
Synopsis of material from EGA Chapter IV, §§4.1-4.6

4. Base change for algebraic preschemes

4.1. Dimension of algebraic preschemes.

Dimension theory for general preschemes is in §5. A more elementary version is given here
in the algebraic case.

The notation deg. trK(L) refers to the transcendence degree of a field extension.

Definition (4.1.1). — Let X be a prescheme locally of finite type over a field k. We define
the dimension of X to be

(4.1.1.1) dimX = sup
x

deg. trk k(x)

for x among the maximal points of X.

We will see later (5.2.2) that dimX only seems to depend on the base field k, and coincides
with the topological dimension of the underlying space of X. We clearly have dimX =
dimXred.

Since each k(x) is a finitely generated extension of k, deg. trk k(x) is finite. If X is of finite
type, then, being Noetherian, it has a finite number of irreducible components, so dimX is
finite. For the empty variety, we set

dim(∅) = −∞.

If (Xα) is the family of induced reduced subschemes on the irreducible components of X
(I, 5.2.1), then

(4.1.1.2) dim(X) = sup
α

dim(Xα).

This reduces the computation of the dimension to the case of integral preschemes locally of
finite type over k.

We also have

(4.1.1.3) dim(X) = dim(U)

for any dense open U ⊆ X. This ultimately reduces the notion of dimension to the case of
affine schemes of finite type over k.

Theorem (4.1.2). — Let f : X → Y be a k-morphism of preschemes locally of finite type
over a field k.

(i) If f is quasi-compact and dominant, then dim(Y ) ≤ dim(X).
(ii) If f is quasi-finite, then dim(X) ≤ dim(Y ).
(iii) Suppose X is of finite type over k. A necessary and sufficient condition to have

dim(X) ≥ n (resp. ≤ n, resp. = n) is that there exist a dense open U ⊆ X and a
surjective (resp. finite, resp. finite and surjective) k-morphism g : U → An

k . [Nowadays
An
k = Spec(k[T1, . . . , Tn]) is standard notation, but EGA uses V(kn) or Vn

k here instead.]
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Corollary (4.1.2.1). — Let Y be a k-prescheme locally of finite type. For every sub-
prescheme Z ⊆ Y we have dim(Z) ≤ dim(Y ). If all irreducible components of Y have the
same dimension [Y is equidimensional], then dim(Z) < dim(Y ) if and only if the complement
of Z is dense in Y .

[The proof of (i) is easy; (ii) reduces to Corollary (4.1.2.1); the proof of the latter and (iii)
are based on the Noether normalization lemma.]

Remark (4.1.3). — Corollary (4.1.2.1) implies that formula (4.1.1.1) also holds with x
ranging over all points of X.

Corollary (4.1.4). — Let X be a prescheme locally of finite type over k, and k ⊆ K a field
extension. Then dim(X ⊗k K) = dim(X).

Corollary (4.1.5). — Let X and Y be a preschemes locally of finite type over a field k.
Then dim(X ×k Y ) = dim(X) + dim(Y ).

4.2. Associated prime cycles on algebraic preschemes.

Proposition (4.2.1). — Let K and L be extensions of a field k, such that K ⊗k L is
Noetherian. Then the associated prime ideals of K ⊗k L are all minimal, and if E is the
residue field at such an ideal, we have

(4.2.1.1) deg. trK E = deg. trk L, deg. trLE = deg. trkK,

and hence

(4.2.1.2) deg. trk E = deg. trkK + deg. trk L.

Corollary (4.2.2). — Under the hypotheses of (3.3.6), if the preschemes Tx,y are locally
Noetherian, they have no embedded associated prime cycles.

Corollary (4.2.3). — Under the hypotheses of (3.3.6) (resp. (3.3.7)), if the Tx,y are locally
Noetherian, and if F and the Gs for s ∈ S (resp. F and G) have no embedded associated
prime cycles, then neither does F ⊗S G.

Proposition (4.2.4). — Let k be a field and X, Y locally Noetherian k-preschemes such
that X ⊗k Y is locally Noetherian. Suppose further that X and Y are integral. Then:

(i) X×kY has no embedded associated prime cycles, each irreducible component of X×kY
dominates X and Y , and these components are in bijective correspondence with those of
Spec(R(X)⊗kR(Y )) (that is, with the minimal primes of R(X)⊗kR(Y )), where R(X), R(Y )
are the fields of rational functions on X, Y .

(ii) Given a maximal point z ∈ X ×k Y corresponding to a minimal prime p of R(X)⊗k
R(Y ), the local ring OX×kY , z is isomorphic to the localization (R(X)⊗k R(Y ))p. In partic-
ular, if either R(X) or R(Y ) is separable over k, then X ×k Y is reduced.

(iii) If, in addition, X and Y are locally of finite type over k, then every irreducible
component of X ×k Y has dimension dim(X) + dim(Y ).
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Proposition (4.2.5). — Let k be a field, X, Y locally Noetherian k-preschemes, F (resp.
G) a quasi-coherent OX-Module (resp. OY -Module). Let (Z ′λ) (resp. (Z ′′µ)) be the family of
associated prime cycles of F (resp. G), or, using the same notation, the induced reduced sub-
schemes on these cycles. Then, if Z ′λ×k Z ′′µ is locally Noetherian, the irreducible components
Zλµν of Z ′λ×k Z ′′µ dominate Z ′λ and Z ′′µ, and (Zλµν) is the family of distinct associated prime
cycles of F ⊗k G.

Corollary (4.2.6). — Let k be a field and X, Y locally Noetherian k-preschemes such
that X ×k Y is locally Noetherian. Let (Z ′λ) (resp. (Z ′′µ)) be the family of induced reduced
subschemes on the irreducible components of X (resp. Y). Then the irreducible components
Zλµν of Z ′λ ×k Z ′′µ dominate Z ′λ, and Z ′′µ and (Zλµν) is the family of irreducible components
of X ×k Y .

Proposition (4.2.7). — Let k ⊆ K be a field extension and X a k-prescheme such that
X ⊗k K is locally Noetherian, F a quasi-coherent OX-Module, x′ a point of X ⊗k K, and x
its image in X.

(i) Let (Zλ) be the family of induced reduced subschemes on the associated prime cycles of
F . Then the irreducible components Zλµ of the Zλ ⊗k K are the associated prime cycles of
F ⊗k K, and Zλµ dominates Zλ; moreover Zλµ is embedded if and only if Zλ is.

(ii) The point x belongs to an embedded associated prime cycle of F if and only if x′

belongs to an embedded associated prime cycle of F⊗kK; and F has no embedded associated
prime cycles if and only if the same is true for F ⊗k K.

(iii) The λ such that x ∈ Zλ are those for which there exists an index µ such that x′ ∈ Zλµ.
In particular, if x′ belongs to a unique associated prime cycle of F ⊗k K, then x belongs to
a unique associated prime cycle of F .

(iv) If X is locally of finite type over k, then dim(Zλµ) = dim(Zλ).

Corollary (4.2.8). — If X is locally of finite type over k, the set of dimensions of associated
prime cycles is the same for F and F⊗kK. The set of dimensions of irreducible components
is the same for X and X ⊗k K.

Proposition (4.2.9). — Given the hypotheses of (4.2.5), suppose further that F and G are
coherent. Let (Fλ)λ∈L and (Gµ)µ∈M be irredundant decompositions of F and G. For each
(λ, µ) ∈ L×M , let (Kλµν)ν∈S(λ,µ) be a reduced irredundant decomposition of Fλ⊗k Gµ, where
S(λ, µ) = Ass(Fλ⊗kGµ) (3.2.5). Then (Kλµν), over all the triples (λ, µ, ν), is an irredundant
decomposition of F ⊗k G, reduced if (Fλ) and (Gµ) are.

Corollary (4.2.10). — Under the hypotheses of (4.2.7), suppose further that F is coherent,
and let (Fλ)λ∈L be an irredundant decompostion of F . For each λ ∈ L, let (Fλµ)µ∈Ass(Fλ⊗kK)

be an irredundant decomposition of Fλ ⊗k K. Then (Fλµ) is an irredundant decomposition
of F ⊗k K, reduced if (Fλ) is.

4.3. Review on tensor products of fields.

(4.3.1). A field extension k ⊆ L is primary if the largest separable algebraic extension of
k in L is k itself.
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Proposition (4.3.2). — Let k ⊆ K,L be field extensions. If k ⊆ L is primary, then
Spec(L ⊗k K) is irreducible, and if ξ is its generic point, then k(ξ) is a primary extension
of K. Conversely, if Spec(L⊗k K) is irreducible for every k ⊆ K, then k ⊆ L is a primary
extension.

Corollary (4.3.3). — If k is separably closed (i.e., if its algebraic closure is radicial over
k), then Spec(L⊗k K) is irreducible for all extensions k ⊆ K,L, and conversely.

Corollary (4.3.4). — Let k ⊆ L be a field extension and Ls the separable algebraic closure
of k in L, that is, the largest separable algebraic extension of k contained in L. Suppose
the degree [Ls : k] is finite, and let k ⊆ K be a Galois extension containing Ls. Then
Spec(L⊗k K) has [Ls : k] irreducible components, they are disjoint, and the residue field at
each of their generic points is a primary extension of K.

Proposition (4.3.5). — Let k ⊆ K,L be field extensions. If k ⊆ L is separable, then
Spec(L⊗kK) is reduced. Conversely, if Spec(L⊗kK) is reduced for every radicial extension
k ⊆ K, then k ⊆ L is a separable extension.

Corollary (4.3.6). — If k is perfect, then Spec(L ⊗k K) is reduced for all extensions
k ⊆ K,L, and conversely.

Corollary (4.3.7). — Let k ⊆ K,L be field extensions such that k ⊆ L is separable and
either K or L is finite over k. Then the residue fields of the semi-local ring L ⊗k K are
separable extensions of K.

Corollary (4.3.8). — If k ⊆ K,L are finite separable field extensions, then the ring L⊗kK
is a direct product of finitely many separable extensions of k.

Proposition (4.3.9). — If k is algebraically closed, then L⊗k K is an integral domain for
all extensions k ⊆ K,L, and conversely.

4.4. Irreducible and connected preschemes over an algebraically closed field.

(4.4.1). Let k ⊆ K be a field extension and X a k-prescheme. Using (2.4.9), (2.2.13)
and (2.3.5), one shows that each irreducible component of X ⊗kK dominates an irreducible
component of X, and the the resulting map between the sets of irreducible components is
surjective. Since p : X ⊗k K → X is surjective and continuous, it also induces a surjective
map between the sets of connected components.

Each irreducible (resp. connected) component Z ′ of X ⊗k K is therefore contained in a
unique set p−1(Z), where Z is an irreducible (resp. connected) component of X. Denoting
also by Z any subscheme of X with underlying space Z, we have that Z ′ is an irreducible
(resp. connected) component of Z ⊗k K.

If X⊗kK has a finite number n (resp. n′) of irreducible (resp. connected) components—for
instance, if X is of finite type over k, in which case X ⊗k K is of finite type over K and
thus Noetherian—then X has at most n (resp. n′) irreducible (resp. connected) components,
with equality holding if and only if, for the induced reduced prescheme Z on each irreducible
(resp. connected) component of X, we have Z ⊗k K irreducible (resp. connected).
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In particular if X⊗kK is irreducible (resp. connected), then so is X. If X⊗kK is reduced
(resp. integral), then so is X because p is faithfully flat (2.1.13).

In this section and the next we study more closely how the irreducible or connected
components of X⊗kK vary with K; what we have just seen is that the number of components
increases with extension of fields.

Lemma (4.4.2). — Let f : X ′ → X be a continuous map of topological spaces satisfying
the conditions:

(i) f is open and surjective (resp. f is such that X can be identified with the quotient space
of X ′ by the equivalence relation defined by f).

(ii) For all x ∈ X, f−1(X) is irreducible (resp. connected).
Then X ′ is irreducible (resp. connected) if and only if X is.

Remark (4.4.3). — If X does not have the quotient topology, X and every f−1(x) can
even be irreducible without X ′ being connected. Example: X = A1

k, X
′ is the disjoint union

of x and X − x for a closed point x ∈ X.
If X has the quotient topology, but f is not open, X and every f−1(x) can be irreducible

without X ′ being so. Example: X ′ = (A1
k × {y}) ∪ ({x} × P1

k) ⊆ A1
k ×k P1

k, and f is the
projection on X = A1

k. Then f is surjective and proper, hence closed, so X has the quotient
topology, every fiber is either a point or P1

k, but X ′ is reducible.

Theorem (4.4.4). — Let k be an algebraically closed field and X a k-prescheme. If X is
irreducible (resp. connected), then so is X ⊗k K for every extension k ⊆ K.

Corollary (4.4.5). — Let k be an algebraically closed field, X a k-prescheme, K an ex-
tension of k, and p : X ⊗k K → X the canonical projection. If Z is an irreducible (resp.
connected) subset of X, then so is p−1(Z). In particular, if X0 is an irreducible (resp.
connected) component of X containing Z, then p−1(X0) is an irreducible (resp. connected)
component of X ⊗k K containing p−1(Z).

Corollary (4.4.6). — With the hypotheses and notation of (4.4.5), the map Z 7→ p−1(Z)
is a bijection from the set of irreducible (resp. connected) components of X to that of X ′,
with inverse Z ′ 7→ p(Z ′).

4.5. Geometrically irreducible and geometrically connected preschemes.

Proposition (4.5.1). — Let k be a field, X a k-prescheme, Ω an algebraically closed exten-
sion of k. The cardinality n (resp. n′) of the set of irreducible (resp. connected) components
of X ⊗k Ω is independent of Ω. For any extension K of k, the cardinality of the set of
irreducible (resp. connected) components of X ⊗k K is ≤ n (resp. ≤ n′).

Definition (4.5.2). — The cardinal n (resp. n′) in (4.5.1) is called the geometric number
of irreducible components (resp. connected components) of X, relative to k. If n = 1 (resp.
n′ = 1), we say that X is a geometrically irreducible (resp. geometrically connected) k-
prescheme.

By (4.5.1), the following are equivalent:
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(a) X is geometrically irreducible (resp. geometrically connected).
(b) For some algebraically closed extension k ⊆ Ω, X⊗kΩ is irreducible (resp. connected).
(c) For every extension k ⊆ K, X ⊗k K is irreducible (resp. connected).

(4.5.3). Let X be a k-prescheme and Z ⊆ X a locally closed subset, or any subscheme
with underlying space Z. By (I, 5.1.8), for any extension k ⊆ K, the number of irreducible
(resp. connected) components of Z ⊗k K depends only on the subspace Z. Thus we can
define the geometric number of irreducible or connected components of Z to be that of any
sub-prescheme of X having underlying space Z.

Proposition (4.5.4). — Let f : X → Y be a surjective k-morphism of k-preschemes. If X
is geometrically irreducible (resp. geometrically connected), then so is Y .

Definition (4.5.5). — A morphism of preschemes f : X → Y is irreducible (resp. connected)
if the k(y)-prescheme f−1(y) is geometrically irreducible (resp. connected) for every y ∈ Y .

[For clarity most people now prefer to say that the fibers of f are geometrically irreducible
(resp. geometrically connected).]

Proposition (4.5.6). — (i) Let X be a k-prescheme and k ⊆ K a field extension. Then the
geometric number of irreducible (resp. connected) components of X(K) relative to K is equal
to that of X relative to k. In particular, the K-prescheme X(K) is geometrically irreducible
(resp. connected) if and only if the k-prescheme X is.

Proposition (4.5.7). — Let f : X → Y be a surjective morphism with geometrically irre-
ducible (resp. connected) fibers, let Y ′ → Y be any morphism, and set X ′ = X ×Y Y ′. If Y ′

is also irreducible (resp. connected) and f is universally open (resp. flat and quasi-compact,
or universally open, or universally closed), then X ′ is irreducible (resp. connected).

Corollary (4.5.8). — Let X and Y be k-preschemes.
(i) If X is geometrically irreducible (resp. geometrically connected) and Y is irreducible

(resp. connected), then X ×k Y is irreducible (resp. connected).
(ii) If X and Y are geometrically irreducible (resp. geometrically connected), then so is

X ×k Y .

Proposition (4.5.9). — The following conditions on a k-prescheme X are equivalent:
(a) X is geometrically irreducible (that is, X ⊗k K is irreducible for every extension k ⊆

K).
(b) X ⊗k K is irreducible for every finite separable extension k ⊆ K.
(c) X is irreducible, and k(x) is a primary extension of k, where x is the generic point of

X.

Corollary (4.5.10). — Let X be an irreducible k-prescheme with generic point x, k′ the
separable algebraic closure of k in k(x), and k′′ a Galois extension of k (not necessarily of
finite degree) containing k′. Suppose that [k′ : k] is finite. Then the irreducible components
of X ⊗k k′′ are geometrically irreducible, the number of them is equal to [k′ : k], and this is
also the geometric number of irreducible components of X.
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Corollary (4.5.11). — Let X be a k-prescheme. Suppose that X has only a finite number
of maximal points xi (1 ≤ i ≤ r), and that for each i, the separable algebraic closure k′i of
k in k(xi) is of finite degree [k′i : k]. Then there exists a finite separable extension k ⊆ L
such that the irreducible components of X ⊗k L are geometrically irreducible; their number
is equal to

∑
i[k
′
i : k] and is the geometric number of irreducible components of X.

In particular, the hypotheses in (4.5.11) are satisfied when X is of finite type over k.

Remarks (4.5.12). — (i) The notions in (4.5.2) depend on the base field k. When k
needs to be specified, one may use abbreviated terminology such as “k-irreducible” instead
of “geometrically irreducible relative to k.” The reader is cautioned that such abbreviations
are used in a sense opposite to the older use of the same terms by Weil. From Weil’s point of
view, a variety X ′ is given over an algebraic closed field Ω in the first place. If X ′ happens
to be identified with X ⊗k Ω for a subfield k of Ω, Weil would use the term “k-irreducible”
to mean that X is irreducible.

(ii) There is no analogue of (4.5.9) for geometric connectedness. Example: let X =
Spec(R[[T, U ]]/(T 2 + U2)) and let X ′ ⊆ X be the open subscheme complementary to the
closed point of X. Then X and X ′ are integral schemes, with the same field k(x) at the
generic point, but X ⊗R C is connected, with two irreducible components intersecting only
at the closed point, while X ′ ⊗R C is disconnected.

Proposition (4.5.13). — Let f : Y → X be a k-morphism of k-preschemes. Suppose that
Y is non-empty and geometrically connected, and X is connected. Then X is geometrically
connected.

Corollary (4.5.13.1). — (i) Let f : Y → X be a k-morphism of k-preschemes. If Y is
non-empty and geometrically connected, then the connected component X0 of X containing
f(Y ) is geometrically connected.

(ii) Let X be a k-prescheme. If Y is an irreducible component of X which is geometrically
irreducible, then the connected component X0 of X containing Y is geometrically connected.

Corollary (4.5.14). — Let X be a k-prescheme. If x is a point of X such that k(x) is a
primary extension of k (in particular, if x is a k-rational point of X), then the connected
component of X containing x is geometrically connected.

Proposition (4.5.15). — Let X be a k-prescheme, x a point of X, k′ the separable algebraic
closure of k in k(x). Suppose that

(i) X is connected, and
(ii) k′ is a finite extension of k.
Then the geometric number of connected components of X is ≤ [k′ : k], and if k′′ is a

finite Galois extension of k′′ containing k′, then the connected components of X ⊗k k′′ are
geometrically connected.

Corollary (4.5.16). — Let X be a k-prescheme, (Xα) the family of its connected compo-
nents, and xα a point of Xα for each α. Suppose that

(i) the family (Xα) is finite, and
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(ii) for each α, the separable algebraic closure k′α of k in k(xα) is a finite extension of k.
Then the geometric number of connected components of X is at most

∑
α[k′α : k], and there

exists a finite separable extension k′′ of k such that all the connected components of X ⊗k k′′
are geometrically connected.

Corollary (4.5.17). — Suppose the k-prescheme X contains a point x such that the sepa-
rable algebraic closure of k in k(x) is finite over k. Then a necessary and sufficient condition
for X to be geometrically connected is that X ⊗k K is connected for every finite separable
extension k ⊆ K.

Remark (4.5.18). — We will see in §8 (8.4.5) that the conclusion of (4.5.17) also holds for
every quasi-compact k-prescheme X.

Proposition (4.5.19). — Let X be a k-prescheme, Z ⊆ X any subset, k′ an algebraically
closed extension of k, X ′ = X ⊗k k′, and p : X ′ → X the canonical projection. Suppose
Z ′ = p−1(Z) is contained in a unique irreducible component X ′0 of X ′. Then X ′0 = p−1(X0),
where X0 = p(X ′0) is an irreducible component of X containing Z, and moreover X0 is
geometrically irreducible. If X ′0 is the unique irreducible component of X ′ which meets Z ′,
then X0 is the unique irreducible component of X which meets Z.

[We omit a Lemma (4.5.19.1) and diagram (4.5.19.2) that are used in the proof.]

Remark (4.5.20). — The hypotheses of (4.5.19) do not imply that X0 = p(X ′0) is the
only irreducible component of X containing Z. Example: let k = R, k′ = C, X1 =
Spec(R[S, T ]/(S2 + T 2 + 1)), X2 = A1

C. The curve X1 has no R-rational points, so all
its non-generic points have k(x) = C. Let X be the union of X1 and X2, identified at a non-
generic point xi in each scheme. [X can be constructed as the affine scheme Spec(A1×CA2),
where Xi = Spec(Ai) and the ring homomorphisms Ai → C correspond to the morphisms
Spec(C) = Spec k(xi) → Xi for the points xi that we choose to identify.] If x ∈ X1 ∩ X2

is the common point, then p−1(x) consists of two points y′, z′, p−1(X1) is irreducible, and
p−1(X2) is the disjoint union of two irreducible components Y ′, Z ′ of X ′ such that y′ ∈ Y ′
and z′ ∈ Z ′. Thus p−1(x) is contained in a unique irreducible component of X ′.

Proposition (4.5.21). — Let k be a separably closed field and k′ the algebraic closure of k.
For every k-prescheme X, the canonical projection X×k k′ → X is universally a homeomor-
phism. In particular, the irreducible (resp. connected) components of X are geometrically
irreducible (resp. connected).

4.6. Geometrically reduced algebraic preschemes.

Proposition (4.6.1). — Let k be a field, X a k-prescheme, and Ω a perfect extension of k.
The following are equivalent:

(a) For every reduced k-prescheme S, X ×k S is reduced.
(b) For every extension k ⊆ K, X ⊗k K is reduced.
(c) X ⊗k Ω is reduced.
(d) For every finite radicial extension k′ of k, X ×k k′ is reduced.
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(e) X is reduced, and for every irreducible component Xα of X, with generic point xα,
k(xα) is a separable extension of k.

Definition (4.6.2). — When conditions (a)-(e) in (4.6.1) hold, we say that X is separable,
or geometrically reduced, or universally reduced over k. We say that X is geometrically
integral over k if X ×k K is integral for every extension k ⊆ K; by (4.6.1) this is the same
as saying X is separable and geometrically irreducible.

We say that a (commutative) k-algebra A is separable if Spec(A) is separable over k; that
is, for every extension k ⊆ K, the ring A×kK is reduced. This coincides with the definition
in Bourbaki, Algebra if A has finite rank over k, but not in general.

Corollary (4.6.3). — Let X be an integral k-prescheme. For X to be geometrically reduced
(resp. geometrically integral) over k, it is necessary and sufficient that its field of rational
functions R(X) be separable (resp. separable and primary) over k.

Corollary (4.6.4). — Let X be a reduced k-prescheme. Then X ⊗k k′ is reduced for every
separable extension k′ of k.

Proposition (4.6.5). — (i) Let X be a k-prescheme, k ⊆ K a field extension. Then X is
geometrically reduced over k if and only if X ⊗k K is geometrically reduced over K.

(ii) If X and Y are k-preschemes geometrically reduced over k, then so is X ×k Y .

Proposition (4.6.6). — Let X be a k-prescheme of finite type. There exists a finite radicial
extension k′ of k such that (X(k′))red is geometrically reduced over k′.

Corollary (4.6.7). — If K is a finitely generated extension of k, there is a finite radicial
extension k′ of k such that the residue fields of the semi-local ring K⊗k k′ are separable over
k′.

Corollary (4.6.8). — Let X be a k-prescheme of finite type. There exists a finite extension
k′ of k such that (X(k′))red is geometrically reduced over k′, the irreducible components of
X(k′) are geometrically irreducible, and the connected components of X(k′) are geometrically
connected.

Definition (4.6.9). — Let k be a field, X a k-prescheme, and x a point of X. We say
that X is geometrically reduced or separable (resp. geometrically pointwise integral) at the
point x over k if, for every extension k ⊆ k′ and every x′ ∈ X ′ = X ⊗k k′ lying over x, X ′

is reduced (resp. integral) at x′, that is, OX′,x′ is reduced (resp. integral). We say that X is
geometrically pointwise integral if it is geometrically pointwise integral at every point, that
is, if for every extension k ⊆ k′, the local ring at every point of X ′ is integral (in other words,
X ′ is pointwise integral).

Note that X is geometrically reduced over k if and only if it is geometrically reduced over
k at every point x ∈ X.

Proposition (4.6.10). — Let k be a field, X a k-prescheme, k′ an extension of k, x′ a point
of X ′ = X ⊗k k′, x its image in X. Then X is geometrically reduced (resp. geometrically
pointwise integral) at x over k if the same holds for X ′ at x′ over k′.
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Corollary (4.6.11). — Suppose k is perfect (resp. algebraically closed). Then X is geo-
metrically reduced (resp. geometrically pointwise integral) at a point x over k if and only if
OX,x is reduced (resp. integral).

Proposition (4.6.12). — Let k be a field, X a k-prescheme, x a point of X, Ω a perfect
extension of k. The following conditions are equivalent.

(a) X is geometrically reduced over k at x, that is, for every extension k ⊆ k′ and every
x′ ∈ X ′ = X ⊗k k′ lying over x, OX′,x′ is reduced.

(b) The prescheme X ⊗k Ω is reduced at some point lying over x.
(c) For every finite radicial extension k′ of k, X ′ = X ⊗k k′ is reduced at the unique point

x′ lying over x.
(d) Spec(OX,x) is geometrically reduced over k.
(e) OX,x is reduced, and for every irreducible component Z of X containing x, with generic

point z, k(z) is a separable extension of k.

Corollary (4.6.13). — Under the hypotheses of (4.6.12), suppose further that X is locally
Noetherian. Then conditions (a)-(e) are also equivalent to:

(f) There exists an open neighborhood U of x which is geometrically reduced over k.

(4.6.14). By (4.6.10) and (4.6.11), if Ω is an algebraically closed extension of k, then X is
geometrically pointwise integral at x over k if and only if X ⊗k Ω is integral at some point
lying over x.

When X is locally Noetherian, (4.6.13) implies that the set of points x ∈ X where X is ge-
ometrically reduced is open, and this set is the largest open subset of X that is geometrically
reduced over k.

If X is geometrically pointwise integral at x, then by (4.6.10), X is necessarily integral
at x, and k(z) is a separable extension of k, where z is the generic point of the unique
irreducible component of X containing x. These conditions are not sufficient, however,
as shown by example (4.5.12 (ii)). A sufficient but not necessary condition is that X is
geometrically reduced at x and belongs to a unique irreducible component of X, which is
geometrically irreducible. If X is locally Noetherian, x will then have a geometrically integral
open neighborhood.

Recall that if a prescheme is locally Noetherian and pointwise integral, then it is locally
integral (I, 6.1.13). If a k-prescheme X, locally of finite type over k, is geometrically pointwise
integral over k, it follows that X ⊗k k′ is locally integral for every extension k ⊆ k′; in this
case we would say that X is geometrically locally integral.

Proposition (4.6.15). — (i) Let X be a prescheme of finite type over a field k. Then X
is geometrically pointwise integral if and only if X is geometrically reduced, and the geomet-
ric number of irreducible components of X is equal to the geometric number of connected
components.

(ii) Let X be a prescheme locally of finite type over k. If X is geometrically pointwise
integral at x, then x has a geometrically pointwise integral open neighborhood U . In other
words, the set of points x ∈ X where X is geometrically pointwise integral is open.
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Proposition (4.6.16). — Let k be a field, X a locally Noetherian k-prescheme, F a coherent
OX-Module. The following conditions are equivalent:

(a) For every finitely generated extension k ⊆ k′, if we set X ′ = X⊗kk′, then F ′ = F⊗kk′
is a reduced OX′-Module (3.2.2).

(b) For every finite radicial extension k ⊆ k′, F ′ is a reduced OX′-Module.
(c) F is reduced, and if J ⊆ OX is the annihilator ideal of F , the closed sub-prescheme

of X defined by J is geometrically reduced over k.
In addition, if X is locally of finite type over k, the above conditions are also equivalent to
(d) For every extension k′ of k (or for any one algebraically closed extension k′ of k), F ′

is a reduced OX′-Module.

Definition (4.6.17). — If F satisfies the conditions in (4.6.16) we say that F is geometri-
cally reduced, or separable, over k.

Proposition (4.6.18). — Let k be a field, X a locally Noetherian k-prescheme, F a coherent
OX-Module. The following conditions are equivalent:

(a) For every finitely generated extension k ⊆ k′, if we set X ′ = X⊗kk′, then F ′ = F⊗kk′
is an integral OX′-Module (3.2.4).

(b) For every finite extension k ⊆ k′, F ′ is an integral OX′-Module.
(c) F is reduced (or integral), and if J ⊆ OX is the annihilator ideal of F , the closed

sub-prescheme of X defined by J is geometrically integral over k.
In addition, if X is locally of finite type over k, the above conditions are also equivalent to
(d) For every extension k′ of k (or for any one algebraically closed extension k′ of k), F ′

is an integral OX′-Module.

Definition (4.6.19). — If F satisfies the conditions in (4.6.18), we say that F is geomet-
rically integral over k.

Proposition (4.6.20). — Let k be a field, X a locally Noetherian k-prescheme, F a coherent
OX module. Let k ⊆ K be an extension such that X ⊗k K is locally Noetherian. Then, if F
is geometrically reduced (resp. geometrically integral) over k, F ⊗kK has the same property
over K.

Proposition (4.6.21). — Let X, Y be locally Noetherian k-preschemes such that X ×k Y
is locally Noetherian. Let F be a coherent OX-Module and G a coherent OY -Module.

(i) If F is geometrically reduced (resp. geometrically integral) and G is reduced (resp.
integral), then F ⊗k G is reduced (resp. integral).

(ii) If F and G are geometrically reduced (resp. geometrically integral), then so is F ⊗k G.

Definition (4.6.22). — Let k be a field, X a locally Noetherian k-prescheme, F a coherent
OX-Module. We say that F is geometrically reduced, or separable (resp. geometrically point-
wise integral) at a point x ∈ X if, for every finite radicial extension (resp. finite extension)
k ⊆ k′, F ⊗k k′ is reduced (resp. integral) at every point x′ ∈ X ⊗k k′ above x.

If F is reduced at x, then F|U is reduced, for some open neighborhood U of x (3.2.2).
As in the [omitted] proof of (4.6.16), F is geometrically reduced at x if and only if F is
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reduced at x and the closed subscheme Y defined by the annihilator ideal J ⊆ OX of F is
geometrically reduced at x. It follows that F is geometrically reduced at x if and only if
F|U is geometrically reduced, for some open neighborhood U of x. If X is locally of finite
type over k, we also have that F is pointwise geometrically integral at x if and only if F is
reduced at X and the subscheme Y is geometrically pointwise integral at x.


