
Synopsis of material from EGA Chapter II, §4

4. Projective bundles. Ample sheaves

4.1. Definition of projective bundles.

Definition (4.1.1). — Let S(E) be the symmetric algebra of a quasi-coherent OY -module.
The projective bundle over Y defined by E is the Y -scheme P(E) = Proj(S(E)). The twisting
sheaf O(1) on P(E) is its fundamental sheaf.

If Y is affine, E = Ẽ, we also write P(E). If E = OnY , we put Pn−1
Y = P(E), also denoted

Pn−1
A if Y = Spec(A).

(4.1.2). A surjective homomorphism E → F induces a closed immersion j : Q = P(F) ↪→
P(E) = P , such that j∗OP (n) = OQ(n) [(3.6.2–3)].

(4.1.3). Given a morphism ψ : Y ′ → Y , we have P ′ = P(ψ∗E) = P(E)⊗Y Y ′, and OP ′(n) =
OP (n)⊗Y OY ′ [(3.5.3–4)].

Proposition (4.1.4). — If L is invertible, we have an isomorphism i : P = P(E)→ P(E ⊗
L) = Q, and i∗OQ(n) = OP (n)⊗Y L⊗n [(3.1.8 (iii)), (3.2.10)].

(4.1.5). Let p : P = P(E) → Y be the structure morphism. Since E = S(E)1, we have
canonical homomorphisms α1 : E → p∗OP (1) (3.3.2) and [by (0, 4.4.3)]

(4.1.5.1) α]1 : p∗(E)→ OP (1).

Proposition (4.1.6). — The canonical homomorphism (4.1.5.1) is surjective [(3.2.4)].

4.2. Morphisms from a prescheme to a projective bundle.
(4.2.1). Keep the notation of (4.1.5). Let q : X → Y be a Y -prescheme, r : X → P a

Y -morphism. Then Lr = r∗OP (1) is an invertible sheaf on X, and we deduce from (4.1.5.1)
a canonical surjection

(4.2.1.1) φr : q∗(E)→ Lr.

Suppose Y = Spec(A), E = Ẽ, f ∈ E, so r−1(D+(f)) = Xφ[r(f)
by (2.6.3), U = Spec(B) ⊆

Xφ[r(f)
. On U , r corresponds to a ring homomorphism S(f) → B, where S = S(E). We have

q∗(E)|U = (E ⊗A B)˜ and Lr|U = L̃r, where Lr = S(1)(f) ⊗S(f)
B. Then φr corresponds to

E ⊗A B → Lr given by x⊗ 1 7→ (f/1)⊗ (x/f).
(4.2.2). Conversely, suppose given q : X → Y , an invertible OX-module L, and a homo-

morphism φ : q∗(E)→ L. Then we get an OX-algebra homomorphism ψ : q∗(S(E))→ S(L),
inducing a Y -morphism rL,ψ : G(ψ)→ P(E) as in (3.7.1). If φ is sujective, then so is ψ, and
rL,ψ is defined on all of X.

Proposition (4.2.3). — Given q : X → Y and a quasi-coherent OY -module E, Y -morphisms
r : X → P(E) correspond bijectively to equivalence classes of surjective OX-module homo-
morphisms φ : q∗(E)→ L with L invertible, where (L, φ), (L, φ′) are equivalent if there is an
isomoprhism τ : L → L′ such that φ′ = τ ◦ φ.
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Theorem (4.2.4). — The set of Y -sections of P(E) corresponds bijectively with the set of
quasi-coherent subsheaves F ⊆ E such that E/F is invertible. [Special case of (4.2.3) with
X = Y .]

If Y = Spec(k) this identifies the k-points of Pn−1
k with the set of codimension-1 subspaces

F ⊆ kn.

Remark (4.2.5). — Given a quasi-coherent sheaf E on Y , we can assign to each Y -
prescheme X →

q
Y the set of quasi-coherent subsheaves F ⊆ q∗(E) such that q∗(E)/F is

invertible. If ψ : X ′ → X is a Y -morphism, then ψ∗F is a subsheaf of (qψ)∗E with the same
property, making this assignment a functor from Y -preschemes to sets. Proposition (4.2.3)
says that P(E) represents this functor.

[EGA says at this point that we will see later how to define Grassmann schemes in a
similar manner, but no later section covers this.]

Corollary (4.2.6). — Suppose that every invertible OY -module is trivial. Let A = Γ(Y,OY ),
and V = HomOY (E ,OY ), regarded as an A-module. Let V ∗ be the subset of surjections in
V , A∗ the group of units in A. Then the set of Y -sections of P(E) is identified with V ∗/A∗.

The hypothesis holds for any local scheme Y (I, 2.4.8). For any extension K of k(y), the
set of K-points of the fiber p−1(y) of P(E) is identified (4.1.3.1) with the projective space of
codimension-1 subspaces in the vector space E(y)⊗k(y)K, where E(y) = E⊗OY k(y) = E/myE .

If Y = Spec(A) and all invertible OY -modules are trivial [e.g., if A is a UFD], then when
E = OnY , we have V = An in (4.2.6), V ∗ consists of systems (f1, . . . , fn) which generate the
unit ideal in A, and two such define the same Y -section of Pn−1

A if they differ by multipication
by a unit of A.

Thus P(E) generalizes the classical concept of projective space.

Remark (4.2.7). — [Promising to give details in a future Chapter V, EGA briefly discusses
here how the Picard group of invertible sheaves on P(E) is related to that of Y , and how it
follows that locally the automorphism group of P(E) over Y looks like Aut(E)/O∗Y .]

(4.2.8). Keep the notation of (4.2.1). If u : X ′ → X is a morphism, and r : X → P
corresponds to φ : q∗(E)→ L, then r ◦ u corresponds to u∗(φ).

(4.2.9). Suppose v : E → F is surjective, and let j : P(F) → P(E) be the correspond-
ing closed immersion (4.1.2). If r : X → P(F) corresponds to φ : q∗(F) → L, then j ◦ r
corresponds to φ ◦ q∗(v).

(4.2.10). Given ψ : Y ′ → Y and r : X → P , the base extension r(Y ′) : X(Y ′) → P ′ = P(E ′),
where E ′ = ψ∗(E), corresponds to φ(Y ′) = φ⊗OY 1OY ′ .

4.3. The Segre morphism.

(4.3.1). Let E , F be quasi-coherent OY -modules. Set P1 = P(E), P2 = P(F), with
structure morphisms pi : Pi → Y . Let Q = P1 ×Y P2, with projections qi : Q → Pi. Let
L = OP1(1) ⊗Y OP2(1) = q∗1(OP1(1)) ⊗OQ q∗2(OP2(1)), an invertible OQ-module. Then r =
p1 ◦ q1 = p2 ◦ q2 is the structure morphism Q → Y , and the canonical surjections p∗i (E) →
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OPi(1) give rise to a surjection

(4.3.1.1) s : r∗(E ⊗OY F)→ L.

By (4.2.2) this induces a morphism, the Segre morphism

(4.3.1.2) ζ : P(E)×Y P(F)→ P(E ⊗OY F).

Set P = P(E ⊗OY F). Making things explicit for Y affine, E = Ẽ, F = F̃ , one shows that

ζ−1(Px⊗y) = (P1)x ×Y (P2)y,

which comes down to the following easy lemma.

Lemma (4.3.2). — Given A-algebras B, B′, and elements t ∈ B, t ∈ B′, one has D(t ⊗
t′) = D(t)×Y D(t′) in Spec(B)×A Spec(B′).

Proposition (4.3.3). — The Segre morphism is a closed immersion.

(4.3.4). The Segre morphism is functorial with respect to closed immersions P(E ′) ↪→
P(E), P(F ′) ↪→ P(F) induced by surjections E → E ′, F → F ′.

(4.3.5). The Segre morphism commutes with base extension by ψ : Y ′ → Y .

Remark (4.3.6). — There is also a canonical closed immersion of the disjoint union
P(E)

∐
P(F) into P(E ⊕ F).

4.4. Immersions into projective bundles. Very ample sheaves.

Proposition (4.4.1). — Let Y be a quasi-compact scheme or a prescheme with Noetherian
underlying space, q : X → Y a morphism of finite type, L an invertible OX-module.

(i) Let S be a graded quasi-coherent OY -algebra, and ψ : q∗(S) → S(L) a graded OX-
algebra homomorphism. Then rL,ψ is an everywhere defined immersion iff there exist n and
a quasi-coherent submodule E of finite type in Sn, such that the induced homomorphism
q∗(E)→ L⊗n is surjective and the corresponding morphism r : X → P(E) is an immersion.

(ii) Let F be a quasi-coherent OY -module and φ : q∗(F) → L a surjection. Then rL,φ is
an immersion if and only if there is a quasi-coherent sub-sheaf E ⊆ F of finite type such
that φ′ : q∗(E)→ L is surjective and rL,φ′ is an immersion.

[The proof uses (3.8.5).]

Definition (4.4.2). — Given q : X → Y , an invertible OX-module L is very ample (for q)
if there exists a quasi-coherent OY -module E and an immersion of Y -schemes i : X ↪→ P =
P(E) such that L ∼= i∗OP (1).

Equivalently, there exists a surjection φ : q∗(E)→ L such that rL,φ is an immersion. Note
that the existence of a very ample sheaf entails that q must be separated (3.1.3).

Corollary (4.4.3). — If L ∼= i∗OP (1) for an immersion i : X → P = Proj(S), where S is
a graded quasi-coherent OY -algebra generated by S1, then L is very ample.
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Proposition (4.4.4). — Suppose q : X → Y quasi-compact, L an invertible OX-module.
The following are equivalent:

(a) L is very ample for q;
(b) q∗(L) is quasi-coherent, the canonical homomorphism σ : q∗(q∗(L)) → L is surjective,

and rL,σ : X → P(q∗(L)) is an immersion.
Recall that since q is quasi-compact, q∗(L) is quasi-coherent if q is separated.

Corollary (4.4.5). — Suppose q quasi-compact. If there exists an open covering (Uα) of Y
such that L|q−1(Uα) is very ample relative to Uα, for all α, then L is very ample.

Proposition (4.4.6). — Let Y be a quasi-compact scheme or a prescheme with Noetherian
underlying space, q : X → Y a morphism of finite type, L an invertible OX-module. Then
the conditions of (4.4.4) are also equivalent to:

(a′) There exists an OY -module E of finite type and a surjection φ : q∗(E)→ L such that
rL,φ is an immersion.

(b′) There exists a quasi-coherent sub-OY -module E ⊆ q∗(L) of finite type with the property
in (a′).

Corollary (4.4.7). — Suppose Y is a quasi-compact scheme or a Noetherian prescheme. If
L is very ample for q, then there exists a graded quasi-coherent OY -algebra S, such that S1
is of finite type and generates S, and an open, dominant Y -immersion i : X → P = Proj(S)
such that L ∼= i∗OP (1).

Proposition (4.4.8). — Let L be very ample for q : X → Y , L′ any invertible OX-module
such that there exists a quasi-coherent OY -module E and a surjection q∗(E) → L′. Then
L ⊗OX L′ is very ample.

Corollary (4.4.9). — Let q : X → Y be a morphism.
(i) Given an invertible OX-module L and invertible OY -moduleM, L is very ample if and

only if L ⊗OX q∗(M) is.
(ii) If L and L′ are very ample, then so is L ⊗OX L′; in particular L⊗n is very ample for

all n > 0.

Proposition (4.4.10). — (i) Every invertible OY -module L is very ample for the identity
map 1Y : Y → Y .

(i′) Given f : X → Y and an immersion j : X ′ → X, if L is very ample for f , then j∗L
is very ample for f ◦ j.

(ii) Let Z be quasi-compact, f : X → Y a morphism of finite type, g : Y → Z a quasi-
compact morphism, L very ample for f , K very ample for g. Then there exists n0 > 0 such
that L ⊗ f ∗(K⊗n) is very ample for g ◦ f , for all n ≥ n0.

(iii) Given f : X → Y , g : Y ′ → Y , if L is very ample for f , then L⊗Y OY ′ is very ample
for f(Y ′).

(iv) Given two S-morphisms fi : Xi → Yi (i = 1, 2), if Li is very ample for fi, then
L1 ⊗S L2 is very ample for f1 ×S f2.

(v) Given f : X → Y , g : Y → Z, if L is very ample for g ◦ f , then L is very ample for f .



5

(vi) If L is very ample for f : X → Y , then j∗L is very ample for fred, where j : Xred ↪→ X
is the canonical injection.

[The proof of (ii) uses the following lemma, proved in §4.5]

Lemma (4.4.10.1).— Let Z be a quasi-compact scheme or a prescheme with Noetherian
underlying space, g : Y → Z a quasi-compact morphism, K very ample for g, E a quasi-
coherent OY -module of finite type. Then there exists m0 such that for all m ≥ m0, E is
isomorphic to a quotient of an OY -module of the form g∗(F) ⊗OY K⊗−m, where F is a
quasi-coherent OZ-module of finite type (depending on m).

[Then it is shown that if f ∗(E) → L induces an immersion X → P(E), and there is a
quasi-coherent OZ-module F and a surjection g∗(F)→ E ⊗K⊗m, then L⊗K⊗(m+1) is very
ample for X → Z.]

Proposition (4.4.11). — Let X ′′ = X
⊔
X ′ be a prescheme disjoint union, f ′′ : X ′′ → Y

a morphism restricting to morphisms f : X → Y , f ′ : X ′ → Y . Let L, L′ be invertible OX ,
OX′-modules, L′′ the invertible OX′′-module restricting to L, L′. Then L′′ is very ample iff
L and L′ are very ample.

4.5. Ample sheaves.

(4.5.1). Let L be an invertible OX-module. Then S =
⊕

n≥0 Γ(X,L⊗n) is a positively
graded subring of Γ∗(L) (0, 5.4.6). Let p : X → Spec(Z) be the structure morphism. We have

a canonical graded OX-algebra homomorphism ε : p∗(S̃)→ S(L) =
⊕

n≥0 L⊗n by adjointness
of p∗ = Γ(X,−) and p∗. Then (3.7.1) provides a canonical morphism G(ε)→ Proj(S).

When L is understood, define F(n) = F ⊗OX L⊗n for any OX-module F .

Theorem (4.5.2). — Let X be a quasi-compact scheme or a prescheme with Noetherian
underlying space, and L, S as above. The following are equivalent:

(a) The sets Xf for homogeneous f ∈ S+ form a base of the topology on X.
(a′) Those Xf which are affine cover X.
(b) The canonical morphism G(ε) → Proj(S) is defined on all of X and is a dominant

open immersion.
(b′) G(ε)→ Proj(S) is defined on all of X and is a homeomorphism of X onto a subspace

of Proj(S).
(c) For any quasi-coherent OX-module F , let Fn be the submodule of F(n) generated by

its global sections on X. Then F is the sum of its sub-OX-modules of the form Fn(−n), as
n ranges over all positive integers.

(c′) Property (c) holds for quasi-coherent sheaves of ideals in OX .
Moreover, given homogeneous elements (fα) in S+ such that Xfα is affine, the canonical

morphism X → Proj(S) restricts to an isomorphism
⋃
αXfα

∼=
⋃
αD+(fα) ⊆ Proj(S).

[Proof: The preimage of D+(f) is Xf , and G(ε) is the union of these. On any affine U ⊆ X
such that L|U ∼= OU is trivial we have Xf ∩ U ∼= Uf ′ for a section f ′ of OU corresponding
to f . So (b) ⇒ (b′) ⇒ (a) ⇒ (a′). By (I, 9.3.1–2) and (3.8.2), (a′) implies the “moreover,”
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which together with (a′) implies (b). (I, 9.3.1) gives (a)⇒ (c), clearly (c)⇒ (c′), and (c)⇒
(a) by taking for any open U ⊆ X an ideal J such that V (J ) is the complement of U .]

Condition (b) implies that X is a scheme.
The proof also shows that those Xf which are affine form a base of the topology.

Definition (4.5.3). — An invertible OX-module L is called ample if X is a quasi-compact
scheme and the conditions in (4.5.2) hold.

By (a), if L is ample, then so is L|U for any quasi-compact open subset U ⊆ X.

Corollary (4.5.4). — If L is ample, Z ⊆ X is a finite subset, and U is a neighborhood of
Z, there exists n and f ∈ Γ(X,L⊗n) such that Xf is an affine neighborhood of Z contained
in U .

[This uses a lemma from commutative algebra, that if pi are finitely many homogeneous
prime ideals, not containing an ideal I ⊆ S, then there is a homogeneous element of I not
contained in the union of the ideals pi.]

Proposition (4.5.5). — Let X be a quasi-compact scheme or a prescheme with Noetherian
underlying space. The conditions in (4.5.2) are also equivalent to the following:

(d) For every quasi-coherent OX-module F of finite type, there exists n0 such that F(n)
is generated by its global sections for all n ≥ n0.

(d′) Every such F is isomorphic to a quotient of an OX-module of the form L⊗(−n)⊗OkX .
(d′′) Property (d′) holds for quasi-coherent ideal sheaves of finite type in OX .
[(c′) ⇒ (d) ⇒ (d′) ⇒ (d′′) are straightforward. (d′′) ⇒ (a) uses (9.4.9)]

Proposition (4.5.6). — Let X be a quasi-compact scheme, L an inverible OX-module.
(i) For n > 0, L is ample iff L⊗n is ample.
(ii) Let L′ be invertible and assume that for every x ∈ X there exists n > 0 and s ∈

Γ(X,L′⊗n) such that s(x) 6= 0. Then L ample implies L ⊗ L′ ample.

Corollary (4.5.7). — The tensor product of ample OX-modules is ample.

Corollary (4.5.8). — If L is ample, L′ invertible, there exists n0 > 0 such that L⊗n ⊗ L′
is ample for all n ≥ n0.

Remark (4.5.9). — In the [Picard group] P ∼= H1(X,O∗X) of invertible sheaves on X, the
ample sheaves form a subset P+ such that

P+ + P+ ⊆ P+, P+ − P+ = P.

Hence P is a quasi-ordered abelian group with P+ ∪ {0} its positive cone.

Proposition (4.5.10). — Let Y be affine, q : X → Y quasi-compact and separated, L an
invertible OX-module.

(i) If L is very ample for q, then L is ample.
(ii) Suppose q is of finite type. Then L is ample iff the following equivalent conditions

hold:
(e) There exists n0 > 0 such that L⊗n is very ample for all n ≥ n0.
(e′) L⊗n is very ample for some n > 0.
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(4.5.10.1). Proof of Lemma (4.4.10.1). — Let E(n) = E ⊗ K⊗n. For large n, we want
to find a quasi-coherent subsheaf F ⊆ g∗(E(n)) of finite type such that the canonical map
g∗(F) → E(n) is surjective. By quasi-compactness and (9.4.7), we can reduce to the case
that Z is affine. Then (4.5.10, (i)) and (4.5.5, (d)) give the result.

Corollary (4.5.11). — If Y is affine, q : X → Y separated and of finite type, L ample, L′
invertible, there exists n0 such that L⊗n ⊗ L′ is very ample for q, for all n ≥ n0.

Remark (4.5.12). — It is not known whether L⊗n very ample implies the same for L⊗(n+1).

Proposition (4.5.13). — Let X be quasi-compact, Z ⊆ X a closed sub-prescheme defined
by a nilpotent sheaf of ideals, j : Z ↪→ X the inclusion. Then L is ample iff L′ = j∗(L) is
ample.

[The proof relies on the following lemma, which in turn is proved using sheaf cohomology.]

Lemma (4.5.13.1). — In (4.5.13), suppose further that J 2 = 0, and let g ∈ Γ(Z,L′⊗n) be
such that Zg is affine. Then there exists m > 0 such that g⊗m = j∗(f) for a global section
f ∈ Γ(X,L⊗mn).

Corollary (4.5.14). — Let X be a Noetherian scheme, j : Xred → X the inclusion. Then
L is ample if and only if j∗L is ample.

4.6. Relatively ample sheaves.

Definition (4.6.1). — Let f : X → Y be a quasi-compact morphism, L an invertible OX-
module. We say L is ample relative to f , or f -ample, or ample relative to Y (when f is
understood) if there exists an open affine cover (Uα) of Y such that for every α, L|f−1(Uα)
is ample.

Note that the existence of a relatively ample sheaf entails that f must be separated (4.5.3).

Proposition (4.6.2). — Let f : X → Y be quasi-compact. If L is very ample for f , then
L is ample relative to f .

Proposition (4.6.3). — Let f : X → Y be quasi-compact, L an invertible OX-module, and
put S =

⊕
n≥0 f∗(L⊗n), a graded OY -algebra. The following are equivalent:

(a) L is f -ample.
(b) S is quasi-coherent and the canonical homomorphism σ : f ∗(S) → S(L) (0, 4.4.3)

induces an everywhere-defined, dominant open immersion rL,σ : X ↪→ P = Proj(S).
(b′) f is separated, and the morphism rL,σ is everywhere defined and is a homeomorphism

of X onto a subspace of Proj(S).
Moreover, when these conditions hold, the canonical homomorphism r∗L,σ(OP (n)) → L⊗n

(3.7.9.1) is an isomorphism. Furthermore, for every quasi-coherent OX-module F , if we put

M =
⊕

n≥0 f∗(F ⊗ L⊗n), then r∗L,σ(M̃)→ F (3.7.9.2) is an isomorphism.

Corollary (4.6.4). — Let (Uα) be an open affine covering of Y . Then L is ample relative
to f if and only if L|f−1(Uα) is ample relative to Uα, for all α.
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Corollary (4.6.5). — Let K be an invertible OY -module. Then L is f -ample iff L⊗ f ∗(K)
is.

Corollary (4.6.6). — Suppose Y affine. Then L is Y -ample iff it is ample.

Corollary (4.6.7). — Let f : X → Y be a quasi-compact morphism. Suppose there exists
a quasi-coherent OY -module E and a morphism g : X → P = Proj(E) which is a homeomor-
phism of X onto a subspace of P . Then L = g∗(OP (1)) is f -ample.

Proposition (4.6.8). — Let X be a quasi-compact scheme or a prescheme with Noetherian
underlying space, f : X → Y a quasi-compact, separated morphism. An invertible OX-module
L is f -ample if and only if the following equivalent conditions hold:

(c) For every OX-module F of finite type, there exists n0 > 0 such that the canonical
homomorphism σ : f ∗(f∗(F ⊗ L⊗n))→ F ⊗L⊗n is surjective for all n ≥ n0.

(c′) Property (c) holds for all F = J ⊆ OX a quasi-coherent ideal sheaf of finite type.

Proposition (4.6.9). — Let f : X → Y be a quasi-compact morphism, L an invertible
OX-module.

(i) Let n > 0. Then L is f -ample iff L⊗n is.
(ii) Let L′ be an invertible OX-module such that σ : f ∗(f∗(L′⊗n))→ L′⊗n for some n > 0.

Then if L is f -ample, so is L ⊗ L′.
Corollary (4.6.10). — The tensor product of f -ample OX-module is f -ample.

Proposition (4.6.11). — Let Y be quasi-compact, f : X → Y a morphism of finite type, L
an invertible OX-module. Then L is ample iff the following equivalent conditions hold:

(d) There exists n0 > 0 such that L⊗n is very ample for f , for all n ≥ n0.
(d′) There exists n > 0 such that L⊗n is very ample for f .

Corollary (4.6.12). — Let Y be quasi-compact, f : X → Y of finite type, L, L′ invertible
OX-modules. If L is f -ample, there exists n0 such that L⊗n⊗L′ is very ample for f , for all
n ≥ n0.

Proposition (4.6.13). — (i) Every invertible OY -module L is ample relative to the identity
map 1Y : Y → Y .

(i′) Let f : X → Y be quasi-compact, j : X ′ → X a quasi-compact morphism which is a
homeomorphism of X ′ onto a subspace of X. If L is f -ample, then j∗L is ample relative to
f ◦ j.

(ii) Let Z be quasi-compact, f : X → Y , g : Y → Z quasi-compact morphisms, L f -ample,
K g-ample. Then there exists n0 > 0 such that L ⊗ f ∗(K⊗n) is ample relative to g ◦ f , for
all n ≥ n0.

(iii) Let f : X → Y be quasi-compact g : Y ′ → Y any morphism. If L is f -ample, then
L ⊗Y OY ′ is ample relative to f(Y ′).

(iv) Let fi : Xi → Yi (i = 1, 2) be quasi-compact S-morphisms. If Li is ample relative to
fi, then L1 ⊗S L2 is ample relative to f1 ×S f2.
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(v) Let f : X → Y , g : Y → Z, be such that g ◦ f is quasi-compact. Assume that g is
separated, or that X has locally Noetherian underlying space. If L is ample relative to g ◦ f ,
then L is f -ample.

(vi) Let f : X → Y be quasi-compact, j : Xred ↪→ X the inclusion. If L is f -ample, then
j∗L is ample relative to fred.

[Assertions (i), (i′), (iii) and (iv) imply the rest; (i) is trivial from (4.4.10, (i)) and (4.6.2).
The others are proved using the following lemma.]

Lemma (4.6.13.1). — (i) Let u : Z → S be a morphism L an invertible OS-module,
L′ = u∗(L), s ∈ Γ(S,L), s′ = u∗(s). Then Zs′ = u−1(Ss).

(ii) Let Z, Z ′ be S-preschemes, T = Z ×S Z ′, p, p′ the projections, L (resp. L) and
invertible OZ-module (resp. OZ′-module), t ∈ Γ(Z,L), t′ ∈ Γ(Z ′,L′), s = p∗(t), s′ = p′∗(t′).
Then Ts⊗s′ = Zt ×S Z ′t′.

Remark (4.6.14). — In (ii) it need not be the case that L ⊗ f ∗(K) is ample relative to
g ◦ f . Were this so, one could take L′ = L⊗ f ∗(K−1) in the place of L and conclude that L
is ample relative to g ◦ f , for any invertible OX-module L, which is clearly false (suppose g
were the identity!).

Proposition (4.6.15). — Let f : X → Y be quasi-compact, J ⊆ OX a locally nilpotent
quasi-coherent ideal sheaf, j : Z = V (J ) ↪→ X the inclusion of the closed subscheme defined
by J . Then L is ample for f if and only if j∗(L) is ample for f ◦ j.

Corollary (4.6.16). — Let X be locally Noetherian, f : X → Y quasi-compact, j : Xred ↪→
X the inclusion. Then L is ample for f if and only if j∗(L) is ample for fred.

Proposition (4.6.17). — With the notation and hypotheses of (4.4.11), L′′ is ample relative
to f ′′ iff L is ample relative to f and L′ is ample relative to f ′.

Proposition (4.6.18). — Let Y be quasi-compact, S a graded quasi-coherent OY -algebra of
finite type, X = Proj(S), f : X → Y the structure morphism. Then f is of finite type, and
OX(d) is invertible and f -ample for some d > 0.


