f: X =Y be a surjective morphism with geometrically irre-
ducible (resp. connected) fibers, let Y — 'Y be any morphism, and set X' = X xy Y'. If Y’
is also irreducible (resp. connected) and f is universally open (resp. flat and quasi-compact,
or universally open, or universally closed), then X' is irreducible (resp. connected).

Corollary (4.5.8). — Let X andY be k-preschemes.
(i) If X is geometrically irreducible (resp. geometrically connected) and Y is irreducible
(resp. connected), then X XY is irreducible (resp. connected).

(i) If X and Y are geometrically irreducible (resp. geometrically connected), then so is
X Xk Y.

Proposition (4.5.9). — The following conditions on a k-prescheme X are equivalent:

(a) X is geometrically irreducible (that is, X ®y K is irreducible for every extension k C
K).

(b) X @y K is irreducible for every finite separable extension k C K.

(c) X is irreducible, and k(z) is a primary extension of k, where x is the generic point of

X

Corollary (4.5.10). — Let X be an irreducible k-prescheme with generic point z, k' the
separable algebraic closure of k in k(z), and k" a Galois extension of k (not necessarily of
finite degree) containing k'. Suppose that [k’ : k| is finite. Then the irreducible components
of X @ k" are geometrically irreducible, the number of them is equal to [k’ : k|, and this is
also the geometric number of irreducible components of X.
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Corollary (4.5.11). — Let X be a k-prescheme. Suppose that X has only a finite number
of mazimal points x; (1 < i <), and that for each i, the separable algebraic closure k| of
k in k(x;) is of finite degree [k : k|. Then there exists a finite separable extension k C L
such that the irreducible components of X ®; L are geometrically irreducible; their number
is equal to Y .k} : k] and is the geometric number of irreducible components of X.

In particular, the hypotheses in (4.5.11) are satisfied when X is of finite type over k.

Remarks (4.5.12). — (i) The notions in (4.5.2) depend on the base field k. When k
needs to be specified, one may use abbreviated terminology such as “k-irreducible” instead
of “geometrically irreducible relative to k.” The reader is cautioned that such abbreviations
are used in a sense opposite to the older use of the same terms by Weil. From Weil’s point of
view, a variety X’ is given over an algebraic closed field €2 in the first place. If X’ happens
to be identified with X ®y €2 for a subfield k of 2, Weil would use the term “k-irreducible”
to mean that X is irreducible.

(ii)) There is no analogue of (4.5.9) for geometric connectedness. Example: let X =
Spec(R[[T,U]]/(T? + U?)) and let X’ C X be the open subscheme complementary to the
closed point of X. Then X and X’ are integral schemes, with the same field k(x) at the
generic point, but X ®g C is connected, with two irreducible components intersecting only
at the closed point, while X’ ®g C is disconnected.

Proposition (4.5.13). — Let f: Y — X be a k-morphism of k-preschemes. Suppose that
Y is non-empty and geometrically connected, and X is connected. Then X is geometrically
connected.

Corollary (4.5.13.1). — (i) Let f: Y — X be a k-morphism of k-preschemes. IfY is
non-empty and geometrically connected, then the connected component Xy of X containing
f(Y) is geometrically connected.

(ii) Let X be a k-prescheme. If Y is an irreducible component of X which is geometrically
wrreducible, then the connected component Xy of X containing Y is geometrically connected.

Corollary (4.5.14). — Let X be a k-prescheme. If x is a point of X such that k(x) is a
primary extension of k (in particular, if x is a k-rational point of X ), then the connected
component of X containing x 1s geometrically connected.

Proposition (4.5.15). — Let X be a k-prescheme, x a point of X, k' the separable algebraic
closure of k in k(z). Suppose that

(i) X is connected, and

(i1) k' is a finite extension of k.

Then the geometric number of connected components of X is < [k’ : k|, and if K" is a
finite Galois extension of k" containing k', then the connected components of X &y k" are
geometrically connected.

Corollary (4.5.16). — Let X be a k-prescheme, (X,) the family of its connected compo-
nents, and x, a point of X, for each a. Suppose that

(i) the family (X,) is finite, and



(i) for each «, the separable algebraic closure k., of k in k(x,) is a finite extension of k.
Then the geometric number of connected components of X is at most ) [k, : k|, and there
exists a finite separable extension k" of k such that all the connected components of X @y, k"
are geometrically connected.

Corollary (4.5.17). — Suppose the k-prescheme X contains a point x such that the sepa-
rable algebraic closure of k in k(x) is finite over k. Then a necessary and sufficient condition
for X to be geometrically connected is that X ®y K is connected for every finite separable
extension k C K.

Remark (4.5.18). — We will see in §8 (8.4.5) that the conclusion of (4.5.17) also holds for
every quasi-compact k-prescheme X.

Proposition (4.5.19). — Let X be a k-prescheme, Z C X any subset, k' an algebraically
closed extension of k, X' = X ® k', and p: X' — X the canonical projection. Suppose
Z'=pY(Z) is contained in a unique irreducible component X} of X'. Then X| = p~(X,),
where Xo = p(X{) is an irreducible component of X containing Z, and moreover X, is
geometrically irreducible. If X[ is the unique irreducible component of X' which meets 7',
then Xg is the unique irreducible component of X which meets Z.

[We omit a Lemma (4.5.19.1) and diagram (4.5.19.2) that are used in the proof.]

Remark (4.5.20). — The hypotheses of (4.5.19) do not imply that X, = p(X{) is the
only irreducible component of X containing Z. Example: let £ = R, &/ = C, X; =
Spec(R[S,T]/(S? + T? + 1)), Xy = Al. The curve X; has no R-rational points, so all
its non-generic points have k(z) = C. Let X be the union of X; and X5, identified at a non-
generic point z; in each scheme. [X can be constructed as the affine scheme Spec(A; X¢ As),
where X; = Spec(4;) and the ring homomorphisms A; — C correspond to the morphisms
Spec(C) = Speck(z;) — X; for the points x; that we choose to identify.] If z € X; N X5
is the common point, then p~!(x) consists of two points ¢/, 2/, p~1(X;) is irreducible, and
p~1(X3) is the disjoint union of two irreducible components Y, Z" of X’ such that 3 € Y’
and 2’ € Z'. Thus p~!(z) is contained in a unique irreducible component of X'.

Proposition (4.5.21). — Let k be a separably closed field and k' the algebraic closure of k.
For every k-prescheme X, the canonical projection X X, k' — X is universally a homeomor-
phism. In particular, the irreducible (resp. connected) components of X are geometrically
irreducible (resp. connected).

4.6. Geometrically reduced algebraic preschemes.

Proposition (4.6.1). — Let k be a field, X a k-prescheme, and  a perfect extension of k.
The following are equivalent:

(a) For every reduced k-prescheme S, X Xy, S is reduced.

(b) For every extension k C K, X ®y K is reduced.

(c) X @y Q is reduced.

(d) For every finite radicial extension k' of k, X Xy k" is reduced.
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(e) X is reduced, and for every irreducible component X, of X, with generic point x,,
k(z,) is a separable extension of k.

Definition (4.6.2). — When conditions (a)-(e) in (4.6.1) hold, we say that X is separable,
or geometrically reduced, or universally reduced over k. We say that X is geometrically
integral over k if X x; K is integral for every extension k C K; by (4.6.1) this is the same
as saying X is separable and geometrically irreducible.

We say that a (commutative) k-algebra A is separable if Spec(A) is separable over k; that
is, for every extension k C K, the ring A x; K is reduced. This coincides with the definition
in Bourbaki, Algebra if A has finite rank over k, but not in general.

Corollary (4.6.3). — Let X be an integral k-prescheme. For X to be geometrically reduced
(resp. geometrically integral) over k, it is necessary and sufficient that its field of rational
functions R(X) be separable (resp. separable and primary) over k.

Corollary (4.6.4). — Let X be a reduced k-prescheme. Then X ®y k' is reduced for every
separable extension k' of k.

Proposition (4.6.5). — (i) Let X be a k-prescheme, k C K a field extension. Then X is
geometrically reduced over k if and only if X ®;, K is geometrically reduced over K.
(1) If X andY are k-preschemes geometrically reduced over k, then so is X x; Y.

Proposition (4.6.6). — Let X be a k-prescheme of finite type. There exists a finite radicial
extension k' of k such that (X (w))rea is geometrically reduced over k'.

Corollary (4.6.7). — If K is a finitely generated extension of k, there is a finite radicial
extension k' of k such that the residue fields of the semi-local ring K Qi k' are separable over
K.

Corollary (4.6.8). — Let X be a k-prescheme of finite type. There exists a finite extension
k' of k such that (X )rea is geometrically reduced over k', the irreducible components of
Xy are geometrically irreducible, and the connected components of Xy are geometrically
connected.

Definition (4.6.9). — Let k be a field, X a k-prescheme, and x a point of X. We say
that X is geometrically reduced or separable (resp. geometrically pointwise integral) at the
point x over k if, for every extension k C k' and every 2’ € X' = X ®; Kk’ lying over z, X’
is reduced (resp. integral) at 2’, that is, Ox- . is reduced (resp. integral). We say that X is
geometrically pointwise integral if it is geometrically pointwise integral at every point, that
is, if for every extension k C £/, the local ring at every point of X' is integral (in other words,
X' is pointwise integral).

Note that X is geometrically reduced over k if and only if it is geometrically reduced over
k at every point x € X.

Proposition (4.6.10). — Let k be a field, X a k-prescheme, k' an extension of k, z' a point
of X' = X @ k', x its image in X. Then X is geometrically reduced (resp. geometrically
pointwise integral) at x over k if the same holds for X' at «’ over k'.
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Corollary (4.6.11). — Suppose k is perfect (resp. algebraically closed). Then X is geo-
metrically reduced (resp. geometrically pointwise integral) at a point x over k if and only if
Ox . is reduced (resp. integral).

Proposition (4.6.12). — Let k be a field, X a k-prescheme, x a point of X, Q) a perfect
extension of k. The following conditions are equivalent.

(a) X is geometrically reduced over k at x, that is, for every extension k C k' and every
e X' =X Qi k' lying over x, Ox/ v is reduced.

(b) The prescheme X ®j, §2 is reduced at some point lying over x.

(c¢) For every finite radicial extension k' of k, X' = X ®y k" is reduced at the unique point
2" lying over x.

(d) Spec(Ox ) is geometrically reduced over k.

(e) Ox . is reduced, and for every irreducible component Z of X containing x, with generic
point z, k(z) is a separable extension of k.

Corollary (4.6.13). — Under the hypotheses of (4.6.12), suppose further that X is locally
Noetherian. Then conditions (a)-(e) are also equivalent to:
(f) There exists an open neighborhood U of x which is geometrically reduced over k.

(4.6.14). By (4.6.10) and (4.6.11), if © is an algebraically closed extension of k, then X is
geometrically pointwise integral at x over k if and only if X ®; €2 is integral at some point
lying over .

When X is locally Noetherian, (4.6.13) implies that the set of points x € X where X is ge-
ometrically reduced is open, and this set is the largest open subset of X that is geometrically
reduced over k.

If X is geometrically pointwise integral at x, then by (4.6.10), X is necessarily integral
at x, and k(z) is a separable extension of k, where z is the generic point of the unique
irreducible component of X containing x. These conditions are not sufficient, however,
as shown by example (4.5.12 (ii)). A sufficient but not necessary condition is that X is
geometrically reduced at x and belongs to a unique irreducible component of X, which is
geometrically irreducible. If X is locally Noetherian, x will then have a geometrically integral
open neighborhood.

Recall that if a prescheme is locally Noetherian and pointwise integral, then it is locally
integral (I, 6.1.13). If a k-prescheme X, locally of finite type over k, is geometrically pointwise
integral over k, it follows that X ®;, &’ is locally integral for every extension k C &’; in this
case we would say that X is geometrically locally integral.

Proposition (4.6.15). — (i) Let X be a prescheme of finite type over a field k. Then X
18 geometrically pointwise integral if and only if X is geometrically reduced, and the geomet-
ric number of irreducible components of X is equal to the geometric number of connected
components.

(ii) Let X be a prescheme locally of finite type over k. If X is geometrically pointwise
integral at x, then x has a geometrically pointwise integral open neighborhood U. In other
words, the set of points x € X where X 1s geometrically pointwise integral is open.
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Proposition (4.6.16). — Let k be a field, X a locally Noetherian k-prescheme, F a coherent
Ox-Module. The following conditions are equivalent:

(a) For every finitely generated extension k C k', if we set X' = X @k, then F' = F @k’
is a reduced Ox:-Module (3.2.2).

(b) For every finite radicial extension k C k', F' is a reduced Ox:-Module.

(c) F is reduced, and if J C Ox is the annihilator ideal of F, the closed sub-prescheme
of X defined by J 1is geometrically reduced over k.

In addition, if X is locally of finite type over k, the above conditions are also equivalent to

(d) For every extension k' of k (or for any one algebraically closed extension k' of k), F'
1s a reduced Ox:-Module.

Definition (4.6.17). — If F satisfies the conditions in (4.6.16) we say that F is geometri-
cally reduced, or separable, over k.

Proposition (4.6.18). — Let k be a field, X a locally Noetherian k-prescheme, F a coherent
Ox-Module. The following conditions are equivalent:

(a) For every finitely generated extension k C k', if we set X' = X @k, then F' = F @y k'
is an integral Ox:-Module (5.2.4).

(b) For every finite extension k C k', F' is an integral Ox:-Module.

(c) F is reduced (or integral), and if J C Ox is the annihilator ideal of F, the closed
sub-prescheme of X defined by J is geometrically integral over k.

In addition, if X is locally of finite type over k, the above conditions are also equivalent to

(d) For every extension k' of k (or for any one algebraically closed extension k' of k), F'
s an integral Ox -Module.

Definition (4.6.19). — If F satisfies the conditions in (4.6.18), we say that F is geomet-
rically integral over k.

Proposition (4.6.20). — Let k be a field, X a locally Noetherian k-prescheme, F a coherent
Ox module. Let k C K be an extension such that X ®j K is locally Noetherian. Then, if F
is geometrically reduced (resp. geometrically integral) over k, F ®y K has the same property
over K.

Proposition (4.6.21). — Let X,Y be locally Noetherian k-preschemes such that X x; Y
is locally Noetherian. Let F be a coherent Ox-Module and G a coherent Oy -Module.

(i) If F is geometrically reduced (resp. geometrically integral) and G is reduced (resp.
integral), then F ®y G is reduced (resp. integral).

(ii) If F and G are geometrically reduced (resp. geometrically integral), then so is F @ G.

Definition (4.6.22). — Let k be a field, X a locally Noetherian k-prescheme, F a coherent
Ox-Module. We say that F is geometrically reduced, or separable (resp. geometrically point-
wise integral) at a point x € X if, for every finite radicial extension (resp. finite extension)
k C K, F®yk'is reduced (resp. integral) at every point 2’ € X ®; k' above z.

If F is reduced at z, then F|U is reduced, for some open neighborhood U of z (3.2.2).
As in the [omitted] proof of (4.6.16), F is geometrically reduced at z if and only if F is
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reduced at x and the closed subscheme Y defined by the annihilator ideal J C Ox of F is
geometrically reduced at x. It follows that F is geometrically reduced at z if and only if
F|U is geometrically reduced, for some open neighborhood U of z. If X is locally of finite
type over k, we also have that F is pointwise geometrically integral at z if and only if F is
reduced at X and the subscheme Y is geometrically pointwise integral at z.



