
Synopsis of material from EGA Chapter II, §5

5. Quasi-affine, quasi-projective, proper and projective morphisms

5.1. Quasi-affine morphisms.

Definition (5.1.1). — A scheme is quasi-affine if it is isomorphic to a quasi-compact open
subscheme of an affine scheme. A morphism f : X → Y is quasi-affine if there exists a
covering of Y by open affines Uα such that f−1(Uα) is quasi-affine.

Every quasi-affine morphism is separated and quasi-compact. An affine morphism is quasi-
affine.

Recall that for any prescheme X, putting A = Γ(X,OX), there is a canonical morphism
X → Spec(A).

Proposition (5.1.2). — Let X be quasi-compact or topologically Noetherian [or more gen-
erally, quasi-compact and quasi-separated (IV, 1.7.16)], A = Γ(X,OX). The following are
equivalent:

(a) X is quasi-affine.
(b) The canonical morphism u : X → Spec(A) is an open immersion.
(b ′) The canonical morphism u is a homeomorphism of X onto its image in Spec(A).
(c) OX is very ample for u.
(c ′) OX is ample.
(d) The Xf for f ∈ A form a base of the topology on X.
(d ′) Those Xf which are affine cover X.
(e) Every quasi-coherent OX-module is generated by its global sections.
(e ′) Every quasi-coherent ideal sheaf of finite type in OX is generated by its global sections.

Observe that when these conditions hold, the affines Xf form a base of the topology, and
u is dominant.

Corollary (5.1.3). — If X is quasi-compact, and v : X → Y is a morphism to an affine
scheme Y , which is a homeomorphism of X onto an open subspace of Y , then X is quasi-
affine.

Corollary (5.1.4). — If X is quasi-affine, every invertible sheaf is very ample (relative to
the canonical morphism), and hence ample.

Corollary (5.1.5). — Let X be a quasi-compact prescheme. If there is an invertible sheaf
L on X such that L and L−1 are both ample, then X is quasi-affine.

Proposition (5.1.6). — Let f : X → Y be a quasi-compact morphism. The following are
equivalent:

(a) f is quasi-affine.
(b) A = f∗(OX) is quasi-coherent, and the canonical Y -morphism u : X → Spec(A) is an

open immersion.
(b ′) Like (b), but only assuming u is a homeomorphism onto its image.
(c) OX is very ample relative to f .
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(c ′) OX is ample relative to f .
(d) f is separated, and for every quasi-coherent OX-module F , σ : f ∗(f∗(F)) → F is

surjective.
Moreover, if f is quasi-affine, then every invertible sheaf on X is very ample relative to

f .

Corollary (5.1.7). — Let f : X → Y be quasi-affine. For every open U ⊆ Y , the restriction
f−1(U)→ U of f is quasi-affine.

Corollary (5.1.8). — Let f : X → Y be quasi-compact, Y affine. Then f is quasi-affine
iff X is a quasi-affine scheme.

Corollary (5.1.9). — Let Y be a quasi-compact scheme, or a topologically Noetherian
prescheme [or more generally, a quasi-compact and quasi-separated prescheme], f : X → Y
a morphism of finite type. If f is quasi-affine, there is a quasi-coherent sub-OY -algebra
B ⊆ A(X) = f∗(OX) of finite type such that the morphism X → Spec(B) corresponding to
B ↪→ A(X) (1.2.7) is an immersion. Moreover, every quasi-coherent subalgebra B′ ⊆ A(X)
containing B has the same property.

[By (3.1.7), this is special case of (3.8.4).]

Proposition (5.1.10). — (i) Any quasi-compact morphism X → Y which is a homeomor-
phism onto its image—in particluar, any closed immersion—is quasi-affine.

(ii) The composite of of two quasi-affine morphisms is quasi-affine.
(iii) If f : X → Y is a quasi-affine S-morphism, any base extension f(S′) is quasi-affine.
(iv) If f and g are quasi-affine S-morphisms, so is f ×S g.
(v) If g ◦ f is quasi-affine, and if g is separated or if X is topologically locally Noetherian,

then f is quasi-affine.
(vi) If f is quasi-affine, then so is fred.

Remark (5.1.11). — Given f : X → Y , g : Y → Z, (v) also holds under the alternative
assumption that X ×Z Y is locally Noetherian.

Proposition (5.1.12). — Let f : X → Y be quasi-compact, g : X ′ → X quasi-affine. If L
is ample for f , then g∗(L) is ample for f ◦ g.

5.2. Serre’s criterion.

Theorem (5.2.1). — (Serre’s criterion) Let X be a quasi-compact scheme or a topologically
Noetherian prescheme. The following are equivalent:

(a) X is affine.
(b) There exist elements fα ∈ A = Γ(X,OX) such that the Xfα are affine and the fα

generate the unit ideal in A.
(c) Γ(X,−) is an exact functor on the category of quasi-coherent OX-modules.
(c ′) Γ(X,−) is exact on sequences 0 → F ′ → F → F ′′ → 0 such that F is a sub-OX-

module of a finite-rank free sheaf OnX .
(d) H1(X,F) = 0 for every quasi-coherent OX-module F .
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(d ′) Property (d) holds for every quasi-coherent ideal sheaf F .
(a)⇔(b) follows from (4.5.2).
(a)⇒(c)⇒(c ′) by (I, 1.3.11). Given (c ′), one shows first that sets Xf form a neighborhood

base at each closed point x ∈ X, by letting x ∈ U be a neighborhood, I the ideal of X \ U ,
I ′ the ideal of {x} ∩ (X \ U), and applying (c ′) to 0 → I ′ → I → I/I ′ → 0. Using
quasi-compactness and (0, 2.1.3), we get a covering of X by affines Xfi . Applying (c ′) to
the surjection OnX ⇒ O defined by the fi’s shows that they generate the unit ideal, giving
(b).

(a)⇒(d)⇒(d ′) by the cohomology vanishing theorem for affine schemes, and (d ′)⇒(c ′)
by some applications of the long exact sequence of cohomology.

Corollary (5.2.2). — Let f : X → Y be a quasi-compact morphism, and assume X is
separated or topologically locally Noetherian [or assume f quasi-separated (IV, 1.7.18)]. The
following are equivalent:

(a) f is an affine morphism.
(b) f∗ is exact on quasi-coherent OX-modules
(c) R1f∗(F) = 0 for every quasi-coherent OX-module F .
(c ′) Property (c) holds for quasi-coherent ideal sheaves F .

Corollary (5.2.3). — If f : X → Y is an affine morphism, then for all quasi-coherent F
on X, we have H i(Y, f∗(F)) ∼= H i(X,F).

[Stated in EGA for i = 1, but it holds for all i because Rf∗ = f∗ and RΓ(X,−) =
RΓ(Y,−) ◦Rf∗.]

5.3. Quasi-projective morphisms.

Definition (5.3.1). — A morphism f : X → Y is quasi-projective (or X is a quasi-projective
scheme over Y ) if f is of finite type and there exists an invertible OX-module ample relative
to f .

Warning: this condition is not local on Y , even if X and Y are algebraic schemes over an
algebraicallly closed field.

A quasi-projective morphism is necessarily separated. If Y is quasi-compact, one can
replace “ample” with “very ample” (4.6.2 and 4.6.11).

Proposition (5.3.2). — Let Y be a quasi-compact scheme or a topologically Noetherian
prescheme [or more generallly, a quasi-compact and quasi-separated prescheme]. The follow-
ing are equivalent:

(a) X is a quasi-projective Y -scheme.
(b) X is of finite type over Y , and there exists a quasi-coherent OY -module E of finite type

such that X is Y -isomorphic to a sub-prescheme of P(E).
(c) X is of finite type over Y , and there is a graded quasi-coherent OY -algebra S such that
S1 is of finite type and generates S, and X is Y -isomorphic to a dense open subscheme of
Proj(S).
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Corollary (5.3.3). — Let Y be a quasi-compact scheme with an ample invertible sheaf L.
A Y -scheme X to is quasi-projective iff X is of finite type over Y and Y -isomorphic to a
sub-Y -scheme of some PrY .

Proposition (5.3.4). — (i) Every quasi-affine morphism of finite type—in particular, every
quasi-compact immersion—is quasi-projective.

(ii) The composite of two quasi-projective morphisms is quasi-projective.
(iii) Every base extension of a quasi-projective morphism is quasi-projective.
(iv) The product of two quasi-projectivce S-morphisms is quasi-projective.
(v) If g ◦ f is quasi-projective, and g is separated or X is locally Noetherian, then f is

quasi-projective.
(vi) If f is quasi-projective, so is fred.

Remark (5.3.5). — It is possible for fred but not f to be quasi-projective.

Corollary (5.3.6). — If X and X ′ are quasi-projective Y -schemes, then so is X
⊔
X ′.

5.4. Proper and universally closed morphisms.

Definition (5.4.1). — A morphism f : X → Y is proper if it satisfies the two conditions:
(a) f is separated and of finite type.
(b) For every Y ′ → Y , the base extension f(Y ′) : X ×Y Y ′ → Y ′ is closed (I, 2.2.6).
We also say that X is a proper Y -scheme.

Properness is a local condition on Y . Clearly, a proper morphism is closed.

Proposition (5.4.2). — (i) Every closed immersion is proper.
(ii) The composite of two proper morphisms is proper.
(iii) Every base extension of a proper morphism is proper.
(iv) The product of two proper S-morphisms is proper.

Corollary (5.4.3). — Given f : X → Y , g : Y → Z, suppose g ◦ f is proper.
(i) If g is separated, then f is proper.
(ii) If g is separated and of finite type, and f is surjective, then g is proper.

Corollary (5.4.4). — If X is proper over Y , and S is a graded quasi-coherent OY -algebra,
then every Y -morphism X → Proj(S) is proper, hence closed.

Corollary (5.4.5). — Let f : X → Y be a separated morphism of finite type. Let Xi

(resp. Yi), i = 1, . . . , n be closed subschemes of X (resp. Y ), ji : Xi ↪→ X, hi : Yi ↪→ Y the
inclusions. Suppose the underlying space of X is the union of the Xi’s and that for each i
there is a morphism fi : Xi → Yi such that hifi = fji. Then f is proper if and only if each
fi is proper.

Corollary (5.4.6). — Let f be a separated morphism of finite type. Then f is proper if
and only if fred is proper.

(5.4.7). If f : X → Y is a separated morphism of finite type between Noetherian preschemes,
we can take Xi in (5.4.5) to be the induced reduced subschemes of the irreducible components
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of X, and Yi the closures of their images. Then the verification that f is proper reduces to
that for each fi, which is a dominant morphism of integral preschemes.

Corollary (5.4.8). — Let f : X → Y be an S-morphism of S-schemes of finite type. Then
f is proper if and only if f(S′) is closed for every S-scheme S ′.

Remark (5.4.9). — A morphism satifying (5.4.1 (b)) is called universally closed. In (5.4.2)
through (5.4.8) one can replace “proper” with “universally closed” and omit the finiteness
hypotheses.

(5.4.10). Let f : X → Y be a morphism of finite type. A closed subset Z ⊆ X is proper
over Y , or proper for f , if the restriction of f to a closed subscheme of X with underlying
space Z is proper. This doesn’t depend on the choice of closed subscheme, by (5.4.6).

If g : X ′ → X is proper, then g−1(Z) is proper. If u : X → X ′′ is any Y -morphism, where
X ′′ is a Y -scheme of finite type, then u(Z) is proper.

In particular, if Z is a Y -proper subset of X, then Z ∩X ′ is a Y -proper subset of X ′, for
any closed subscheme X ′ ⊆ X; and if X is a sub-prescheme of a Y -scheme X ′′ of finite type,
then Z is a Y -proper subset of X ′′ (hence closed).

5.5. Projective morphisms.

Proposition (5.5.1). — Let X be a Y -prescheme. The following are equivalent:
(a) X is Y -isomorphic to a closed subscheme of P(E), where E is a quasi-coherent OY -

module of finite type.
(b) X is Y -isomorphic to Proj(S), where S is a graded quasi-coherent OY -algebra such

that S1 is of finite type and generates S.

Definition (5.5.2). — If the conditions in (5.5.1) hold, X is projective over Y . A morphism
f : X → Y is projective if it makes X a projective Y -scheme.

Clearly if f : X → Y is projective, there exists an OX-module very ample for f .

Theorem (5.5.3). — (i) Every projective morphism is quasi-projective and proper.
(ii) Conversely, if Y is a quasi-compact scheme, or a topologically Noetherian prescheme

[or more generally, if Y is quasi-compact and quasi-separated (IV, 1.7.19)], then every proper
quasi-projective morphism is projective.

(ii) follows from (5.3.2) and (5.4.4).
Projective morphisms are preserved by base extension, so for (i) we must show that projec-

tive morphisms are closed. This reduces to the case Y = Spec(A), X = Proj(S), where S is a
graded A-algebra generated by finitely many elements of S1. Using f−1(y) ∼= Proj(S⊗Ak(y))
and Nakayama’s lemma, one proves that f(X) =

⋂
n Supp(Sn), which is closed. Since any

closed X ′ ⊆ X is again projective over Y , this shows that f is a closed morphism.

Remarks (5.5.4). — (i) Suppose 1o f : X → Y is proper, 2o there exists an OX-module
L very ample for f , and 3o the quasi-coherent OY -module E = f∗(L) is of finite type. Then
f is projective, by (4.4.4) and (5.4.4). In volume III, §3, we shall see that if Y is locally
Noetherian, then 1o and 2o imply 3o, hence they characterize projective morphisms. If Y
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is quasi-compact, one can replace 2o by the existence of an OX-module ample relative to f
(4.6.11).

(ii) Let Y be a quasi-compact scheme possessing an ample OY -module. Then a Y -scheme
X is projective iff it is Y -isomorphic to a closed subscheme of PrY for some r, by (5.3.3),
(5.4.4) and (5.5.3).

(iii) The proof of (5.5.3) shows that PrY → Y is always surjective.
(iv) There exist proper morphisms which are not quasi-projective. [The earliest counterex-

amples are due to Nagata. A simple class of more recent counterexamples is given by toric
varieties associated to non-polyhedral fans.]

Proposition (5.5.5). — (i) Every closed immersion is projective.
(ii) If f : X → Y and g : Y → Z are projective, and Z is a quasi-compact scheme or a

topologically Noetherian prescheme [or Z is quasi-compact and quasi-separated], then g ◦ f
is projective.

(iii) Every base extension of a projective morphism is projective.
(iv) The product of two projectivce S-morphisms is projective.
(v) If g ◦ f is projective and g is separated, then f is projective.
(vi) If f is projective, so is fred.

Proposition (5.5.6). — If X, X ′ are projective Y -schemes, then so is X tX ′.
Proposition (5.5.7). — Let X be a projective Y -scheme, L a Y -ample OX-module. For

every global section f of L, Xf is affine over Y .

Corollary (5.5.8). — Let X be a prescheme, L an invertible OX-module. For every global
section f of L, Xf is affine over X (in particular, Xf is affine if X is affine).

This can also be shown directly, without using (5.5.7).

5.6. Chow’s Lemma.

Theorem (5.6.1). — (Chow’s lemma) Let X be an S-scheme of finite type. Suppose that
either

(a) S is Noetherian; or
(b) S is a quasi-compact scheme, and X has finitely many irreducible components.
Then:
(i) There exists a projective and surjective S-morphism f : X ′ → X, where X ′ is a quasi-

projective S-scheme.
(ii) X ′ and f can be chosen so that there is an open U ⊆ X such that U ′ = f−1(U) is

dense in X ′, and f restricts to an isomorphism U ′ → U .
(iii) If X is reduced (resp. irreducible, integral), one can take X ′ to have the same property.

Corollary (5.6.2). — Under the hypotheses (a) or (b) of (5.6.1), for X to be proper over
S it is necessary and sufficient that there exist a projective S-scheme X ′ and a surjective S-
morphism f : X ′ → X (which is then projective by (5.5.5, (v))). Moreover, f can be chosen
such that some dense open U ⊆ X is the isomorphic image of U ′ = f−1(U), with U ′ dense
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in X ′. If X is irreducible (resp. reduced), then X ′ can be chosen to have the same property;
thus if X and X ′ are irreducible, f is a birational morphism.

Corollary (5.6.3). — Let f : X → S make X a scheme of finite type over a locally Noe-
therian prescheme S. Then X is proper over S if and only if for every morphism of fi-
nite type S ′ → S, the base extension f(S′) is closed. It even suffices that this hold for
S ′ = An

S = S ⊗Z Z[t1, . . . , tn], for all n.


