Synopsis of material from EGA Chapter IV, §10.1–10.4

10. JACOBSON PRESCHEMES

10.1. Very dense subsets of a topological space.

(10.1.1). A subset T of a topological space X is quasi-constructible if T is a finite union of locally closed subsets. T is locally quasi-constructible if every $x \in X$ has an open neighborhood V such that $T \cap V$ is quasi-constructible in V. The two notions are equivalent if X is quasi-compact. Let $\mathfrak{Qc}(X)$, $\mathfrak{Lqc}(X)$ denote the set of (locally) quasi-constructible subsets. Then $\mathfrak{Qc}(X)$ and $\mathfrak{Lqc}(X)$ are closed under finite intersections, unions, and complements, and preimages via continuous maps. Let $\mathfrak{O}(X)$ denote the set of open subsets of X, $\mathfrak{Cl}(X)$ the set of closed subsets.

Proposition (10.1.2). — Let X_0 be a subspace of X. The following are equivalent.

(a) For every non-empty locally closed $Z \subseteq X, Z \cap X_0 \neq \emptyset$.

(a') For every closed $Z \subseteq X$, $Z = Z \cap X$.

(b) For every non-empty locally quasi-constructible $Z \subseteq X, Z \cap X_0 \neq \emptyset$.

(b') For every locally quasi-constructible $Z \subseteq X$, $Z \subseteq \overline{Z \cap X_0}$, that is, $Z \cap X_0$ is dense in Z.

(c) $U \mapsto U \cap X_0$ from $\mathfrak{O}(X)$ to $\mathfrak{O}(X_0)$ is injective (hence bijective).

(c') $Z \mapsto Z \cap X_0$ from $\mathfrak{Cl}(X)$ to $\mathfrak{Cl}(X_0)$ is injective (hence bijective).

 $(c'') \ Z \mapsto Z \cap X_0 \text{ from } \mathfrak{Qc}(X) \text{ to } \mathfrak{Qc}(X_0) \text{ is injective (hence bijective).}$

 $(c'') Z \mapsto Z \cap X_0$ from $\mathfrak{Lqc}(X)$ to $\mathfrak{Lqc}(X_0)$ is injective (which implies that it is bijective).

Definition (10.1.3). — When the conditions in (10.1.2) hold, we say that X_0 is very dense in X.

Corollary (10.1.4). — If X_0 is very dense in X, and $U \subseteq X$ is open, then $U \cap X_0$ is very dense in U. Conversely, if $X = \bigcup_{\alpha} U_{\alpha}$ is an open covering such that $U_{\alpha} \cap X_0$ is very dense in U_{α} for each α , then X_0 is very dense in X.

10.2. Quasi-homeomorphisms.

Proposition (10.2.1). — Let $f: X_0 \to X$ be a continuous map. The following are equivalent.

(a) $U \mapsto f^{-1}(U)$ from $\mathfrak{O}(X)$ to $\mathfrak{O}(X_0)$ is bijective.

 $(a') \ Z \mapsto f^{-1}(Z) \ from \mathfrak{Cl}(X) \ to \mathfrak{Cl}(X_0) \ is \ bijective \ .$

(b) The topology on X_0 is the inverse image of that on X, and $f(X_0)$ is very dense in X.

(c) The functor f^{-1} from sheaves on X to sheaves on X_0 is an equivalence of categories (this holds both for sheaves of sets and for sheaves of abelian groups).

Definition (10.2.2). — A map f satisfying the conditions in (10.2.1) is a quasi-homeomorphism. In particular, by (10.2.1, b), a subspace $X_0 \subseteq X$ is very dense if and only if the inclusion $X_0 \hookrightarrow X$ is a quasi-homeomorphism.

Corollary (10.2.3). — The composite of two quasi-homeomorphisms is a quasi-homeomorphism.

Corollary (10.2.4). — If $f: X \to Y$ is a quasi-homeomorphism, $Y' \subseteq Y$ is locally quasiconstructible, and $X' = f^{-1}(Y')$, then the restriction $f' = (f|X'): X' \to Y'$ is a quasihomeomorphism.

Corollary (10.2.5). — Let $f: X \to Y$ be a continuous map, $Y = \bigcup_{\alpha} V_{\alpha}$ an open covering. If the restriction $f^{-1}(V_{\alpha}) \to V_{\alpha}$ of f is a quasi-homeomorphism for all α , then f is a quasi-homeomorphism.

Corollary (10.2.6). — Let $f: X \to Y$ be a quasi-homeomorphism, $Y' \subseteq Y$ locally quasiconstructible, $X' = f^{-1}(Y')$. Then Y' is quasi-compact (resp. Noetherian, retro-compact) iff X' is.

Proposition (10.2.7). — Let $f: X \to Y$ be a quasi-homeomorphism. Then the map $Z \mapsto f^{-1}(Z)$ from subsets of Y to subsets of X induces bijections between the open, closed, locally closed, quasi-constructible, locally quasi-constructible, constructible, and locally constructible subsets of X and Y.

Remarks (10.2.8). — (i) If $f: X \to Y$ is a quasi-homeomorphism then for any sheaf of abelian groups \mathcal{F} on Y, the canonical functorial map

(10.2.8.1)
$$\Gamma(Y, \mathcal{F}) \to \Gamma(X, f^{-1}(\mathcal{F}))$$

is an isomorphism. Since f^{-1} is exact, it follows that the canonical maps in cohomology

$$H^{i}(Y,\mathcal{F}) \to H^{i}(X,f^{-1}(\mathcal{F}))$$

are isomorphisms.

(ii) If f is a quasi-homeomorphism then f^{-1} gives an equivalence between the categories of sheaves of rings on X and on Y. If $f = (\psi, \theta) \colon (X, \mathcal{O}_X) \to (Y, \mathcal{O}_Y)$ is a morphism of ringed spaces, ψ is a quasi-homeomorphism, and θ^{\sharp} is an isomorphism, then $f^* = f^{-1}$ gives an equivalence of categories between sheaves of \mathcal{O}_Y modules and sheaves of \mathcal{O}_X modules. This extends to isomorphisms of Ext functors, and more generally to equivalences between all the usual functorial constructions involving sheaves and cohomology on the two spaces X and Y.

The 1971 revised edition of EGA I by Grothendieck and Dieudonné, which also includes material from EGA IV, §10, adds to the above the following definition and results.

Definition. A topological space X is sober if every irreducible closed subset $Z \subseteq X$ has a unique generic point, that is, a point z such that $Z = \overline{\{z\}}$ (0, 2.1.2).

Every prescheme X is sober (I, 2.1.5).

For any space X, let X^+ denote the set of irreducible closed subsets of X. If $V \subseteq X$ is closed, then V^+ is a subset of X^+ . The correspondence $V \mapsto V^+$ preserves finite unions and arbitrary intersections, making the subsets V^+ the closed subsets of a topology on X^+ .

The map $j: X \to X^+$ defined by $j(z) = \overline{\{z\}}$ is continuous, and $j^{-1}(V^+) = V$. It follows that $V \to V^+$ is a bijection from closed subsets of X to closed subsets of X^+ and j^{-1} induces its inverse. Hence j is a quasi-homeomorphism.

The space X^+ is sober. Its irreducible closed subsets are exactly the sets Z^+ for $Z \in X^+$, and we have $Z^+ = \overline{\{Z\}}$.

Given a continuous map $f: X \to Y$, there is a unique continuous map $f^+: X^+ \to Y^+$ such that $f^+j_X = j_Y f$. This makes $(-)^+$ a functor from topological spaces to sober spaces. Every continuous map $f: X \to Y$, where Y is sober, factors uniquely through $j: X \to X^+$. This implies that $(-)^+$ is left adjoint to the inclusion of sober spaces into topological spaces.

Every quasi-homeomorphism between sober spaces is a homeomorphism. It follows that a continuous map $f: X \to Y$ is a quasi-homeomorphism if and only if f^+ is a homeomorphism. One can therefore view sober spaces as canonical representatives of topological spaces up to quasi-homeomorphism.

10.3. Jacobson spaces.

Definition (10.3.1). — A topological space X is Jacobson if the set of closed points X_0 of X is very dense in X; that is, if $X_0 \hookrightarrow X$ is a quasi-homeomorphism.

Proposition (10.3.2). — Let X be Jacobson, $Z \subseteq X$ locally quasi-constructible. Then the subspace Z is Jacobson, and a point $z \in Z$ is closed in Z iff it is closed in X.

Proposition (10.3.3). — Let $X = \bigcup_{\alpha} U_{\alpha}$ be an open covering. Then X is Jacobson iff every U_{α} is Jacobson.

10.4. Jacobson preschemes and Jacobson rings.

Definition (10.4.1). — A prescheme X is Jacobson if its underlying topological space is Jacobson. A ring A is Jacobson if Spec(A) is Jacobson.

According to this definition, A is Jacobson if and only if every radical ideal of A is an intersection of maximal ideals; if and only if every prime ideal of A is an intersection of maximal ideals (the latter is the usual definition of a Jacobson ring).

Proposition (10.4.2). — Let $X = \bigcup_{\alpha} U_{\alpha}$ be an open affine covering of the prescheme X. Then X is Jacobson iff each ring $\mathcal{O}_X(U_{\alpha})$ is Jacobson.

(10.4.3). Examples: a discrete space is Jacobson, hence an Artinian ring is Jacobson. A principal ideal domain with infinitely many maximal ideals (such as \mathbb{Z}) is Jacobson. A Noetherian local ring is Jacobson iff its maximal ideal is its only prime ideal; that is, iff it is Artinian. By (10.3.2), any sub-prescheme of a Jacobson scheme is Jacobson.

Proposition (10.4.4). — Let B be an integral domain. The following are equivalent.

(a) There exists $f \neq 0$ in B such that B_f is a field.

(b) The field of fractions of B is a finitely generated B-algebra.

(c) There exists a field K containing B, which is a finitely generated B-algebra.

(d) The generic point of Spec(B) is isolated (i.e., the set consisting of only that point is open).

 $(d) \Leftrightarrow (a) \Leftrightarrow (b) \Rightarrow (c)$ are easy. The significant point is that (c) implies the others, which is a version of Hilbert's Nullstellensatz.

Proposition (10.4.5). — Given a ring A, the following are equivalent.

(a) A is Jacobson.

(b) For every non-maximal prime ideal $\mathfrak{p} \subseteq A$ and every $f \neq 0$ in $B = A/\mathfrak{p}$, B_f is not a field.

(b') Every finitely generated A-algebra K which is a field, is finite over A (i.e., finitely generated as an A-module; thus a finite algebraic extension of A/\mathfrak{m} , where \mathfrak{m} is a maximal ideal).

Corollary (10.4.6). — Every algebra B of finite type over a Jacobson ring A is Jacobson. Moreover, the preimage in A of any maximal ideal of B is maximal. In particular, any finitely generated algebra over \mathbb{Z} or a field is Jacobson.

Corollary (10.4.7). — If X is a Jacobson prescheme and $f: Y \to X$ is a morphism locally of finite type, then Y is Jacobson, and f maps every closed point of X to a closed point of Y. [Moreover, if f(x) = y, then k(x) is a finite algebraic extension of k(y).]

Corollary (10.4.8). — If X is locally of finite type over an algebraically closed field k, then the k-rational points of X are very dense in X.

Indeed, the k-rational points are the closed points, by (I, 6.4.2), and X is Jacobson.

(10.4.9–11). A number of questions in algebraic geometry can be reduced to the case of a finitely generated algebra over \mathbb{Z} or a field, so the fact that such rings are Jacobson is particularly important. EGA gives two applications, of which the second is the following.

Proposition: Let X be an S-prescheme of finite type. Then any universally injective S-morphism $g: X \to X$ is bijective.

[The morphism g is universally injective if it induces an injection $X(K) \to X(K)$ for every field K.]

In fact, it is shown in (IV, 17.9.7) that under the hypotheses of the Proposition, g is an isomorphism.