SYNOPSIS OF MATERIAL FROM EGA CHAPTER II, §5

5. (QUASI—AFFINE7 QUASI-PROJECTIVE, PROPER AND PROJECTIVE MORPHISMS
5.1. Quasi-affine morphisms.

Definition (5.1.1). — A scheme is quasi-affine if it is isomorphic to a quasi-compact open
subscheme of an affine scheme. A morphism f: X — Y is quasi-affine if there exists a
covering of Y by open affines U, such that f~1(U,) is quasi-affine.

Every quasi-affine morphism is separated and quasi-compact. An affine morphism is quasi-
affine.

Recall that for any prescheme X, putting A = I'(X, OX), there is a canonical morphism
X — Spec(A).

Proposition (5.1.2). — Let X be quasi-compact or topologically Noetherian [or more gen-
erally, quasi-compact and quasi-separated (1V, 1.7.16)], A = I'(X,Ox). The following are
equivalent:

(a) X is quasi-affine.

(b) The canonical morphism u: X — Spec(A) is an open immersion.

(b’) The canonical morphism u is a homeomorphism of X onto its image in Spec(A).

(c) Ox is very ample for u.

(¢') Ox is ample.

(d) The Xy for f € A form a base of the topology on X.

(d') Those Xy which are affine cover X.

(e) Every quasi-coherent Ox-module is generated by its global sections.

(e') Every quasi-coherent ideal sheaf of finite type in Ox is generated by its global sections.

Observe that when these conditions hold, the affines Xy form a base of the topology, and
u is dominant.

Corollary (5.1.3). — If X is quasi-compact, and v: X — Y is a morphism to an affine
scheme Y, which is a homeomorphism of X onto an open subspace of Y, then X 1is quasi-

affine.

Corollary (5.1.4). — If X is quasi-affine, every invertible sheaf is very ample (relative to
the canonical morphism), and hence ample.

Corollary (5.1.5). — Let X be a quasi-compact prescheme. If there is an invertible sheaf
L on X such that L and L~ are both ample, then X is quasi-affine.

Proposition (5.1.6). — Let f: X — Y be a quasi-compact morphism. The following are
equivalent:

(a) f is quasi-affine.

(b) A= f.(Ox) is quasi-coherent, and the canonical Y -morphism u: X — Spec(A) is an
open 1mmersion.

(b') Like (b), but only assuming u is a homeomorphism onto its image.

(c) Ox is very ample relative to f.
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(¢') Ox is ample relative to f.

(d) f is separated, and for every quasi-coherent Ox-module F, o: f*(f.(F)) — F is
surjective.

Moreover, if f is quasi-affine, then every invertible sheaf on X is very ample relative to

f.
Corollary (5.1.7). — Let f: X =Y be quasi-affine. For every open U CY, the restriction
Y U) = U of f is quasi-affine.

Corollary (5.1.8). — Let f: X — Y be quasi-compact, Y affine. Then f is quasi-affine
iff X is a quasi-affine scheme.

Corollary (5.1.9). — Let Y be a quasi-compact scheme, or a topologically Noetherian
prescheme [or more generally, a quasi-compact and quasi-separated prescheme/, f: X — Y
a morphism of finite type. If [ is quasi-affine, there is a quasi-coherent sub-Oy -algebra
B C A(X) = f.(Ox) of finite type such that the morphism X — Spec(B) corresponding to
B — A(X) (1.2.7) is an immersion. Moreover, every quasi-coherent subalgebra B’ C A(X)
containing B has the same property.

[By (3.1.7), this is special case of (3.8.4).]

Proposition (5.1.10). — (1) Any quasi-compact morphism X — Y which is a homeomor-
phism onto its image—in particluar, any closed immersion—is quasi-affine.

(i) The composite of of two quasi-affine morphisms is quasi-affine.

(iii) If f: X =Y is a quasi-affine S-morphism, any base extension f(gy is quasi-affine.

() If f and g are quasi-affine S-morphisms, so is f Xg g.

(v) If g o f is quasi-affine, and if g is separated or if X is topologically locally Noetherian,
then f is quasi-affine.

(vi) If f is quasi-affine, then so is freq-

Remark (5.1.11). — Given f: X = Y, g: Y — Z, (v) also holds under the alternative
assumption that X X Y is locally Noetherian.

Proposition (5.1.12). — Let f: X =Y be quasi-compact, g: X' — X quasi-affine. If L
is ample for f, then g*(L) is ample for fog.

5.2. Serre’s criterion.

Theorem (5.2.1). — (Serre’s criterion) Let X be a quasi-compact scheme or a topologically
Noetherian prescheme. The following are equivalent:

(a) X is affine.

(b) There exist elements f, € A = I'(X,Ox) such that the Xy, are affine and the f,
generate the unit ideal in A.

(¢c) (X, —) is an exact functor on the category of quasi-coherent Ox-modules.

(¢') T'(X,—) is exact on sequences 0 — F — F — F" — 0 such that F is a sub-Ox-
module of a finite-rank free sheaf O%.

(d) H' (X, F) =0 for every quasi-coherent Ox-module F.



(d’) Property (d) holds for every quasi-coherent ideal sheaf F.

(a)<(b) follows from (4.5.2).

(a)=(c)=(c’) by (I, 1.3.11). Given (c’), one shows first that sets X form a neighborhood
base at each closed point z € X, by letting x € U be a neighborhood, Z the ideal of X \ U,
7' the ideal of {z} N (X \ U), and applying (¢’) to 0 - Z' — Z — Z/I' — 0. Using
quasi-compactness and (0, 2.1.3), we get a covering of X by affines X. Applying (c’) to
the surjection O% = O defined by the f;’s shows that they generate the unit ideal, giving
(b).

(a)=(d)=-(d’) by the cohomology vanishing theorem for affine schemes, and (d’)=(c’)
by some applications of the long exact sequence of cohomology.

Corollary (5.2.2). — Let f: X — Y be a quasi-compact morphism, and assume X is
separated or topologically locally Noetherian [or assume f quasi-separated (IV, 1.7.18)]. The
following are equivalent:

(a) f is an affine morphism.

(b) f. is exact on quasi-coherent Ox-modules

(c) R*f.(F) =0 for every quasi-coherent Ox-module F.

(¢') Property (c) holds for quasi-coherent ideal sheaves F.

Corollary (5.2.3). — If f: X — Y is an affine morphism, then for all quasi-coherent F
on X, we have H'(Y, f.(F)) = H(X, F).

[Stated in EGA for ¢ = 1, but it holds for all i because Rf. = f. and RI'(X,—) =
RI(Y, =)o Rf.]

5.3. Quasi-projective morphisms.

Definition (5.3.1). — A morphism f: X — Y is quasi-projective (or X is a quasi-projective
scheme over Y') if f is of finite type and there exists an invertible Ox-module ample relative

to f.

Warning: this condition is not local on Y, even if X and Y are algebraic schemes over an
algebraicallly closed field.

A quasi-projective morphism is necessarily separated. If Y is quasi-compact, one can
replace “ample” with “very ample” (4.6.2 and 4.6.11).

Proposition (5.3.2). — Let Y be a quasi-compact scheme or a topologically Noetherian
prescheme [or more generallly, a quasi-compact and quasi-separated prescheme/. The follow-
g are equivalent:

(a) X is a quasi-projective Y -scheme.

(b) X 1is of finite type over Y, and there exists a quasi-coherent Oy -module £ of finite type
such that X is Y -isomorphic to a sub-prescheme of P(E).

(c) X is of finite type over Y, and there is a graded quasi-coherent Oy -algebra S such that
Sy is of finite type and generates S, and X is Y -isomorphic to a dense open subscheme of
Proj(S).



Corollary (5.3.3). — Let'Y be a quasi-compact scheme with an ample invertible sheaf L.
A Y-scheme X to is quasi-projective iff X is of finite type over Y and Y -isomorphic to a
sub-Y -scheme of some P¥,.

Proposition (5.3.4). — (i) Every quasi-affine morphism of finite type—in particular, every
quasi-compact 1mmersion—is quasi-projective.

(i) The composite of two quasi-projective morphisms is quasi-projective.

(i1i) Every base extension of a quasi-projective morphism is quasi-projective.

(iv) The product of two quasi-projectivce S-morphisms is quasi-projective.

(v) If g o f is quasi-projective, and g is separated or X is locally Noetherian, then f is
quasi-projective.

(vi) If f is quasi-projective, S0 1S freq-

Remark (5.3.5). — It is possible for fi.q but not f to be quasi-projective.
Corollary (5.3.6). — If X and X' are quasi-projective Y -schemes, then so is X | | X.

5.4. Proper and universally closed morphisms.

Definition (5.4.1). — A morphism f: X — Y is proper if it satisfies the two conditions:
(a) f is separated and of finite type.

(b) For every Y' — Y, the base extension fy): X xy Y’ = Y" is closed (I, 2.2.6).

We also say that X is a proper Y -scheme.

Properness is a local condition on Y. Clearly, a proper morphism is closed.

Proposition (5.4.2). — (i) Every closed immersion is proper.
(i1) The composite of two proper morphisms is proper.

(iii) Every base extension of a proper morphism is proper.
(iv) The product of two proper S-morphisms is proper.

Corollary (5.4.3). — Given f: X =Y, g: Y — Z, suppose go f is proper.
(i) If g is separated, then f is proper.
(i) If g is separated and of finite type, and f is surjective, then g is proper.

Corollary (5.4.4). — If X is proper over'Y, and S is a graded quasi-coherent Oy -algebra,
then every Y -morphism X — Proj(S) is proper, hence closed.

Corollary (5.4.5). — Let f: X — Y be a separated morphism of finite type. Let X;
(resp. Y;), i =1,...,n be closed subschemes of X (resp. Y), ji: X; — X, hi: Y; = Y the
inclusions. Suppose the underlying space of X is the union of the X;’s and that for each 1
there is a morphism f;: X; — Y; such that h;f; = fj;. Then f is proper if and only if each
fi is proper.

Corollary (5.4.6). — Let f be a separated morphism of finite type. Then f is proper if
and only if freqa is proper.

(5.4.7). If f: X — Y is aseparated morphism of finite type between Noetherian preschemes,
we can take X; in (5.4.5) to be the induced reduced subschemes of the irreducible components
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of X, and Y; the closures of their images. Then the verification that f is proper reduces to
that for each f;, which is a dominant morphism of integral preschemes.

Corollary (5.4.8). — Let f: X =Y be an S-morphism of S-schemes of finite type. Then
[ is proper if and only if figy is closed for every S-scheme S'.

Remark (5.4.9). — A morphism satifying (5.4.1 (b)) is called universally closed. In (5.4.2)
through (5.4.8) one can replace “proper” with “universally closed” and omit the finiteness
hypotheses.

(5.4.10). Let f: X — Y be a morphism of finite type. A closed subset Z C X is proper
over Y, or proper for f, if the restriction of f to a closed subscheme of X with underlying
space Z is proper. This doesn’t depend on the choice of closed subscheme, by (5.4.6).

If g: X’ — X is proper, then g~!(Z) is proper. If u: X — X" is any Y-morphism, where
X" is a Y-scheme of finite type, then u(Z) is proper.

In particular, if Z is a Y-proper subset of X, then Z N X’ is a Y-proper subset of X', for
any closed subscheme X’ C X; and if X is a sub-prescheme of a Y-scheme X" of finite type,
then Z is a Y-proper subset of X” (hence closed).

5.5. Projective morphisms.

Proposition (5.5.1). — Let X be a Y-prescheme. The following are equivalent:

(a) X is Y -isomorphic to a closed subscheme of P(E), where £ is a quasi-coherent Oy -
module of finite type.

(b) X is Y-isomorphic to Proj(S), where S is a graded quasi-coherent Oy -algebra such
that Sy is of finite type and generates S.

Definition (5.5.2). — If the conditions in (5.5.1) hold, X is projective over Y. A morphism
f: X =Y is projective if it makes X a projective Y-scheme.
Clearly if f: X — Y is projective, there exists an Ox-module very ample for f.

Theorem (5.5.3). — (i) Every projective morphism is quasi-projective and proper.

(i) Conversely, if Y is a quasi-compact scheme, or a topologically Noetherian prescheme
[or more generally, if Y is quasi-compact and quasi-separated (IV, 1.7.19)], then every proper
quasi-projective morphism s projective.

(i) follows from (5.3.2) and (5.4.4).

Projective morphisms are preserved by base extension, so for (i) we must show that projec-
tive morphisms are closed. This reduces to the case Y = Spec(A), X = Proj(S), where S'is a
graded A-algebra generated by finitely many elements of S;. Using f~!(y) = Proj(S®1k(y))
and Nakayama’s lemma, one proves that f(X) = (), Supp(S,), which is closed. Since any
closed X’ C X is again projective over Y, this shows that f is a closed morphism.

Remarks (5.5.4). — (i) Suppose 1° f: X — Y is proper, 2° there exists an Ox-module
L very ample for f, and 3° the quasi-coherent Oy-module €& = f.(£) is of finite type. Then
f is projective, by (4.4.4) and (5.4.4). In volume III, §3, we shall see that if Y is locally
Noetherian, then 1° and 2° imply 3°, hence they characterize projective morphisms. If Y
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is quasi-compact, one can replace 2° by the existence of an Ox-module ample relative to f
(4.6.11).

(i) Let Y be a quasi-compact scheme possessing an ample Oy-module. Then a Y-scheme
X is projective iff it is Y-isomorphic to a closed subscheme of P} for some r, by (5.3.3),
(5.4.4) and (5.5.3).

(iii) The proof of (5.5.3) shows that P}, — Y is always surjective.

(iv) There exist proper morphisms which are not quasi-projective. [The earliest counterex-
amples are due to Nagata. A simple class of more recent counterexamples is given by toric
varieties associated to non-polyhedral fans.|

Proposition (5.5.5). — (i) Every closed immersion is projective.

(i) If f: X =Y and g: Y — Z are projective, and Z is a quasi-compact scheme or a
topologically Noetherian prescheme [or Z is quasi-compact and quasi-separated], then g o f
18 projective.

(i1i) Every base extension of a projective morphism is projective.

(iv) The product of two projectivce S-morphisms is projective.

(v) If g o f is projective and g is separated, then f is projective.

(vi) If f is projective, 50 is freq.

Proposition (5.5.6). — If X, X' are projective Y -schemes, then so is X U X'.

Proposition (5.5.7). — Let X be a projective Y -scheme, L a Y -ample Ox-module. For
every global section f of L, X is affine over Y.

Corollary (5.5.8). — Let X be a prescheme, L an invertible Ox-module. For every global
section f of L, Xy is affine over X (in particular, Xy is affine if X is affine).
This can also be shown directly, without using (5.5.7).

5.6. Chow’s Lemma.

Theorem (5.6.1). — (Chow’s lemma) Let X be an S-scheme of finite type. Suppose that
either

(a) S is Noetherian; or

(b) S is a quasi-compact scheme, and X has finitely many irreducible components.

Then:

(i) There exists a projective and surjective S-morphism f: X' — X, where X’ is a quasi-
projective S-scheme.

(ii) X' and f can be chosen so that there is an open U C X such that U' = f~1(U) is
dense in X', and f restricts to an isomorphism U — U.

(i5i) If X is reduced (resp. irreducible, integral), one can take X' to have the same property.

Corollary (5.6.2). — Under the hypotheses (a) or (b) of (5.6.1), for X to be proper over
S it is necessary and sufficient that there exist a projective S-scheme X' and a surjective S-
morphism f: X' — X (which is then projective by (5.5.5, (v))). Moreover, f can be chosen
such that some dense open U C X 1is the isomorphic image of U' = f~Y(U), with U’ dense
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in X'. If X is irreducible (resp. reduced), then X' can be chosen to have the same property;
thus if X and X' are irreducible, f is a birational morphism.

Corollary (5.6.3). — Let f: X — S make X a scheme of finite type over a locally Noe-
therian prescheme S. Then X s proper over S if and only if for every morphism of fi-
nite type S’ — S, the base extension figy is closed. It even suffices that this hold for
S'= Al =S®zZ[t,... 1], for all n.



