Synopsis of material from EGA Chapter II, §4

4. PROJECTIVE BUNDLES. AMPLE SHEAVES

4.1. Definition of projective bundles.

Definition (4.1.1). — Let $\mathbf{S}(\mathcal{E})$ be the symmetric algebra of a quasi-coherent \mathcal{O}_Y -module. The projective bundle over Y defined by \mathcal{E} is the Y-scheme $\mathbf{P}(\mathcal{E}) = \operatorname{Proj}(\mathbf{S}(\mathcal{E}))$. The twisting sheaf $\mathcal{O}(1)$ on $\mathbf{P}(\mathcal{E})$ is its fundamental sheaf.

If Y is affine, $\mathcal{E} = \widetilde{E}$, we also write $\mathbf{P}(E)$. If $\mathcal{E} = \mathcal{O}_Y^n$, we put $\mathbf{P}_Y^{n-1} = \mathbf{P}(\mathcal{E})$, also denoted \mathbf{P}_A^{n-1} if Y = Spec(A).

(4.1.2). A surjective homomorphism $\mathcal{E} \to \mathcal{F}$ induces a closed immersion $j: Q = \mathbf{P}(\mathcal{F}) \hookrightarrow \mathbf{P}(\mathcal{E}) = P$, such that $j^* \mathcal{O}_P(n) = \mathcal{O}_Q(n)$ [(3.6.2–3)].

(4.1.3). Given a morphism $\psi: Y' \to Y$, we have $P' = \mathbf{P}(\psi^* \mathcal{E}) = \mathbf{P}(\mathcal{E}) \otimes_Y Y'$, and $\mathcal{O}_{P'}(n) = \mathcal{O}_P(n) \otimes_Y \mathcal{O}_{Y'}$ [(3.5.3-4)].

Proposition (4.1.4). — If \mathcal{L} is invertible, we have an isomorphism $i: P = \mathbf{P}(\mathcal{E}) \to \mathbf{P}(\mathcal{E} \otimes \mathcal{L}) = Q$, and $i^*\mathcal{O}_Q(n) = \mathcal{O}_P(n) \otimes_Y \mathcal{L}^{\otimes n}$ [(3.1.8 (iii)), (3.2.10)].

(4.1.5). Let $p: P = \mathbf{P}(\mathcal{E}) \to Y$ be the structure morphism. Since $\mathcal{E} = \mathbf{S}(\mathcal{E})_1$, we have canonical homomorphisms $\alpha_1: \mathcal{E} \to p_*\mathcal{O}_P(1)$ (3.3.2) and [by (0, 4.4.3)]

(4.1.5.1) $\alpha_1^{\sharp} \colon p^*(\mathcal{E}) \to \mathcal{O}_P(1).$

Proposition (4.1.6). — The canonical homomorphism (4.1.5.1) is surjective [(3.2.4)].

4.2. Morphisms from a prescheme to a projective bundle.

(4.2.1). Keep the notation of (4.1.5). Let $q: X \to Y$ be a Y-prescheme, $r: X \to P$ a Y-morphism. Then $\mathcal{L}_r = r^* \mathcal{O}_P(1)$ is an invertible sheaf on X, and we deduce from (4.1.5.1) a canonical surjection

(4.2.1.1)
$$\phi_r \colon q^*(\mathcal{E}) \to \mathcal{L}_r.$$

Suppose Y = Spec(A), $\mathcal{E} = \widetilde{E}$, $f \in E$, so $r^{-1}(D_+(f)) = X_{\phi_r^\flat(f)}$ by (2.6.3), $U = \text{Spec}(B) \subseteq X_{\phi_r^\flat(f)}$. On U, r corresponds to a ring homomorphism $S_{(f)} \to B$, where $S = \mathbf{S}(E)$. We have $q^*(\mathcal{E})|U = (E \otimes_A B)^{\widetilde{}}$ and $\mathcal{L}_r|U = \widetilde{L}_r$, where $L_r = S(1)_{(f)} \otimes_{S_{(f)}} B$. Then ϕ_r corresponds to $E \otimes_A B \to L_r$ given by $x \otimes 1 \mapsto (f/1) \otimes (x/f)$.

(4.2.2). Conversely, suppose given $q: X \to Y$, an invertible \mathcal{O}_X -module \mathcal{L} , and a homomorphism $\phi: q^*(\mathcal{E}) \to \mathcal{L}$. Then we get an \mathcal{O}_X -algebra homomorphism $\psi: q^*(\mathbf{S}(\mathcal{E})) \to \mathbf{S}(\mathcal{L})$, inducing a Y-morphism $r_{\mathcal{L},\psi}: G(\psi) \to \mathbf{P}(\mathcal{E})$ as in (3.7.1). If ϕ is sujective, then so is ψ , and $r_{\mathcal{L},\psi}$ is defined on all of X.

Proposition (4.2.3). — Given $q: X \to Y$ and a quasi-coherent \mathcal{O}_Y -module \mathcal{E}, Y -morphisms $r: X \to \mathbf{P}(\mathcal{E})$ correspond bijectively to equivalence classes of surjective \mathcal{O}_X -module homomorphisms $\phi: q^*(\mathcal{E}) \to \mathcal{L}$ with \mathcal{L} invertible, where $(\mathcal{L}, \phi), (\mathcal{L}, \phi')$ are equivalent if there is an isomorphism $\tau: \mathcal{L} \to \mathcal{L}'$ such that $\phi' = \tau \circ \phi$.

Theorem (4.2.4). — The set of Y-sections of $\mathbf{P}(\mathcal{E})$ corresponds bijectively with the set of quasi-coherent subsheaves $\mathcal{F} \subseteq \mathcal{E}$ such that \mathcal{E}/\mathcal{F} is invertible. [Special case of (4.2.3) with X = Y.]

If Y = Spec(k) this identifies the k-points of \mathbf{P}_k^{n-1} with the set of codimension-1 subspaces $F \subseteq k^n$.

Remark (4.2.5). — Given a quasi-coherent sheaf \mathcal{E} on Y, we can assign to each Yprescheme $X \xrightarrow{q} Y$ the set of quasi-coherent subsheaves $\mathcal{F} \subseteq q^*(\mathcal{E})$ such that $q^*(\mathcal{E})/\mathcal{F}$ is
invertible. If $\psi: X' \to X$ is a Y-morphism, then $\psi^* \mathcal{F}$ is a subsheaf of $(q\psi)^* \mathcal{E}$ with the same
property, making this assignment a functor from Y-preschemes to sets. Proposition (4.2.3)
says that $\mathbf{P}(\mathcal{E})$ represents this functor.

[EGA says at this point that we will see later how to define Grassmann schemes in a similar manner, but no later section covers this.]

Corollary (4.2.6). — Suppose that every invertible \mathcal{O}_Y -module is trivial. Let $A = \Gamma(Y, \mathcal{O}_Y)$, and $V = \operatorname{Hom}_{\mathcal{O}_Y}(\mathcal{E}, \mathcal{O}_Y)$, regarded as an A-module. Let V^* be the subset of surjections in V, A^* the group of units in A. Then the set of Y-sections of $\mathbf{P}(\mathcal{E})$ is identified with V^*/A^* .

The hypothesis holds for any local scheme Y (I, 2.4.8). For any extension K of k(y), the set of K-points of the fiber $p^{-1}(y)$ of $\mathbf{P}(\mathcal{E})$ is identified (4.1.3.1) with the projective space of codimension-1 subspaces in the vector space $\mathcal{E}(y) \otimes_{k(y)} K$, where $\mathcal{E}(y) = \mathcal{E} \otimes_{\mathcal{O}_Y} k(y) = \mathcal{E}/\mathfrak{m}_y \mathcal{E}$.

If Y = Spec(A) and all invertible \mathcal{O}_Y -modules are trivial [e.g., if A is a UFD], then when $\mathcal{E} = \mathcal{O}_Y^n$, we have $V = A^n$ in (4.2.6), V^* consists of systems (f_1, \ldots, f_n) which generate the unit ideal in A, and two such define the same Y-section of \mathbf{P}_A^{n-1} if they differ by multiplication by a unit of A.

Thus $\mathbf{P}(\mathcal{E})$ generalizes the classical concept of projective space.

Remark (4.2.7). — [Promising to give details in a future Chapter V, EGA briefly discusses here how the Picard group of invertible sheaves on $\mathbf{P}(\mathcal{E})$ is related to that of Y, and how it follows that locally the automorphism group of $\mathbf{P}(\mathcal{E})$ over Y looks like $\mathcal{A}ut(\mathcal{E})/\mathcal{O}_Y^*$.]

(4.2.8). Keep the notation of (4.2.1). If $u: X' \to X$ is a morphism, and $r: X \to P$ corresponds to $\phi: q^*(\mathcal{E}) \to \mathcal{L}$, then $r \circ u$ corresponds to $u^*(\phi)$.

(4.2.9). Suppose $v: \mathcal{E} \to \mathcal{F}$ is surjective, and let $j: \mathbf{P}(\mathcal{F}) \to \mathbf{P}(\mathcal{E})$ be the corresponding closed immersion (4.1.2). If $r: X \to \mathbf{P}(\mathcal{F})$ corresponds to $\phi: q^*(\mathcal{F}) \to \mathcal{L}$, then $j \circ r$ corresponds to $\phi \circ q^*(v)$.

(4.2.10). Given $\psi \colon Y' \to Y$ and $r \colon X \to P$, the base extension $r_{(Y')} \colon X_{(Y')} \to P' = \mathbf{P}(\mathcal{E}')$, where $\mathcal{E}' = \psi^*(\mathcal{E})$, corresponds to $\phi_{(Y')} = \phi \otimes_{\mathcal{O}_Y} 1_{\mathcal{O}_{Y'}}$.

4.3. The Segre morphism.

(4.3.1). Let \mathcal{E} , \mathcal{F} be quasi-coherent \mathcal{O}_Y -modules. Set $P_1 = \mathbf{P}(\mathcal{E})$, $P_2 = \mathbf{P}(\mathcal{F})$, with structure morphisms $p_i: P_i \to Y$. Let $Q = P_1 \times_Y P_2$, with projections $q_i: Q \to P_i$. Let $\mathcal{L} = \mathcal{O}_{P_1}(1) \otimes_Y \mathcal{O}_{P_2}(1) = q_1^*(\mathcal{O}_{P_1}(1)) \otimes_{\mathcal{O}_Q} q_2^*(\mathcal{O}_{P_2}(1))$, an invertible \mathcal{O}_Q -module. Then $r = p_1 \circ q_1 = p_2 \circ q_2$ is the structure morphism $Q \to Y$, and the canonical surjections $p_i^*(\mathcal{E}) \to$ $\mathcal{O}_{P_i}(1)$ give rise to a surjection

$$(4.3.1.1) \qquad \qquad s\colon r^*(\mathcal{E}\otimes_{\mathcal{O}_Y}\mathcal{F})\to\mathcal{L}.$$

By (4.2.2) this induces a morphism, the Segre morphism

(4.3.1.2)
$$\zeta \colon \mathbf{P}(\mathcal{E}) \times_{Y} \mathbf{P}(\mathcal{F}) \to \mathbf{P}(\mathcal{E} \otimes_{\mathcal{O}_{Y}} \mathcal{F}).$$

Set $P = \mathbf{P}(\mathcal{E} \otimes_{\mathcal{O}_Y} \mathcal{F})$. Making things explicit for Y affine, $\mathcal{E} = \widetilde{E}$, $\mathcal{F} = \widetilde{F}$, one shows that

$$\zeta^{-1}(P_{x \otimes y}) = (P_1)_x \times_Y (P_2)_y,$$

which comes down to the following easy lemma.

Lemma (4.3.2). — Given A-algebras B, B', and elements $t \in B$, $t \in B'$, one has $D(t \otimes t') = D(t) \times_Y D(t')$ in Spec(B) \times_A Spec(B').

Proposition (4.3.3). — The Segre morphism is a closed immersion.

(4.3.4). The Segre morphism is functorial with respect to closed immersions $\mathbf{P}(\mathcal{E}') \hookrightarrow \mathbf{P}(\mathcal{E}), \mathbf{P}(\mathcal{F}') \hookrightarrow \mathbf{P}(\mathcal{F})$ induced by surjections $\mathcal{E} \to \mathcal{E}', \mathcal{F} \to \mathcal{F}'$.

(4.3.5). The Segre morphism commutes with base extension by $\psi: Y' \to Y$.

Remark (4.3.6). — There is also a canonical closed immersion of the disjoint union $\mathbf{P}(\mathcal{E}) \coprod \mathbf{P}(\mathcal{F})$ into $\mathbf{P}(\mathcal{E} \oplus \mathcal{F})$.

4.4. Immersions into projective bundles. Very ample sheaves.

Proposition (4.4.1). — Let Y be a quasi-compact scheme or a prescheme with Noetherian underlying space, $q: X \to Y$ a morphism of finite type, \mathcal{L} an invertible \mathcal{O}_X -module.

(i) Let S be a graded quasi-coherent \mathcal{O}_Y -algebra, and $\psi: q^*(S) \to \mathbf{S}(\mathcal{L})$ a graded \mathcal{O}_X algebra homomorphism. Then $r_{\mathcal{L},\psi}$ is an everywhere defined immersion iff there exist n and a quasi-coherent submodule \mathcal{E} of finite type in \mathcal{S}_n , such that the induced homomorphism $q^*(\mathcal{E}) \to \mathcal{L}^{\otimes n}$ is surjective and the corresponding morphism $r: X \to \mathbf{P}(\mathcal{E})$ is an immersion.

(ii) Let \mathcal{F} be a quasi-coherent \mathcal{O}_Y -module and $\phi: q^*(\mathcal{F}) \to \mathcal{L}$ a surjection. Then $r_{\mathcal{L},\phi}$ is an immersion if and only if there is a quasi-coherent sub-sheaf $\mathcal{E} \subseteq \mathcal{F}$ of finite type such that $\phi': q^*(\mathcal{E}) \to \mathcal{L}$ is surjective and $r_{\mathcal{L},\phi'}$ is an immersion.

[The proof uses (3.8.5).]

Definition (4.4.2). — Given $q: X \to Y$, an invertible \mathcal{O}_X -module \mathcal{L} is very ample (for q) if there exists a quasi-coherent \mathcal{O}_Y -module \mathcal{E} and an immersion of Y-schemes $i: X \hookrightarrow P = \mathbf{P}(\mathcal{E})$ such that $\mathcal{L} \cong i^* \mathcal{O}_P(1)$.

Equivalently, there exists a surjection $\phi: q^*(\mathcal{E}) \to \mathcal{L}$ such that $r_{\mathcal{L},\phi}$ is an immersion. Note that the existence of a very ample sheaf entails that q must be *separated* (3.1.3).

Corollary (4.4.3). — If $\mathcal{L} \cong i^* \mathcal{O}_P(1)$ for an immersion $i: X \to P = \operatorname{Proj}(\mathcal{S})$, where \mathcal{S} is a graded quasi-coherent \mathcal{O}_Y -algebra generated by \mathcal{S}_1 , then \mathcal{L} is very ample.

Proposition (4.4.4). — Suppose $q: X \to Y$ quasi-compact, \mathcal{L} an invertible \mathcal{O}_X -module. The following are equivalent:

(a) \mathcal{L} is very ample for q;

(b) $q_*(\mathcal{L})$ is quasi-coherent, the canonical homomorphism $\sigma : q^*(q_*(\mathcal{L})) \to \mathcal{L}$ is surjective, and $r_{\mathcal{L},\sigma} : X \to \mathbf{P}(q_*(\mathcal{L}))$ is an immersion.

Recall that since q is quasi-compact, $q_*(\mathcal{L})$ is quasi-coherent if q is separated.

Corollary (4.4.5). — Suppose q quasi-compact. If there exists an open covering (U_{α}) of Y such that $\mathcal{L}|q^{-1}(U_{\alpha})$ is very ample relative to U_{α} , for all α , then \mathcal{L} is very ample.

Proposition (4.4.6). — Let Y be a quasi-compact scheme or a prescheme with Noetherian underlying space, $q: X \to Y$ a morphism of finite type, \mathcal{L} an invertible \mathcal{O}_X -module. Then the conditions of (4.4.4) are also equivalent to:

(a') There exists an \mathcal{O}_Y -module \mathcal{E} of finite type and a surjection $\phi: q^*(\mathcal{E}) \to \mathcal{L}$ such that $r_{\mathcal{L},\phi}$ is an immersion.

(b') There exists a quasi-coherent sub- \mathcal{O}_Y -module $\mathcal{E} \subseteq q_*(\mathcal{L})$ of finite type with the property in (a').

Corollary (4.4.7). — Suppose Y is a quasi-compact scheme or a Noetherian prescheme. If \mathcal{L} is very ample for q, then there exists a graded quasi-coherent \mathcal{O}_Y -algebra \mathcal{S} , such that \mathcal{S}_1 is of finite type and generates \mathcal{S} , and an open, dominant Y-immersion $i: X \to P = \operatorname{Proj}(\mathcal{S})$ such that $\mathcal{L} \cong i^* \mathcal{O}_P(1)$.

Proposition (4.4.8). — Let \mathcal{L} be very ample for $q: X \to Y$, \mathcal{L}' any invertible \mathcal{O}_X -module such that there exists a quasi-coherent \mathcal{O}_Y -module \mathcal{E} and a surjection $q^*(\mathcal{E}) \to \mathcal{L}'$. Then $\mathcal{L} \otimes_{\mathcal{O}_X} \mathcal{L}'$ is very ample.

Corollary (4.4.9). — Let $q: X \to Y$ be a morphism.

(i) Given an invertible \mathcal{O}_X -module \mathcal{L} and invertible \mathcal{O}_Y -module \mathcal{M} , \mathcal{L} is very ample if and only if $\mathcal{L} \otimes_{\mathcal{O}_X} q^*(\mathcal{M})$ is.

(ii) If \mathcal{L} and \mathcal{L}' are very ample, then so is $\mathcal{L} \otimes_{\mathcal{O}_X} \mathcal{L}'$; in particular $\mathcal{L}^{\otimes n}$ is very ample for all n > 0.

Proposition (4.4.10). — (i) Every invertible \mathcal{O}_Y -module \mathcal{L} is very ample for the identity map $1_Y \colon Y \to Y$.

(i') Given $f: X \to Y$ and an immersion $j: X' \to X$, if \mathcal{L} is very ample for f, then $j^*\mathcal{L}$ is very ample for $f \circ j$.

(ii) Let Z be quasi-compact, $f: X \to Y$ a morphism of finite type, $g: Y \to Z$ a quasicompact morphism, \mathcal{L} very ample for f, \mathcal{K} very ample for g. Then there exists $n_0 > 0$ such that $\mathcal{L} \otimes f^*(\mathcal{K}^{\otimes n})$ is very ample for $g \circ f$, for all $n \ge n_0$.

(iii) Given $f: X \to Y$, $g: Y' \to Y$, if \mathcal{L} is very ample for f, then $\mathcal{L} \otimes_Y \mathcal{O}_{Y'}$ is very ample for $f_{(Y')}$.

(iv) Given two S-morphisms $f_i: X_i \to Y_i$ (i = 1, 2), if \mathcal{L}_i is very ample for f_i , then $\mathcal{L}_1 \otimes_S \mathcal{L}_2$ is very ample for $f_1 \times_S f_2$.

(v) Given $f: X \to Y$, $g: Y \to Z$, if \mathcal{L} is very ample for $g \circ f$, then \mathcal{L} is very ample for f.

(vi) If \mathcal{L} is very ample for $f: X \to Y$, then $j^*\mathcal{L}$ is very ample for f_{red} , where $j: X_{\text{red}} \to X$ is the canonical injection.

[The proof of (ii) uses the following lemma, proved in §4.5]

Lemma (4.4.10.1). — Let Z be a quasi-compact scheme or a prescheme with Noetherian underlying space, $g: Y \to Z$ a quasi-compact morphism, \mathcal{K} very ample for g, \mathcal{E} a quasicoherent \mathcal{O}_Y -module of finite type. Then there exists m_0 such that for all $m \ge m_0, \mathcal{E}$ is isomorphic to a quotient of an \mathcal{O}_Y -module of the form $g^*(\mathcal{F}) \otimes_{\mathcal{O}_Y} \mathcal{K}^{\otimes -m}$, where \mathcal{F} is a quasi-coherent \mathcal{O}_Z -module of finite type (depending on m).

[Then it is shown that if $f^*(\mathcal{E}) \to \mathcal{L}$ induces an immersion $X \to \mathbf{P}(\mathcal{E})$, and there is a quasi-coherent \mathcal{O}_Z -module \mathcal{F} and a surjection $g^*(\mathcal{F}) \to \mathcal{E} \otimes \mathcal{K}^{\otimes m}$, then $\mathcal{L} \otimes \mathcal{K}^{\otimes (m+1)}$ is very ample for $X \to Z$.]

Proposition (4.4.11). — Let $X'' = X \bigsqcup X'$ be a prescheme disjoint union, $f'': X'' \to Y$ a morphism restricting to morphisms $f: X \to Y$, $f': X' \to Y$. Let \mathcal{L} , \mathcal{L}' be invertible \mathcal{O}_X , $\mathcal{O}_{X'}$ -modules, \mathcal{L}'' the invertible $\mathcal{O}_{X''}$ -module restricting to \mathcal{L} , \mathcal{L}' . Then \mathcal{L}'' is very ample iff \mathcal{L} and \mathcal{L}' are very ample.

4.5. Ample sheaves.

(4.5.1). Let \mathcal{L} be an invertible \mathcal{O}_X -module. Then $S = \bigoplus_{n \ge 0} \Gamma(X, \mathcal{L}^{\otimes n})$ is a positively graded subring of $\Gamma_*(\mathcal{L})$ (0, 5.4.6). Let $p: X \to \operatorname{Spec}(\mathbb{Z})$ be the structure morphism. We have a canonical graded \mathcal{O}_X -algebra homomorphism $\varepsilon : p^*(\widetilde{S}) \to \mathbf{S}(\mathcal{L}) = \bigoplus_{n \ge 0} \mathcal{L}^{\otimes n}$ by adjointness of $p_* = \Gamma(X, -)$ and p^* . Then (3.7.1) provides a canonical morphism $\overline{G}(\varepsilon) \to \operatorname{Proj}(S)$.

When \mathcal{L} is understood, define $\mathcal{F}(n) = \mathcal{F} \otimes_{\mathcal{O}_X} \mathcal{L}^{\otimes n}$ for any \mathcal{O}_X -module \mathcal{F} .

Theorem (4.5.2). — Let X be a quasi-compact scheme or a prescheme with Noetherian underlying space, and \mathcal{L} , S as above. The following are equivalent:

(a) The sets X_f for homogeneous $f \in S_+$ form a base of the topology on X.

(a') Those X_f which are affine cover X.

(b) The canonical morphism $G(\varepsilon) \to \operatorname{Proj}(S)$ is defined on all of X and is a dominant open immersion.

 $(b') G(\varepsilon) \to \operatorname{Proj}(S)$ is defined on all of X and is a homeomorphism of X onto a subspace of $\operatorname{Proj}(S)$.

(c) For any quasi-coherent \mathcal{O}_X -module \mathcal{F} , let \mathcal{F}_n be the submodule of $\mathcal{F}(n)$ generated by its global sections on X. Then \mathcal{F} is the sum of its sub- \mathcal{O}_X -modules of the form $\mathcal{F}_n(-n)$, as n ranges over all positive integers.

(c') Property (c) holds for quasi-coherent sheaves of ideals in \mathcal{O}_X .

Moreover, given homogeneous elements (f_{α}) in S_+ such that $X_{f_{\alpha}}$ is affine, the canonical morphism $X \to \operatorname{Proj}(S)$ restricts to an isomorphism $\bigcup_{\alpha} X_{f_{\alpha}} \cong \bigcup_{\alpha} D_+(f_{\alpha}) \subseteq \operatorname{Proj}(S)$.

[Proof: The preimage of $D_+(f)$ is X_f , and $G(\varepsilon)$ is the union of these. On any affine $U \subseteq X$ such that $\mathcal{L}|U \cong \mathcal{O}_U$ is trivial we have $X_f \cap U \cong U_{f'}$ for a section f' of \mathcal{O}_U corresponding to f. So (b) \Rightarrow (b') \Rightarrow (a) \Rightarrow (a'). By (I, 9.3.1-2) and (3.8.2), (a') implies the "moreover,"

which together with (a') implies (b). (I, 9.3.1) gives (a) \Rightarrow (c), clearly (c) \Rightarrow (c'), and (c) \Rightarrow (a) by taking for any open $U \subseteq X$ an ideal \mathcal{J} such that $V(\mathcal{J})$ is the complement of U.]

Condition (b) implies that X is a *scheme*.

The proof also shows that those X_f which are affine form a base of the topology.

Definition (4.5.3). — An invertible \mathcal{O}_X -module \mathcal{L} is called *ample* if X is a quasi-compact scheme and the conditions in (4.5.2) hold.

By (a), if \mathcal{L} is ample, then so is $\mathcal{L}|U$ for any quasi-compact open subset $U \subseteq X$.

Corollary (4.5.4). — If \mathcal{L} is ample, $Z \subseteq X$ is a finite subset, and U is a neighborhood of Z, there exists n and $f \in \Gamma(X, \mathcal{L}^{\otimes n})$ such that X_f is an affine neighborhood of Z contained in U.

[This uses a lemma from commutative algebra, that if \mathfrak{p}_i are finitely many homogeneous prime ideals, not containing an ideal $I \subseteq S$, then there is a homogeneous element of I not contained in the union of the ideals \mathfrak{p}_i .]

Proposition (4.5.5). — Let X be a quasi-compact scheme or a prescheme with Noetherian underlying space. The conditions in (4.5.2) are also equivalent to the following:

(d) For every quasi-coherent \mathcal{O}_X -module \mathcal{F} of finite type, there exists n_0 such that $\mathcal{F}(n)$ is generated by its global sections for all $n \geq n_0$.

(d') Every such \mathcal{F} is isomorphic to a quotient of an \mathcal{O}_X -module of the form $\mathcal{L}^{\otimes (-n)} \otimes \mathcal{O}_X^k$. (d') Property (d') holds for quasi-coherent ideal sheaves of finite type in \mathcal{O}_X .

 $[(c') \Rightarrow (d) \Rightarrow (d') \Rightarrow (d'')$ are straightforward. $(d'') \Rightarrow (a)$ uses (9.4.9)]

Proposition (4.5.6). — Let X be a quasi-compact scheme, \mathcal{L} an invertible \mathcal{O}_X -module. (i) For n > 0, \mathcal{L} is ample iff $\mathcal{L}^{\otimes n}$ is ample.

(ii) Let \mathcal{L}' be invertible and assume that for every $x \in X$ there exists n > 0 and $s \in \Gamma(X, \mathcal{L}'^{\otimes n})$ such that $s(x) \neq 0$. Then \mathcal{L} ample implies $\mathcal{L} \otimes \mathcal{L}'$ ample.

Corollary (4.5.7). — The tensor product of ample \mathcal{O}_X -modules is ample.

Corollary (4.5.8). — If \mathcal{L} is ample, \mathcal{L}' invertible, there exists $n_0 > 0$ such that $\mathcal{L}^{\otimes n} \otimes \mathcal{L}'$ is ample for all $n \ge n_0$.

Remark (4.5.9). — In the [Picard group] $P \cong H^1(X, \mathcal{O}_X^*)$ of invertible sheaves on X, the ample sheaves form a subset P^+ such that

$$P_+ + P_+ \subseteq P_+, \quad P_+ - P_+ = P.$$

Hence P is a quasi-ordered abelian group with $P_+ \cup \{0\}$ its positive cone.

Proposition (4.5.10). — Let Y be affine, $q: X \to Y$ quasi-compact and separated, \mathcal{L} an invertible \mathcal{O}_X -module.

(i) If \mathcal{L} is very ample for q, then \mathcal{L} is ample.

(ii) Suppose q is of finite type. Then \mathcal{L} is ample iff the following equivalent conditions hold:

(e) There exists $n_0 > 0$ such that $\mathcal{L}^{\otimes n}$ is very ample for all $n \ge n_0$.

(e') $\mathcal{L}^{\otimes n}$ is very ample for some n > 0.

(4.5.10.1). Proof of Lemma (4.4.10.1). — Let $\mathcal{E}(n) = \mathcal{E} \otimes \mathcal{K}^{\otimes n}$. For large n, we want to find a quasi-coherent subsheaf $\mathcal{F} \subseteq g_*(\mathcal{E}(n))$ of finite type such that the canonical map $g^*(\mathcal{F}) \to \mathcal{E}(n)$ is surjective. By quasi-compactness and (9.4.7), we can reduce to the case that Z is affine. Then (4.5.10, (i)) and (4.5.5, (d)) give the result.

Corollary (4.5.11). — If Y is affine, $q: X \to Y$ separated and of finite type, \mathcal{L} ample, \mathcal{L}' invertible, there exists n_0 such that $\mathcal{L}^{\otimes n} \otimes \mathcal{L}'$ is very ample for q, for all $n \ge n_0$.

Remark (4.5.12). — It is not known whether $\mathcal{L}^{\otimes n}$ very ample implies the same for $\mathcal{L}^{\otimes (n+1)}$.

Proposition (4.5.13). — Let X be quasi-compact, $Z \subseteq X$ a closed sub-prescheme defined by a nilpotent sheaf of ideals, $j: Z \hookrightarrow X$ the inclusion. Then \mathcal{L} is ample iff $\mathcal{L}' = j^*(\mathcal{L})$ is ample.

[The proof relies on the following lemma, which in turn is proved using sheaf cohomology.]

Lemma (4.5.13.1). — In (4.5.13), suppose further that $\mathcal{J}^2 = 0$, and let $g \in \Gamma(Z, \mathcal{L}'^{\otimes n})$ be such that Z_g is affine. Then there exists m > 0 such that $g^{\otimes m} = j^*(f)$ for a global section $f \in \Gamma(X, \mathcal{L}^{\otimes mn})$.

Corollary (4.5.14). — Let X be a Noetherian scheme, $j: X_{red} \to X$ the inclusion. Then \mathcal{L} is ample if and only if $j^*\mathcal{L}$ is ample.

4.6. Relatively ample sheaves.

Definition (4.6.1). — Let $f: X \to Y$ be a quasi-compact morphism, \mathcal{L} an invertible \mathcal{O}_X module. We say \mathcal{L} is ample relative to f, or f-ample, or ample relative to Y (when f is understood) if there exists an open affine cover (U_{α}) of Y such that for every α , $\mathcal{L}|f^{-1}(U_{\alpha})$ is ample.

Note that the existence of a relatively ample sheaf entails that f must be separated (4.5.3).

Proposition (4.6.2). — Let $f: X \to Y$ be quasi-compact. If \mathcal{L} is very ample for f, then \mathcal{L} is ample relative to f.

Proposition (4.6.3). — Let $f: X \to Y$ be quasi-compact, \mathcal{L} an invertible \mathcal{O}_X -module, and put $\mathcal{S} = \bigoplus_{n \ge 0} f_*(\mathcal{L}^{\otimes n})$, a graded \mathcal{O}_Y -algebra. The following are equivalent: (a) \mathcal{L} is f-ample.

(b) S is quasi-coherent and the canonical homomorphism $\sigma: f^*(S) \to \mathbf{S}(\mathcal{L})$ (0, 4.4.3) induces an everywhere-defined, dominant open immersion $r_{\mathcal{L},\sigma}: X \hookrightarrow P = \operatorname{Proj}(S)$.

(b') f is separated, and the morphism $r_{\mathcal{L},\sigma}$ is everywhere defined and is a homeomorphism of X onto a subspace of $\operatorname{Proj}(\mathcal{S})$.

Moreover, when these conditions hold, the canonical homomorphism $r_{\mathcal{L},\sigma}^*(\mathcal{O}_P(n)) \to \mathcal{L}^{\otimes n}$ (3.7.9.1) is an isomorphism. Furthermore, for every quasi-coherent \mathcal{O}_X -module \mathcal{F} , if we put $\mathcal{M} = \bigoplus_{n>0} f_*(\mathcal{F} \otimes \mathcal{L}^{\otimes n})$, then $r_{\mathcal{L},\sigma}^*(\widetilde{\mathcal{M}}) \to \mathcal{F}$ (3.7.9.2) is an isomorphism.

Corollary (4.6.4). — Let (U_{α}) be an open affine covering of Y. Then \mathcal{L} is ample relative to f if and only if $\mathcal{L}|f^{-1}(U_{\alpha})$ is ample relative to U_{α} , for all α .

Corollary (4.6.5). — Let \mathcal{K} be an invertible \mathcal{O}_Y -module. Then \mathcal{L} is f-ample iff $\mathcal{L} \otimes f^*(\mathcal{K})$ is.

Corollary (4.6.6). — Suppose Y affine. Then \mathcal{L} is Y-ample iff it is ample.

Corollary (4.6.7). — Let $f: X \to Y$ be a quasi-compact morphism. Suppose there exists a quasi-coherent \mathcal{O}_Y -module \mathcal{E} and a morphism $g: X \to P = \operatorname{Proj}(\mathcal{E})$ which is a homeomorphism of X onto a subspace of P. Then $\mathcal{L} = g^*(\mathcal{O}_P(1))$ is f-ample.

Proposition (4.6.8). — Let X be a quasi-compact scheme or a prescheme with Noetherian underlying space, $f: X \to Y$ a quasi-compact, separated morphism. An invertible \mathcal{O}_X -module \mathcal{L} is f-ample if and only if the following equivalent conditions hold:

(c) For every \mathcal{O}_X -module \mathcal{F} of finite type, there exists $n_0 > 0$ such that the canonical homomorphism $\sigma \colon f^*(f_*(\mathcal{F} \otimes \mathcal{L}^{\otimes n})) \to \mathcal{F} \otimes \mathcal{L}^{\otimes n}$ is surjective for all $n \ge n_0$.

(c) Property (c) holds for all $\mathcal{F} = \mathcal{J} \subseteq \mathcal{O}_X$ a quasi-coherent ideal sheaf of finite type.

Proposition (4.6.9). — Let $f: X \to Y$ be a quasi-compact morphism, \mathcal{L} an invertible \mathcal{O}_X -module.

(i) Let n > 0. Then \mathcal{L} is f-ample iff $\mathcal{L}^{\otimes n}$ is.

(ii) Let \mathcal{L}' be an invertible \mathcal{O}_X -module such that $\sigma: f^*(f_*(\mathcal{L}'^{\otimes n})) \to \mathcal{L}'^{\otimes n}$ for some n > 0. Then if \mathcal{L} is f-ample, so is $\mathcal{L} \otimes \mathcal{L}'$.

Corollary (4.6.10). — The tensor product of f-ample \mathcal{O}_X -module is f-ample.

Proposition (4.6.11). — Let Y be quasi-compact, $f: X \to Y$ a morphism of finite type, \mathcal{L} an invertible \mathcal{O}_X -module. Then \mathcal{L} is ample iff the following equivalent conditions hold:

(d) There exists $n_0 > 0$ such that $\mathcal{L}^{\otimes n}$ is very ample for f, for all $n \ge n_0$.

(d') There exists n > 0 such that $\mathcal{L}^{\otimes n}$ is very ample for f.

Corollary (4.6.12). — Let Y be quasi-compact, $f: X \to Y$ of finite type, \mathcal{L} , \mathcal{L}' invertible \mathcal{O}_X -modules. If \mathcal{L} is f-ample, there exists n_0 such that $\mathcal{L}^{\otimes n} \otimes \mathcal{L}'$ is very ample for f, for all $n \geq n_0$.

Proposition (4.6.13). — (i) Every invertible \mathcal{O}_Y -module \mathcal{L} is ample relative to the identity map $1_Y \colon Y \to Y$.

(i') Let $f: X \to Y$ be quasi-compact, $j: X' \to X$ a quasi-compact morphism which is a homeomorphism of X' onto a subspace of X. If \mathcal{L} is f-ample, then $j^*\mathcal{L}$ is ample relative to $f \circ j$.

(ii) Let Z be quasi-compact, $f: X \to Y$, $g: Y \to Z$ quasi-compact morphisms, \mathcal{L} f-ample, \mathcal{K} g-ample. Then there exists $n_0 > 0$ such that $\mathcal{L} \otimes f^*(\mathcal{K}^{\otimes n})$ is ample relative to $g \circ f$, for all $n \ge n_0$.

(iii) Let $f: X \to Y$ be quasi-compact $g: Y' \to Y$ any morphism. If \mathcal{L} is f-ample, then $\mathcal{L} \otimes_Y \mathcal{O}_{Y'}$ is ample relative to $f_{(Y')}$.

(iv) Let $f_i: X_i \to Y_i$ (i = 1, 2) be quasi-compact S-morphisms. If \mathcal{L}_i is ample relative to f_i , then $\mathcal{L}_1 \otimes_S \mathcal{L}_2$ is ample relative to $f_1 \times_S f_2$.

(v) Let $f: X \to Y$, $g: Y \to Z$, be such that $g \circ f$ is quasi-compact. Assume that g is separated, or that X has locally Noetherian underlying space. If \mathcal{L} is ample relative to $g \circ f$, then \mathcal{L} is f-ample.

(vi) Let $f: X \to Y$ be quasi-compact, $j: X_{red} \hookrightarrow X$ the inclusion. If \mathcal{L} is f-ample, then $j^*\mathcal{L}$ is ample relative to f_{red} .

[Assertions (i), (i'), (iii) and (iv) imply the rest; (i) is trivial from (4.4.10, (i)) and (4.6.2). The others are proved using the following lemma.]

Lemma (4.6.13.1). — (i) Let $u: \mathbb{Z} \to S$ be a morphism \mathcal{L} an invertible \mathcal{O}_S -module, $\mathcal{L}' = u^*(\mathcal{L}), s \in \Gamma(S, \mathcal{L}), s' = u^*(s)$. Then $Z_{s'} = u^{-1}(S_s)$.

(ii) Let Z, Z' be S-preschemes, $T = Z \times_S Z'$, p, p' the projections, \mathcal{L} (resp. \mathcal{L}) and invertible \mathcal{O}_Z -module (resp. $\mathcal{O}_{Z'}$ -module), $t \in \Gamma(Z, \mathcal{L})$, $t' \in \Gamma(Z', \mathcal{L}')$, $s = p^*(t)$, $s' = p'^*(t')$. Then $T_{s \otimes s'} = Z_t \times_S Z'_{t'}$.

Remark (4.6.14). — In (ii) it need not be the case that $\mathcal{L} \otimes f^*(\mathcal{K})$ is ample relative to $g \circ f$. Were this so, one could take $\mathcal{L}' = \mathcal{L} \otimes f^*(\mathcal{K}^{-1})$ in the place of \mathcal{L} and conclude that \mathcal{L} is ample relative to $g \circ f$, for any invertible \mathcal{O}_X -module \mathcal{L} , which is clearly false (suppose g were the identity!).

Proposition (4.6.15). — Let $f: X \to Y$ be quasi-compact, $\mathcal{J} \subseteq \mathcal{O}_X$ a locally nilpotent quasi-coherent ideal sheaf, $j: Z = V(\mathcal{J}) \hookrightarrow X$ the inclusion of the closed subscheme defined by \mathcal{J} . Then \mathcal{L} is ample for f if and only if $j^*(\mathcal{L})$ is ample for $f \circ j$.

Corollary (4.6.16). — Let X be locally Noetherian, $f: X \to Y$ quasi-compact, $j: X_{red} \hookrightarrow X$ the inclusion. Then \mathcal{L} is ample for f if and only if $j^*(\mathcal{L})$ is ample for f_{red} .

Proposition (4.6.17). — With the notation and hypotheses of (4.4.11), \mathcal{L}'' is ample relative to f'' iff \mathcal{L} is ample relative to f and \mathcal{L}' is ample relative to f'.

Proposition (4.6.18). — Let Y be quasi-compact, S a graded quasi-coherent \mathcal{O}_Y -algebra of finite type, $X = \operatorname{Proj}(S)$, $f: X \to Y$ the structure morphism. Then f is of finite type, and $\mathcal{O}_X(d)$ is invertible and f-ample for some d > 0.