
Synopsis of material from EGA Chapter IV, §10.1–10.4

10. Jacobson preschemes

10.1. Very dense subsets of a topological space.
(10.1.1). A subset T of a topological space X is quasi-constructible if T is a finite union of

locally closed subsets. T is locally quasi-constructible if every x ∈ X has an open neighbor-
hood V such that T ∩ V is quasi-constructible in V . The two notions are equivalent if X is
quasi-compact. Let Qc(X), Lqc(X) denote the set of (locally) quasi-constructible subsets.
Then Qc(X) and Lqc(X) are closed under finite intersections, unions, and complements, and
preimages via continuous maps. Let O(X) denote the set of open subsets of X, Cl(X) the
set of closed subsets.

Proposition (10.1.2). — Let X0 be a subspace of X. The following are equivalent.
(a) For every non-empty locally closed Z ⊆ X, Z ∩X0 6= ∅.
(a′) For every closed Z ⊆ X, Z = Z ∩X.
(b) For every non-empty locally quasi-constructible Z ⊆ X, Z ∩X0 6= ∅.
(b′) For every locally quasi-constructible Z ⊆ X, Z ⊆ Z ∩X0, that is, Z ∩X0 is dense in

Z.
(c) U 7→ U ∩X0 from O(X) to O(X0) is injective (hence bijective).
(c′) Z 7→ Z ∩X0 from Cl(X) to Cl(X0) is injective (hence bijective).
(c′′) Z 7→ Z ∩X0 from Qc(X) to Qc(X0) is injective (hence bijective).
(c′′′) Z 7→ Z ∩X0 from Lqc(X) to Lqc(X0) is injective (which implies that it is bijective).

Definition (10.1.3). — When the conditions in (10.1.2) hold, we say that X0 is very dense
in X.

Corollary (10.1.4). — If X0 is very dense in X, and U ⊆ X is open, then U ∩X0 is very
dense in U . Conversely, if X =

⋃
α Uα is an open covering such that Uα ∩X0 is very dense

in Uα for each α, then X0 is very dense in X.

10.2. Quasi-homeomorphisms.

Proposition (10.2.1). — Let f : X0 → X be a continuous map. The following are equiva-
lent.

(a) U 7→ f−1(U) from O(X) to O(X0) is bijective .
(a′) Z 7→ f−1(Z) from Cl(X) to Cl(X0) is bijective .
(b) The topology on X0 is the inverse image of that on X, and f(X0) is very dense in X.
(c) The functor f−1 from sheaves on X to sheaves on X0 is an equivalence of categories

(this holds both for sheaves of sets and for sheaves of abelian groups).

Definition (10.2.2). — A map f satisfying the conditions in (10.2.1) is a quasi-homeomorphism.
In particular, by (10.2.1, b), a subspace X0 ⊆ X is very dense if and only if the inclusion

X0 ↪→ X is a quasi-homeomorphism.

Corollary (10.2.3). — The composite of two quasi-homeomorphisms is a quasi-homeomorphism.
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Corollary (10.2.4). — If f : X → Y is a quasi-homeomorphism, Y ′ ⊆ Y is locally quasi-
constructible, and X ′ = f−1(Y ′), then the restriction f ′ = (f |X ′) : X ′ → Y ′ is a quasi-
homeomorphism.

Corollary (10.2.5). — Let f : X → Y be a continuous map, Y =
⋃
α Vα an open covering.

If the restriction f−1(Vα)→ Vα of f is a quasi-homeomorphism for all α, then f is a quasi-
homeomorphism.

Corollary (10.2.6). — Let f : X → Y be a quasi-homeomorphism, Y ′ ⊆ Y locally quasi-
constructible, X ′ = f−1(Y ′). Then Y ′ is quasi-compact (resp. Noetherian, retro-compact) iff
X ′ is.

Proposition (10.2.7). — Let f : X → Y be a quasi-homeomorphism. Then the map Z 7→
f−1(Z) from subsets of Y to subsets of X induces bijections between the open, closed, locally
closed, quasi-constructible, locally quasi-constructible, constructible, and locally constructible
subsets of X and Y .

Remarks (10.2.8). — (i) If f : X → Y is a quasi-homeomorphism then for any sheaf of
abelian groups F on Y , the canonical functorial map

(10.2.8.1) Γ(Y,F)→ Γ(X, f−1(F))

is an isomorphism. Since f−1 is exact, it follows that the canonical maps in cohomology

H i(Y,F)→ H i(X, f−1(F))

are isomorphisms.
(ii) If f is a quasi-homeomorphism then f−1 gives an equivalence between the categories

of sheaves of rings on X and on Y . If f = (ψ, θ) : (X,OX) → (Y,OY ) is a morphism of
ringed spaces, ψ is a quasi-homeomorphism, and θ] is an isomorphism, then f ∗ = f−1 gives
an equivalence of categories between sheaves of OY modules and sheaves of OX modules.
This extends to isomorphisms of Ext functors, and more generally to equivalences between
all the usual functorial constructions involving sheaves and cohomology on the two spaces
X and Y .

The 1971 revised edition of EGA I by Grothendieck and Dieudonné, which also includes
material from EGA IV, §10, adds to the above the following definition and results.

Definition. A topological space X is sober if every irreducible closed subset Z ⊆ X has a
unique generic point, that is, a point z such that Z = {z} (0, 2.1.2).

Every prescheme X is sober (I, 2.1.5).
For any space X, let X+ denote the set of irreducible closed subsets of X. If V ⊆ X is

closed, then V + is a subset of X+. The correspondence V 7→ V + preserves finite unions and
arbitrary intersections, making the subsets V + the closed subsets of a topology on X+.

The map j : X → X+ defined by j(z) = {z} is continuous, and j−1(V +) = V . It follows
that V → V + is a bijection from closed subsets of X to closed subsets of X+ and j−1 induces
its inverse. Hence j is a quasi-homeomorphism.
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The space X+ is sober. Its irreducible closed subsets are exactly the sets Z+ for Z ∈ X+,
and we have Z+ = {Z}.

Given a continuous map f : X → Y , there is a unique continuous map f+ : X+ → Y +

such that f+jX = jY f . This makes (−)+ a functor from topological spaces to sober spaces.
Every continuous map f : X → Y , where Y is sober, factors uniquely through j : X → X+.
This implies that (−)+ is left adjoint to the inclusion of sober spaces into topological spaces.

Every quasi-homeomorphism between sober spaces is a homeomorphism. It follows that a
continuous map f : X → Y is a quasi-homeomorphism if and only if f+ is a homeomorphism.
One can therefore view sober spaces as canonical representatives of topological spaces up to
quasi-homeomorphism.

10.3. Jacobson spaces.

Definition (10.3.1). — A topological space X is Jacobson if the set of closed points X0 of
X is very dense in X; that is, if X0 ↪→ X is a quasi-homeomorphism.

Proposition (10.3.2). — Let X be Jacobson, Z ⊆ X locally quasi-constructible. Then the
subspace Z is Jacobson, and a point z ∈ Z is closed in Z iff it is closed in X.

Proposition (10.3.3). — Let X =
⋃
α Uα be an open covering. Then X is Jacobson iff

every Uα is Jacobson.

10.4. Jacobson preschemes and Jacobson rings.

Definition (10.4.1). — A prescheme X is Jacobson if its underlying topological space is
Jacobson. A ring A is Jacobson if Spec(A) is Jacobson.

According to this definition, A is Jacobson if and only if every radical ideal of A is an
intersection of maximal ideals; if and only if every prime ideal of A is an intersection of
maximal ideals (the latter is the usual definition of a Jacobson ring).

Proposition (10.4.2). — Let X =
⋃
α Uα be an open affine covering of the prescheme X.

Then X is Jacobson iff each ring OX(Uα) is Jacobson.

(10.4.3). Examples: a discrete space is Jacobson, hence an Artinian ring is Jacobson. A
principal ideal domain with infinitely many maximal ideals (such as Z) is Jacobson. A
Noetherian local ring is Jacobson iff its maximal ideal is its only prime ideal; that is, iff it is
Artinian. By (10.3.2), any sub-prescheme of a Jacobson scheme is Jacobson.

Proposition (10.4.4). — Let B be an integral domain. The following are equivalent.
(a) There exists f 6= 0 in B such that Bf is a field.
(b) The field of fractions of B is a finitely generated B-algebra.
(c) There exists a field K containing B, which is a finitely generated B-algebra.
(d) The generic point of Spec(B) is isolated (i.e., the set consisting of only that point is

open).
(d)⇔ (a)⇔ (b)⇒ (c) are easy. The significant point is that (c) implies the others, which

is a version of Hilbert’s Nullstellensatz.
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Proposition (10.4.5). — Given a ring A, the following are equivalent.
(a) A is Jacobson.
(b) For every non-maximal prime ideal p ⊆ A and every f 6= 0 in B = A/p, Bf is not a

field.
(b′) Every finitely generated A-algebra K which is a field, is finite over A (i.e., finitely

generated as an A-module; thus a finite algebraic extension of A/m, where m is a maximal
ideal).

Corollary (10.4.6). — Every algebra B of finite type over a Jacobson ring A is Jacobson.
Moreover, the preimage in A of any maximal ideal of B is maximal. In particular, any
finitely generated algebra over Z or a field is Jacobson.

Corollary (10.4.7). — If X is a Jacobson prescheme and f : Y → X is a morphism locally
of finite type, then Y is Jacobson, and f maps every closed point of X to a closed point of
Y . [Moreover, if f(x) = y, then k(x) is a finite algebraic extension of k(y).]

Corollary (10.4.8). — If X is locally of finite type over an algebraically closed field k, then
the k-rational points of X are very dense in X.

Indeed, the k-rational points are the closed points, by (I, 6.4.2), and X is Jacobson.

(10.4.9–11). A number of questions in algebraic geometry can be reduced to the case of
a finitely generated algebra over Z or a field, so the fact that such rings are Jacobson is
particularly important. EGA gives two applications, of which the second is the following.

Proposition: Let X be an S-prescheme of finite type. Then any universally injective S-
morphism g : X → X is bijective.

[The morphism g is universally injective if it induces an injection X(K)→ X(K) for every
field K.]

In fact, it is shown in (IV, 17.9.7) that under the hypotheses of the Proposition, g is an
isomorphism.


