Synopsis of material from EGA Chapter IV, §§4.1-4.6

4. Base change for algebraic preschemes

4.1. Dimension of algebraic preschemes.

Dimension theory for general preschemes is in §5. A more elementary version is given here in the algebraic case.

The notation deg. $\operatorname{tr}_{K}(L)$ refers to the transcendence degree of a field extension.

Definition (4.1.1). — Let X be a prescheme locally of finite type over a field k. We define the dimension of X to be

(4.1.1.1)
$$\dim X = \sup_{x} \deg_{x} \operatorname{tr}_{k} \mathbf{k}(x)$$

for x among the maximal points of X.

We will see later (5.2.2) that dim X only seems to depend on the base field k, and coincides with the topological dimension of the underlying space of X. We clearly have dim $X = \dim X_{\text{red}}$.

Since each $\mathbf{k}(x)$ is a finitely generated extension of k, deg. $\operatorname{tr}_k \mathbf{k}(x)$ is finite. If X is of finite type, then, being Noetherian, it has a finite number of irreducible components, so dim X is finite. For the empty variety, we set

$$\dim(\emptyset) = -\infty.$$

If (X_{α}) is the family of induced reduced subschemes on the irreducible components of X (I, 5.2.1), then

(4.1.1.2)
$$\dim(X) = \sup_{\alpha} \dim(X_{\alpha}).$$

This reduces the computation of the dimension to the case of integral preschemes locally of finite type over k.

We also have

$$\dim(X) = \dim(U)$$

for any dense open $U \subseteq X$. This ultimately reduces the notion of dimension to the case of affine schemes of finite type over k.

Theorem (4.1.2). — Let $f: X \to Y$ be a k-morphism of preschemes locally of finite type over a field k.

(i) If f is quasi-compact and dominant, then $\dim(Y) \leq \dim(X)$.

(ii) If f is quasi-finite, then $\dim(X) \leq \dim(Y)$.

(iii) Suppose X is of finite type over k. A necessary and sufficient condition to have $\dim(X) \ge n \text{ (resp. } \le n, \text{ resp. } = n)$ is that there exist a dense open $U \subseteq X$ and a surjective (resp. finite, resp. finite and surjective) k-morphism $g: U \to \mathbb{A}_k^n$. [Nowadays $\mathbb{A}_k^n = \operatorname{Spec}(k[T_1, \ldots, T_n])$ is standard notation, but EGA uses $\mathbf{V}(k^n)$ or \mathbf{V}_k^n here instead.] Corollary (4.1.2.1). — Let Y be a k-prescheme locally of finite type. For every subprescheme $Z \subseteq Y$ we have dim $(Z) \leq \dim(Y)$. If all irreducible components of Y have the same dimension [Y is equidimensional], then dim $(Z) < \dim(Y)$ if and only if the complement of Z is dense in Y.

[The proof of (i) is easy; (ii) reduces to Corollary (4.1.2.1); the proof of the latter and (iii) are based on the Noether normalization lemma.]

Remark (4.1.3). — Corollary (4.1.2.1) implies that formula (4.1.1.1) also holds with x ranging over all points of X.

Corollary (4.1.4). — Let X be a prescheme locally of finite type over k, and $k \subseteq K$ a field extension. Then dim $(X \otimes_k K) = \dim(X)$.

Corollary (4.1.5). — Let X and Y be a preschemes locally of finite type over a field k. Then $\dim(X \times_k Y) = \dim(X) + \dim(Y)$.

4.2. Associated prime cycles on algebraic preschemes.

Proposition (4.2.1). — Let K and L be extensions of a field k, such that $K \otimes_k L$ is Noetherian. Then the associated prime ideals of $K \otimes_k L$ are all minimal, and if E is the residue field at such an ideal, we have

(4.2.1.1) $\deg. \operatorname{tr}_{K} E = \deg. \operatorname{tr}_{k} L, \qquad \deg. \operatorname{tr}_{L} E = \deg. \operatorname{tr}_{k} K,$

and hence

(4.2.1.2)
$$\deg. \operatorname{tr}_k E = \deg. \operatorname{tr}_k K + \deg. \operatorname{tr}_k L.$$

Corollary (4.2.2). — Under the hypotheses of (3.3.6), if the preschemes $T_{x,y}$ are locally Noetherian, they have no embedded associated prime cycles.

Corollary (4.2.3). — Under the hypotheses of (3.3.6) (resp. (3.3.7)), if the $T_{x,y}$ are locally Noetherian, and if \mathcal{F} and the \mathcal{G}_s for $s \in S$ (resp. \mathcal{F} and \mathcal{G}) have no embedded associated prime cycles, then neither does $\mathcal{F} \otimes_S \mathcal{G}$.

Proposition (4.2.4). — Let k be a field and X, Y locally Noetherian k-preschemes such that $X \otimes_k Y$ is locally Noetherian. Suppose further that X and Y are integral. Then:

(i) $X \times_k Y$ has no embedded associated prime cycles, each irreducible component of $X \times_k Y$ dominates X and Y, and these components are in bijective correspondence with those of $\operatorname{Spec}(R(X) \otimes_k R(Y))$ (that is, with the minimal primes of $R(X) \otimes_k R(Y)$), where R(X), R(Y)are the fields of rational functions on X, Y.

(ii) Given a maximal point $z \in X \times_k Y$ corresponding to a minimal prime \mathfrak{p} of $R(X) \otimes_k R(Y)$, the local ring $\mathcal{O}_{X \times_k Y}$, z is isomorphic to the localization $(R(X) \otimes_k R(Y))_{\mathfrak{p}}$. In particular, if either R(X) or R(Y) is separable over k, then $X \times_k Y$ is reduced.

(iii) If, in addition, X and Y are locally of finite type over k, then every irreducible component of $X \times_k Y$ has dimension $\dim(X) + \dim(Y)$.

Proposition (4.2.5). — Let k be a field, X, Y locally Noetherian k-preschemes, \mathcal{F} (resp. \mathcal{G}) a quasi-coherent \mathcal{O}_X -Module (resp. \mathcal{O}_Y -Module). Let (Z'_{λ}) (resp. (Z''_{μ})) be the family of associated prime cycles of \mathcal{F} (resp. \mathcal{G}), or, using the same notation, the induced reduced subschemes on these cycles. Then, if $Z'_{\lambda} \times_k Z''_{\mu}$ is locally Noetherian, the irreducible components $Z_{\lambda\mu\nu}$ of $Z'_{\lambda} \times_k Z''_{\mu}$ dominate Z'_{λ} and Z''_{μ} , and $(Z_{\lambda\mu\nu})$ is the family of distinct associated prime cycles of $\mathcal{F} \otimes_k \mathcal{G}$.

Corollary (4.2.6). — Let k be a field and X,Y locally Noetherian k-preschemes such that $X \times_k Y$ is locally Noetherian. Let (Z'_{λ}) (resp. (Z''_{μ})) be the family of induced reduced subschemes on the irreducible components of X (resp. Y). Then the irreducible components $Z_{\lambda\mu\nu}$ of $Z'_{\lambda} \times_k Z''_{\mu}$ dominate Z'_{λ} , and Z''_{μ} and $(Z_{\lambda\mu\nu})$ is the family of irreducible components of $X \times_k Y$.

Proposition (4.2.7). — Let $k \subseteq K$ be a field extension and X a k-prescheme such that $X \otimes_k K$ is locally Noetherian, \mathcal{F} a quasi-coherent \mathcal{O}_X -Module, x' a point of $X \otimes_k K$, and x its image in X.

(i) Let (Z_{λ}) be the family of induced reduced subschemes on the associated prime cycles of \mathcal{F} . Then the irreducible components $Z_{\lambda\mu}$ of the $Z_{\lambda} \otimes_k K$ are the associated prime cycles of $\mathcal{F} \otimes_k K$, and $Z_{\lambda\mu}$ dominates Z_{λ} ; moreover $Z_{\lambda\mu}$ is embedded if and only if Z_{λ} is.

(ii) The point x belongs to an embedded associated prime cycle of \mathcal{F} if and only if x' belongs to an embedded associated prime cycle of $\mathcal{F} \otimes_k K$; and \mathcal{F} has no embedded associated prime cycles if and only if the same is true for $\mathcal{F} \otimes_k K$.

(iii) The λ such that $x \in Z_{\lambda}$ are those for which there exists an index μ such that $x' \in Z_{\lambda\mu}$. In particular, if x' belongs to a unique associated prime cycle of $\mathcal{F} \otimes_k K$, then x belongs to a unique associated prime cycle of \mathcal{F} .

(iv) If X is locally of finite type over k, then $\dim(Z_{\lambda\mu}) = \dim(Z_{\lambda})$.

Corollary (4.2.8). — If X is locally of finite type over k, the set of dimensions of associated prime cycles is the same for \mathcal{F} and $\mathcal{F} \otimes_k K$. The set of dimensions of irreducible components is the same for X and $X \otimes_k K$.

Proposition (4.2.9). — Given the hypotheses of (4.2.5), suppose further that \mathcal{F} and \mathcal{G} are coherent. Let $(\mathcal{F}_{\lambda})_{\lambda \in L}$ and $(\mathcal{G}_{\mu})_{\mu \in M}$ be irredundant decompositions of \mathcal{F} and \mathcal{G} . For each $(\lambda, \mu) \in L \times M$, let $(\mathcal{K}_{\lambda\mu\nu})_{\nu \in S(\lambda,\mu)}$ be a reduced irredundant decomposition of $\mathcal{F}_{\lambda} \otimes_{k} \mathcal{G}_{\mu}$, where $S(\lambda, \mu) = \operatorname{Ass}(\mathcal{F}_{\lambda} \otimes_{k} \mathcal{G}_{\mu})$ (3.2.5). Then $(\mathcal{K}_{\lambda\mu\nu})$, over all the triples (λ, μ, ν) , is an irredundant decomposition of $\mathcal{F} \otimes_{k} \mathcal{G}$, reduced if (\mathcal{F}_{λ}) and (\mathcal{G}_{μ}) are.

Corollary (4.2.10). — Under the hypotheses of (4.2.7), suppose further that \mathcal{F} is coherent, and let $(\mathcal{F}_{\lambda})_{\lambda \in L}$ be an irredundant decomposition of \mathcal{F} . For each $\lambda \in L$, let $(\mathcal{F}_{\lambda\mu})_{\mu \in \operatorname{Ass}(\mathcal{F}_{\lambda} \otimes_{k} K)}$ be an irredundant decomposition of $\mathcal{F}_{\lambda} \otimes_{k} K$. Then $(\mathcal{F}_{\lambda\mu})$ is an irredundant decomposition of $\mathcal{F} \otimes_{k} K$, reduced if (\mathcal{F}_{λ}) is.

4.3. Review on tensor products of fields.

(4.3.1). A field extension $k \subseteq L$ is *primary* if the largest separable algebraic extension of k in L is k itself.

4

Proposition (4.3.2). — Let $k \subseteq K, L$ be field extensions. If $k \subseteq L$ is primary, then Spec $(L \otimes_k K)$ is irreducible, and if ξ is its generic point, then $\mathbf{k}(\xi)$ is a primary extension of K. Conversely, if Spec $(L \otimes_k K)$ is irreducible for every $k \subseteq K$, then $k \subseteq L$ is a primary extension.

Corollary (4.3.3). — If k is separably closed (i.e., if its algebraic closure is radicial over k), then $\operatorname{Spec}(L \otimes_k K)$ is irreducible for all extensions $k \subseteq K, L$, and conversely.

Corollary (4.3.4). — Let $k \subseteq L$ be a field extension and L_s the separable algebraic closure of k in L, that is, the largest separable algebraic extension of k contained in L. Suppose the degree $[L_s : k]$ is finite, and let $k \subseteq K$ be a Galois extension containing L_s . Then $\operatorname{Spec}(L \otimes_k K)$ has $[L_s : k]$ irreducible components, they are disjoint, and the residue field at each of their generic points is a primary extension of K.

Proposition (4.3.5). — Let $k \subseteq K, L$ be field extensions. If $k \subseteq L$ is separable, then Spec $(L \otimes_k K)$ is reduced. Conversely, if Spec $(L \otimes_k K)$ is reduced for every radicial extension $k \subseteq K$, then $k \subseteq L$ is a separable extension.

Corollary (4.3.6). — If k is perfect, then $\text{Spec}(L \otimes_k K)$ is reduced for all extensions $k \subseteq K, L$, and conversely.

Corollary (4.3.7). — Let $k \subseteq K, L$ be field extensions such that $k \subseteq L$ is separable and either K or L is finite over k. Then the residue fields of the semi-local ring $L \otimes_k K$ are separable extensions of K.

Corollary (4.3.8). — If $k \subseteq K, L$ are finite separable field extensions, then the ring $L \otimes_k K$ is a direct product of finitely many separable extensions of k.

Proposition (4.3.9). — If k is algebraically closed, then $L \otimes_k K$ is an integral domain for all extensions $k \subseteq K, L$, and conversely.

4.4. Irreducible and connected preschemes over an algebraically closed field.

(4.4.1). Let $k \subseteq K$ be a field extension and X a k-prescheme. Using (2.4.9), (2.2.13) and (2.3.5), one shows that each irreducible component of $X \otimes_k K$ dominates an irreducible component of X, and the the resulting map between the sets of irreducible components is surjective. Since $p: X \otimes_k K \to X$ is surjective and continuous, it also induces a surjective map between the sets of connected components.

Each irreducible (resp. connected) component Z' of $X \otimes_k K$ is therefore contained in a unique set $p^{-1}(Z)$, where Z is an irreducible (resp. connected) component of X. Denoting also by Z any subscheme of X with underlying space Z, we have that Z' is an irreducible (resp. connected) component of $Z \otimes_k K$.

If $X \otimes_k K$ has a finite number n (resp. n') of irreducible (resp. connected) components—for instance, if X is of finite type over k, in which case $X \otimes_k K$ is of finite type over K and thus Noetherian—then X has at most n (resp. n') irreducible (resp. connected) components, with equality holding if and only if, for the induced reduced prescheme Z on each irreducible (resp. connected) component of X, we have $Z \otimes_k K$ irreducible (resp. connected). In particular if $X \otimes_k K$ is irreducible (resp. connected), then so is X. If $X \otimes_k K$ is reduced (resp. integral), then so is X because p is faithfully flat (2.1.13).

In this section and the next we study more closely how the irreducible or connected components of $X \otimes_k K$ vary with K; what we have just seen is that the number of components increases with extension of fields.

Lemma (4.4.2). — Let $f: X' \to X$ be a continuous map of topological spaces satisfying the conditions:

(i) f is open and surjective (resp. f is such that X can be identified with the quotient space of X' by the equivalence relation defined by f).

(ii) For all $x \in X$, $f^{-1}(X)$ is irreducible (resp. connected).

Then X' is irreducible (resp. connected) if and only if X is.

Remark (4.4.3). — If X does not have the quotient topology, X and every $f^{-1}(x)$ can even be irreducible without X' being connected. Example: $X = \mathbb{A}_k^1$, X' is the disjoint union of x and X - x for a closed point $x \in X$.

If X has the quotient topology, but f is not open, X and every $f^{-1}(x)$ can be irreducible without X' being so. Example: $X' = (\mathbb{A}_k^1 \times \{y\}) \cup (\{x\} \times \mathbb{P}_k^1) \subseteq \mathbb{A}_k^1 \times_k \mathbb{P}_k^1$, and f is the projection on $X = \mathbb{A}_k^1$. Then f is surjective and proper, hence closed, so X has the quotient topology, every fiber is either a point or \mathbb{P}_k^1 , but X' is reducible.

Theorem (4.4.4). — Let k be an algebraically closed field and X a k-prescheme. If X is irreducible (resp. connected), then so is $X \otimes_k K$ for every extension $k \subseteq K$.

Corollary (4.4.5). — Let k be an algebraically closed field, X a k-prescheme, K an extension of k, and p: $X \otimes_k K \to X$ the canonical projection. If Z is an irreducible (resp. connected) subset of X, then so is $p^{-1}(Z)$. In particular, if X_0 is an irreducible (resp. connected) component of X containing Z, then $p^{-1}(X_0)$ is an irreducible (resp. connected) component of $X \otimes_k K$ containing $p^{-1}(Z)$.

Corollary (4.4.6). — With the hypotheses and notation of (4.4.5), the map $Z \mapsto p^{-1}(Z)$ is a bijection from the set of irreducible (resp. connected) components of X to that of X', with inverse $Z' \mapsto p(Z')$.

4.5. Geometrically irreducible and geometrically connected preschemes.

Proposition (4.5.1). — Let k be a field, X a k-prescheme, Ω an algebraically closed extension of k. The cardinality n (resp. n') of the set of irreducible (resp. connected) components of $X \otimes_k \Omega$ is independent of Ω . For any extension K of k, the cardinality of the set of irreducible (resp. connected) components of $X \otimes_k K$ is $\leq n$ (resp. $\leq n'$).

Definition (4.5.2). — The cardinal n (resp. n') in (4.5.1) is called the geometric number of irreducible components (resp. connected components) of X, relative to k. If n = 1 (resp. n' = 1), we say that X is a geometrically irreducible (resp. geometrically connected) kprescheme.

By (4.5.1), the following are equivalent:

(a) X is geometrically irreducible (resp. geometrically connected).

(b) For some algebraically closed extension $k \subseteq \Omega$, $X \otimes_k \Omega$ is irreducible (resp. connected).

(c) For every extension $k \subseteq K$, $X \otimes_k K$ is irreducible (resp. connected).

(4.5.3). Let X be a k-prescheme and $Z \subseteq X$ a locally closed subset, or any subscheme with underlying space Z. By (I, 5.1.8), for any extension $k \subseteq K$, the number of irreducible (resp. connected) components of $Z \otimes_k K$ depends only on the subspace Z. Thus we can define the geometric number of irreducible or connected components of Z to be that of any sub-prescheme of X having underlying space Z.

Proposition (4.5.4). — Let $f: X \to Y$ be a surjective k-morphism of k-preschemes. If X is geometrically irreducible (resp. geometrically connected), then so is Y.

Definition (4.5.5). — A morphism of preschemes $f: X \to Y$ is *irreducible* (resp. *connected*) if the $\mathbf{k}(y)$ -prescheme $f^{-1}(y)$ is geometrically irreducible (resp. connected) for every $y \in Y$.

[For clarity most people now prefer to say that the fibers of f are geometrically irreducible (resp. geometrically connected).]

Proposition (4.5.6). — (i) Let X be a k-prescheme and $k \subseteq K$ a field extension. Then the geometric number of irreducible (resp. connected) components of $X_{(K)}$ relative to K is equal to that of X relative to k. In particular, the K-prescheme $X_{(K)}$ is geometrically irreducible (resp. connected) if and only if the k-prescheme X is.

Proposition (4.5.7). — Let $f: X \to Y$ be a surjective morphism with geometrically irreducible (resp. connected) fibers, let $Y' \to Y$ be any morphism, and set $X' = X \times_Y Y'$. If Y'is also irreducible (resp. connected) and f is universally open (resp. flat and quasi-compact, or universally open, or universally closed), then X' is irreducible (resp. connected).

Corollary (4.5.8). — Let X and Y be k-preschemes.

(i) If X is geometrically irreducible (resp. geometrically connected) and Y is irreducible (resp. connected), then $X \times_k Y$ is irreducible (resp. connected).

(ii) If X and Y are geometrically irreducible (resp. geometrically connected), then so is $X \times_k Y$.

Proposition (4.5.9). — The following conditions on a k-prescheme X are equivalent:

(a) X is geometrically irreducible (that is, $X \otimes_k K$ is irreducible for every extension $k \subseteq K$).

(b) $X \otimes_k K$ is irreducible for every finite separable extension $k \subseteq K$.

(c) X is irreducible, and $\mathbf{k}(x)$ is a primary extension of k, where x is the generic point of X.

Corollary (4.5.10). — Let X be an irreducible k-prescheme with generic point x, k' the separable algebraic closure of k in $\mathbf{k}(x)$, and k'' a Galois extension of k (not necessarily of finite degree) containing k'. Suppose that [k':k] is finite. Then the irreducible components of $X \otimes_k k''$ are geometrically irreducible, the number of them is equal to [k':k], and this is also the geometric number of irreducible components of X.

Corollary (4.5.11). — Let X be a k-prescheme. Suppose that X has only a finite number of maximal points x_i $(1 \le i \le r)$, and that for each i, the separable algebraic closure k'_i of k in $\mathbf{k}(x_i)$ is of finite degree $[k'_i : k]$. Then there exists a finite separable extension $k \subseteq L$ such that the irreducible components of $X \otimes_k L$ are geometrically irreducible; their number is equal to $\sum_i [k'_i : k]$ and is the geometric number of irreducible components of X.

In particular, the hypotheses in (4.5.11) are satisfied when X is of finite type over k.

Remarks (4.5.12). — (i) The notions in (4.5.2) depend on the base field k. When k needs to be specified, one may use abbreviated terminology such as "k-irreducible" instead of "geometrically irreducible relative to k." The reader is cautioned that such abbreviations are used in a sense opposite to the older use of the same terms by Weil. From Weil's point of view, a variety X' is given over an algebraic closed field Ω in the first place. If X' happens to be identified with $X \otimes_k \Omega$ for a subfield k of Ω , Weil would use the term "k-irreducible" to mean that X is irreducible.

(ii) There is no analogue of (4.5.9) for geometric connectedness. Example: let $X = \operatorname{Spec}(\mathbb{R}[[T,U]]/(T^2 + U^2))$ and let $X' \subseteq X$ be the open subscheme complementary to the closed point of X. Then X and X' are integral schemes, with the same field $\mathbf{k}(x)$ at the generic point, but $X \otimes_{\mathbb{R}} \mathbb{C}$ is connected, with two irreducible components intersecting only at the closed point, while $X' \otimes_{\mathbb{R}} \mathbb{C}$ is disconnected.

Proposition (4.5.13). — Let $f: Y \to X$ be a k-morphism of k-preschemes. Suppose that Y is non-empty and geometrically connected, and X is connected. Then X is geometrically connected.

Corollary (4.5.13.1). — (i) Let $f: Y \to X$ be a k-morphism of k-preschemes. If Y is non-empty and geometrically connected, then the connected component X_0 of X containing f(Y) is geometrically connected.

(ii) Let X be a k-prescheme. If Y is an irreducible component of X which is geometrically irreducible, then the connected component X_0 of X containing Y is geometrically connected.

Corollary (4.5.14). — Let X be a k-prescheme. If x is a point of X such that $\mathbf{k}(x)$ is a primary extension of k (in particular, if x is a k-rational point of X), then the connected component of X containing x is geometrically connected.

Proposition (4.5.15). — Let X be a k-prescheme, x a point of X, k' the separable algebraic closure of k in $\mathbf{k}(x)$. Suppose that

(i) X is connected, and

(ii) k' is a finite extension of k.

Then the geometric number of connected components of X is $\leq [k':k]$, and if k'' is a finite Galois extension of k'' containing k', then the connected components of $X \otimes_k k''$ are geometrically connected.

Corollary (4.5.16). — Let X be a k-prescheme, (X_{α}) the family of its connected components, and x_{α} a point of X_{α} for each α . Suppose that

(i) the family (X_{α}) is finite, and

(ii) for each α , the separable algebraic closure k'_{α} of k in $\mathbf{k}(x_{\alpha})$ is a finite extension of k. Then the geometric number of connected components of X is at most $\sum_{\alpha} [k'_{\alpha} : k]$, and there exists a finite separable extension k'' of k such that all the connected components of $X \otimes_k k''$ are geometrically connected.

Corollary (4.5.17). — Suppose the k-prescheme X contains a point x such that the separable algebraic closure of k in $\mathbf{k}(x)$ is finite over k. Then a necessary and sufficient condition for X to be geometrically connected is that $X \otimes_k K$ is connected for every finite separable extension $k \subseteq K$.

Remark (4.5.18). — We will see in §8 (8.4.5) that the conclusion of (4.5.17) also holds for every quasi-compact k-prescheme X.

Proposition (4.5.19). — Let X be a k-prescheme, $Z \subseteq X$ any subset, k' an algebraically closed extension of k, $X' = X \otimes_k k'$, and p: $X' \to X$ the canonical projection. Suppose $Z' = p^{-1}(Z)$ is contained in a unique irreducible component X'_0 of X'. Then $X'_0 = p^{-1}(X_0)$, where $X_0 = p(X'_0)$ is an irreducible component of X containing Z, and moreover X_0 is geometrically irreducible. If X'_0 is the unique irreducible component of X' which meets Z', then X_0 is the unique irreducible component of X which meets Z.

[We omit a Lemma (4.5.19.1) and diagram (4.5.19.2) that are used in the proof.]

Remark (4.5.20). — The hypotheses of (4.5.19) do not imply that $X_0 = p(X'_0)$ is the only irreducible component of X containing Z. Example: let $k = \mathbb{R}$, $k' = \mathbb{C}$, $X_1 =$ $\operatorname{Spec}(\mathbb{R}[S,T]/(S^2 + T^2 + 1))$, $X_2 = \mathbb{A}^1_{\mathbb{C}}$. The curve X_1 has no \mathbb{R} -rational points, so all its non-generic points have $\mathbf{k}(x) = \mathbb{C}$. Let X be the union of X_1 and X_2 , identified at a nongeneric point x_i in each scheme. [X can be constructed as the affine scheme $\operatorname{Spec}(A_1 \times_{\mathbb{C}} A_2)$, where $X_i = \operatorname{Spec}(A_i)$ and the ring homomorphisms $A_i \to \mathbb{C}$ correspond to the morphisms $\operatorname{Spec}(\mathbb{C}) = \operatorname{Spec} \mathbf{k}(x_i) \to X_i$ for the points x_i that we choose to identify.] If $x \in X_1 \cap X_2$ is the common point, then $p^{-1}(x)$ consists of two points $y', z', p^{-1}(X_1)$ is irreducible, and $p^{-1}(X_2)$ is the disjoint union of two irreducible components Y', Z' of X' such that $y' \in Y'$ and $z' \in Z'$. Thus $p^{-1}(x)$ is contained in a unique irreducible component of X'.

Proposition (4.5.21). — Let k be a separably closed field and k' the algebraic closure of k. For every k-prescheme X, the canonical projection $X \times_k k' \to X$ is universally a homeomorphism. In particular, the irreducible (resp. connected) components of X are geometrically irreducible (resp. connected).

4.6. Geometrically reduced algebraic preschemes.

Proposition (4.6.1). — Let k be a field, X a k-prescheme, and Ω a perfect extension of k. The following are equivalent:

- (a) For every reduced k-prescheme S, $X \times_k S$ is reduced.
- (b) For every extension $k \subseteq K$, $X \otimes_k K$ is reduced.
- (c) $X \otimes_k \Omega$ is reduced.
- (d) For every finite radicial extension k' of k, $X \times_k k'$ is reduced.

(e) X is reduced, and for every irreducible component X_{α} of X, with generic point x_{α} , $\mathbf{k}(x_{\alpha})$ is a separable extension of k.

Definition (4.6.2). — When conditions (a)-(e) in (4.6.1) hold, we say that X is separable, or geometrically reduced, or universally reduced over k. We say that X is geometrically integral over k if $X \times_k K$ is integral for every extension $k \subseteq K$; by (4.6.1) this is the same as saying X is separable and geometrically irreducible.

We say that a (commutative) k-algebra A is separable if Spec(A) is separable over k; that is, for every extension $k \subseteq K$, the ring $A \times_k K$ is reduced. This coincides with the definition in Bourbaki, Algebra if A has finite rank over k, but not in general.

Corollary (4.6.3). — Let X be an integral k-prescheme. For X to be geometrically reduced (resp. geometrically integral) over k, it is necessary and sufficient that its field of rational functions R(X) be separable (resp. separable and primary) over k.

Corollary (4.6.4). — Let X be a reduced k-prescheme. Then $X \otimes_k k'$ is reduced for every separable extension k' of k.

Proposition (4.6.5). — (i) Let X be a k-prescheme, $k \subseteq K$ a field extension. Then X is geometrically reduced over k if and only if $X \otimes_k K$ is geometrically reduced over K.

(ii) If X and Y are k-preschemes geometrically reduced over k, then so is $X \times_k Y$.

Proposition (4.6.6). — Let X be a k-prescheme of finite type. There exists a finite radicial extension k' of k such that $(X_{(k')})_{red}$ is geometrically reduced over k'.

Corollary (4.6.7). — If K is a finitely generated extension of k, there is a finite radicial extension k' of k such that the residue fields of the semi-local ring $K \otimes_k k'$ are separable over k'.

Corollary (4.6.8). — Let X be a k-prescheme of finite type. There exists a finite extension k' of k such that $(X_{(k')})_{\text{red}}$ is geometrically reduced over k', the irreducible components of $X_{(k')}$ are geometrically irreducible, and the connected components of $X_{(k')}$ are geometrically connected.

Definition (4.6.9). — Let k be a field, X a k-prescheme, and x a point of X. We say that X is geometrically reduced or separable (resp. geometrically pointwise integral) at the point x over k if, for every extension $k \subseteq k'$ and every $x' \in X' = X \otimes_k k'$ lying over x, X' is reduced (resp. integral) at x', that is, $\mathcal{O}_{X',x'}$ is reduced (resp. integral). We say that X is geometrically pointwise integral if it is geometrically pointwise integral at every point, that is, if for every extension $k \subseteq k'$, the local ring at every point of X' is integral (in other words, X' is pointwise integral).

Note that X is geometrically reduced over k if and only if it is geometrically reduced over k at every point $x \in X$.

Proposition (4.6.10). — Let k be a field, X a k-prescheme, k' an extension of k, x' a point of $X' = X \otimes_k k'$, x its image in X. Then X is geometrically reduced (resp. geometrically pointwise integral) at x over k if the same holds for X' at x' over k'. Corollary (4.6.11). — Suppose k is perfect (resp. algebraically closed). Then X is geometrically reduced (resp. geometrically pointwise integral) at a point x over k if and only if $\mathcal{O}_{X,x}$ is reduced (resp. integral).

Proposition (4.6.12). — Let k be a field, X a k-prescheme, x a point of X, Ω a perfect extension of k. The following conditions are equivalent.

(a) X is geometrically reduced over k at x, that is, for every extension $k \subseteq k'$ and every $x' \in X' = X \otimes_k k'$ lying over x, $\mathcal{O}_{X',x'}$ is reduced.

(b) The prescheme $X \otimes_k \Omega$ is reduced at some point lying over x.

(c) For every finite radicial extension k' of k, $X' = X \otimes_k k'$ is reduced at the unique point x' lying over x.

(d) Spec($\mathcal{O}_{X,x}$) is geometrically reduced over k.

(e) $\mathcal{O}_{X,x}$ is reduced, and for every irreducible component Z of X containing x, with generic point z, $\mathbf{k}(z)$ is a separable extension of k.

Corollary (4.6.13). — Under the hypotheses of (4.6.12), suppose further that X is locally Noetherian. Then conditions (a)-(e) are also equivalent to:

(f) There exists an open neighborhood U of x which is geometrically reduced over k.

(4.6.14). By (4.6.10) and (4.6.11), if Ω is an algebraically closed extension of k, then X is geometrically pointwise integral at x over k if and only if $X \otimes_k \Omega$ is integral at some point lying over x.

When X is locally Noetherian, (4.6.13) implies that the set of points $x \in X$ where X is geometrically reduced is open, and this set is the largest open subset of X that is geometrically reduced over k.

If X is geometrically pointwise integral at x, then by (4.6.10), X is necessarily integral at x, and $\mathbf{k}(z)$ is a separable extension of k, where z is the generic point of the unique irreducible component of X containing x. These conditions are not sufficient, however, as shown by example (4.5.12 (ii)). A sufficient but not necessary condition is that X is geometrically reduced at x and belongs to a unique irreducible component of X, which is geometrically irreducible. If X is locally Noetherian, x will then have a geometrically integral open neighborhood.

Recall that if a prescheme is locally Noetherian and pointwise integral, then it is locally integral (I, 6.1.13). If a k-prescheme X, locally of finite type over k, is geometrically pointwise integral over k, it follows that $X \otimes_k k'$ is locally integral for every extension $k \subseteq k'$; in this case we would say that X is geometrically locally integral.

Proposition (4.6.15). — (i) Let X be a prescheme of finite type over a field k. Then X is geometrically pointwise integral if and only if X is geometrically reduced, and the geometric number of irreducible components of X is equal to the geometric number of connected components.

(ii) Let X be a prescheme locally of finite type over k. If X is geometrically pointwise integral at x, then x has a geometrically pointwise integral open neighborhood U. In other words, the set of points $x \in X$ where X is geometrically pointwise integral is open. Proposition (4.6.16). — Let k be a field, X a locally Noetherian k-prescheme, \mathcal{F} a coherent \mathcal{O}_X -Module. The following conditions are equivalent:

(a) For every finitely generated extension $k \subseteq k'$, if we set $X' = X \otimes_k k'$, then $\mathcal{F}' = \mathcal{F} \otimes_k k'$ is a reduced $\mathcal{O}_{X'}$ -Module (3.2.2).

(b) For every finite radicial extension $k \subseteq k'$, \mathcal{F}' is a reduced $\mathcal{O}_{X'}$ -Module.

(c) \mathcal{F} is reduced, and if $\mathcal{J} \subseteq \mathcal{O}_X$ is the annihilator ideal of \mathcal{F} , the closed sub-prescheme of X defined by \mathcal{J} is geometrically reduced over k.

In addition, if X is locally of finite type over k, the above conditions are also equivalent to (d) For every extension k' of k (or for any one algebraically closed extension k' of k), \mathcal{F}' is a reduced $\mathcal{O}_{X'}$ -Module.

Definition (4.6.17). — If \mathcal{F} satisfies the conditions in (4.6.16) we say that \mathcal{F} is geometrically reduced, or separable, over k.

Proposition (4.6.18). — Let k be a field, X a locally Noetherian k-prescheme, \mathcal{F} a coherent \mathcal{O}_X -Module. The following conditions are equivalent:

(a) For every finitely generated extension $k \subseteq k'$, if we set $X' = X \otimes_k k'$, then $\mathcal{F}' = \mathcal{F} \otimes_k k'$ is an integral $\mathcal{O}_{X'}$ -Module (3.2.4).

(b) For every finite extension $k \subseteq k'$, \mathcal{F}' is an integral $\mathcal{O}_{X'}$ -Module.

(c) \mathcal{F} is reduced (or integral), and if $\mathcal{J} \subseteq \mathcal{O}_X$ is the annihilator ideal of \mathcal{F} , the closed sub-prescheme of X defined by \mathcal{J} is geometrically integral over k.

In addition, if X is locally of finite type over k, the above conditions are also equivalent to (d) For every extension k' of k (or for any one algebraically closed extension k' of k), \mathcal{F}' is an integral $\mathcal{O}_{X'}$ -Module.

Definition (4.6.19). — If \mathcal{F} satisfies the conditions in (4.6.18), we say that \mathcal{F} is geometrically integral over k.

Proposition (4.6.20). — Let k be a field, X a locally Noetherian k-prescheme, \mathcal{F} a coherent \mathcal{O}_X module. Let $k \subseteq K$ be an extension such that $X \otimes_k K$ is locally Noetherian. Then, if \mathcal{F} is geometrically reduced (resp. geometrically integral) over k, $\mathcal{F} \otimes_k K$ has the same property over K.

Proposition (4.6.21). — Let X, Y be locally Noetherian k-preschemes such that $X \times_k Y$ is locally Noetherian. Let \mathcal{F} be a coherent \mathcal{O}_X -Module and \mathcal{G} a coherent \mathcal{O}_Y -Module.

(i) If \mathcal{F} is geometrically reduced (resp. geometrically integral) and \mathcal{G} is reduced (resp. integral), then $\mathcal{F} \otimes_k \mathcal{G}$ is reduced (resp. integral).

(ii) If \mathcal{F} and \mathcal{G} are geometrically reduced (resp. geometrically integral), then so is $\mathcal{F} \otimes_k \mathcal{G}$.

Definition (4.6.22). — Let k be a field, X a locally Noetherian k-prescheme, \mathcal{F} a coherent \mathcal{O}_X -Module. We say that \mathcal{F} is geometrically reduced, or separable (resp. geometrically pointwise integral) at a point $x \in X$ if, for every finite radicial extension (resp. finite extension) $k \subseteq k', \mathcal{F} \otimes_k k'$ is reduced (resp. integral) at every point $x' \in X \otimes_k k'$ above x.

If \mathcal{F} is reduced at x, then $\mathcal{F}|U$ is reduced, for some open neighborhood U of x (3.2.2). As in the [omitted] proof of (4.6.16), \mathcal{F} is geometrically reduced at x if and only if \mathcal{F} is reduced at x and the closed subscheme Y defined by the annihilator ideal $\mathcal{J} \subseteq \mathcal{O}_X$ of \mathcal{F} is geometrically reduced at x. It follows that \mathcal{F} is geometrically reduced at x if and only if $\mathcal{F}|U$ is geometrically reduced, for some open neighborhood U of x. If X is locally of finite type over k, we also have that \mathcal{F} is pointwise geometrically integral at x if and only if \mathcal{F} is reduced at X and the subscheme Y is geometrically pointwise integral at x.