SYNOPSIS OF MATERIAL FROM EGA CHAPTER II, §3

3. HOMOGENEOUS SPECTRUM OF A SHEAF OF GRADED ALGEBRAS

3.1. Homogeneous spectrum of a graded quasi-coherent O, algebra.

(3.1.1). Let Y be a prescheme. A sheaf of graded Oy algebras S = @@, S, is quasi-coherent
iff each S, is; similarly for a graded S module M. The notations S, M(n), etc., are used
analogously to those for graded algebras and modules [see (2.1.1)].

Let U = Spec(A) € Y be an open affine. Then S|U = S, where S = I'(U,S) is a
graded A algebra. Set Xy = Proj(S). Given another affine U’ = Spec(A’) C U, we have a
ring homomorphism A — A’ corresponding to U’ < U, and the restriction homomorphism
S — 8" =T(U,S) is just the induced map S — ' = S®4 A" (I, 1.6.4). Hence Xy =
Xy xy U’ by (2.8.10), i.e., Xy = f;;'(U"), where fy: Xy — U is the stucture morphism.
Let pyruv: Xur — Xy be the open immersion thus defined. Given U” C U’ C U, we have
puru = Puu © Pur -

Proposition (3.1.2). — Given a quasi-coherent sheaf of positively graded Oy algebras S,
there is a prescheme f: X — Y over Y, unique up to canonical isomorphism, such that for
every open affine U CY, f~YU) is identified with Xy, in such a way that for every U’ C U,
the inclusion f~H(U') C f~Y(U) is identified with pyr .

(3.1.3). The prescheme X in (3.1.2) is the homogeneous spectrum of S, denoted Proj(S). X
is separated over Y by (2.4.2) and (I, 5.5.5), and if S is an Oy algebra of finite type (I, 9.6.2),
then X is of finite type over Y. For any open U C Y, we clearly have f~1(U) = Proj(S|U).

Proposition (3.1.4). — Let f € I'(Y,S4), d > 0. There is an open subset Xy C X
such that Xy N Xy is the basic open set D (f|U) of Xy for each affine U. In particular,
X; = Spec(SWD/(f — 1)8@) is affine over Y.

We call Xy the non-vanishing locus of f.

Corollary (3.1.5). — Xy =X;NX,.

Corollary (3.1.6). — If (fa) is a family of homogeneous sections of S, and if the sheaf of
ideals in S that they generate contains S, for all sufficiently large n, then the open sets Xy,
cover X.

Corollary (3.1.7). — If A is a quasi-coherent sheaf of Oy algebras, then Proj(A[t]) =
Spec(A). In particular, Proj(Oy[t]) =Y.

Proposition (3.1.8). — (i) Proj(S) = Proj(S¥9) as a Y -scheme [see (2.4.7, (i))].

(ii) Let " = Oy © D,,-o Sn- Then Proj(S) = Proj(S’) as a Y-scheme [see (2.4.8)].

(iii) Let L be an invertible sheaf on'Y, and let Sp) = B,,(Sn ®o, LZ™). Then there is a
canonical isomorphism of Y -schemes Proj(S) = Proj(Sz)).

(3.1.9). By (0, 4.1.3) and (I, 1.3.14), S; generates S iff I'(U,, S1) generates I'(U,, S), for

all U, in an affine covering; and if so, this holds for every affine U C Y.
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Proposition (3.1.10). — Suppose Y has a finite affine open covering (U;) such that each
L(U;,S) is of finite type over I'(U;, Oy). Then for some d, S is generated by Sy, and Sy
1s an Oy module of finite type.

Corollary (3.1.11). — Under the hypotheses of (3.1.10), Proj(S) = Proj(S’), where §' is
generated as an Oy algebra by S7, which is a finitely generated Oy module.

(3.1.12). Let NV be the nilradical of S. It’s quasi-coherent by (I, 5.5.1). Put N, = N NS,
a graded Sy module by (2.1.10). We call S essentially reduced if Ny = 0, which is equivalent
to S, being essentially reduced [see (2.1.10)] for all y € Y. We call S integral if S, is an
integral domain with (S,)+ # 0 forall y € Y.

Proposition (3.1.13). — If X = Proj(S), then Xieq = Proj(S/N.). In particular, X is
reduced if S is essentially reduced [seee (2.4.4, (i))].

Proposition (3.1.14). — Let Y be an integral prescheme, S a graded quasi-coherent Oy
algebra such that Sy = Oy .

(i) If S is integral (3.1.12), then X = Proj(S) is integral, and the structure morphism
¢: X =Y is dominant.

(i) Conversely, if S is essentially reduced, X 1is integral, and ¢ is dominant, then S is
integral.

3.2. Sheaf on Proj(S) associated to a graded S module.

(3.2.1). Let S be a quasi-coherent sheaf of graded Oy modules, M a quasi-coherent sheaf
of graded & modules (quasi-coherent as an & module sheaf equivalently as an Oy module
sheaf). Keeping the notation of (3.1.1), let My be the sheaf on Xy, associated to F(U M)
(253) If U/ g U, then F(U’,M) (U M) &4 A’ hence MU/ = pU, UMU = MU|XU/

Proposition (3.2.2). — There is a unique quasi-coherent Ox module M such that /\/l|XU =
My for all open affines U C Y.

Proposition (3.2.3). — Let f € I'(Y,8q), d > 0. The isomorphism Xy = Spec(S@ /
(f — 1)SYD) identifies M| X} with the sheaf associated to the SD /(f — 1)S@ module MD /
(f = DM@ [see (2.8.12)].

Proposition (3.2.4). — M — M is an exact, covariant functor, which preserves direct
sums and direct limits.

In particular, it 7 C § is a homogeneous ideal sheaf, then J is a sheaf of ideals in Ox. If
T is a sheaf of ideals in Oy, then (ZM) =T - M.

Proposition (3.2.5). — Let f € Sy. The restriction of S(nd) to Xy is isomorphic to Ox,
[with generating section f"]. In particular, if S; generates S, then each S(n) is invertible

[see (2.5.7-9)].



As before, we define

(3.2.5.1) Ox(n) =S8(n)7,
(3.2.5.2) Fx(n) =F ®o, Ox(n).
Proposition (3.2.6). — There are canonical, functorial homomorphisms
(3.2.6.1) A Mo, N> (MesN),
(3.2.6.2) s Homs(M,N) = Homo, (M, N).

If S generates S, then X is an isomorphism, and if in addition M is finitely presented, then
W is an isomorphism [see (2.5.11-13)].

Corollary (3.2.7). — [see (2.5.14)] If S1 generates S, then for all m,n € 7Z,
(3.2.7.2) Ox(n) = Ox(1)®".

Corollary (3.2.8). — [see (2.5.15)] If Sy generates S, then (M(n))” = M(n).
Remarks (3.2.9). — (i) If S = A[t] as in (3.1.7), then Ox(n) = Ox for all n. If N is a

quasi-coherent sheaf of A modules, M = N ® 4 Alt], then M is the sheaf on X & Spec(A)
associated to N as in (1.4.3).
(ii) If S = Oy, S, = S, for n > 0, then the canonical isomorphism X = X' identifies

Ox(n) with Ox/(n). If X@ = Proj(§@), the canonical isomorphism X = X () identifies
Ox @ (n) with Ox(nd) [see (2.5.16)].

Proposition (3.2.10). — Let L be an invertible sheaf on Y. The canonical isomorphism
Xy = Proj(S(c)) = X = Proj(S) in (3.1.8, (iii)) identifies Ox ,,(n) with Ox(n) @y LZ".

3.3. Graded S module associated with a sheaf on Proj(S).

In this section we assume that Sy generates S. Recall that by (3.1.8 (i)), this is no essential
restriction when the finiteness conditions in (3.1.10) hold.

(3.3.1). Let p: X = Proj(S§) — Y be the structure morphism. For any sheaf of Ox
modules F, put

(3.3.1.1) L.(F) = @ p-(F(n)).

In particular,

(3.3.1.2) I.(0) = @ p.(0(n)).

The canonical homomorphism (0, 4.2.2) p.(F) ®oy p«(G) = pu(F ®o, G) makes I',(O) a

graded Oy algebra, and I',(F) a graded I'.(O) module. The functor I'.(—) is left exact; in
particular, if J C Oy is an ideal sheaf, then I',(J) is a homogeneous ideal sheaf in I',(O).



(3.3.2). As in (2.6.2), for any graded S module M, there is a canonical homomorphism of
graded sheaves

(3.3.2.3) a: M — Ty(M).

In particular, a: S — I',(O) is a homomorphism of sheaves of graded algebras, which makes
I',(M) a graded S module, and (3.3.2.3) an S module homomorphism.

Note that a, induces p*(M,) — M(n): this is the sheaf homomorphism associated by
(3.2.4) to the canonical graded Oy module homomorphism M,, ®¢, S — M(n).

Proposition (3.3.3). — Given f € I'(X,S4), d > 0, Xy is the non-vanishing locus of the
section aq(f) of the invertible sheaf Ox(d).

(3.3.4). Suppose now that for every quasi-coherent F on X, the sheaves p,(F) and hence
['.(F) are quasi-coherent on Y. In particular, this holds if X is of finite type over Y (I,
9.2.2). Then I',(F) is defined and quasi-coherent on X. As in (2.6.4), there is a canonical
homomorphism

(3.3.4.1) B:T.(F) — F.

Proposition (3.3.5). — Let M be a quasi-coherent graded S module, F a quasi-coherent
sheaf on Ox. Then each of the following maps in the identity [see (2.6.5)]:

(3.3.5.1) MET M) B M,
(3.3.5.2) I.(F)>T

3.4. Finiteness conditions.

Proposition (3.4.1). — Let S be a quasi-coherent sheaf of graded Oy algebras, generated
by S1, and suppose further that Sy is an Oy module of finite type. Then X = Proj(S) is of
finite type over'Y [see (2.7.1, (ii))].

(3.4.2). Consider two conditions on a graded & module M:

(TF) There exists n such that @,., M; is a sheaf of S modules of finite type;
(TN) There exists n such that Mj, = 0 for k > n.

The terminology of (2.7.2) will be used in this context also.

Proposition (3.4.3). — [see (2.7.3)] Assume that Sy is of finite type and generates S.

(i) If M satisfies (TF), then M is of finite type.

(i1) If M satisfies (TF), then M = 0 if and only if M satisfies (TN).

Theorem (3.4.4). — Assume that Sy is of finite type and generates S. For every quasi-

coherent sheaf of Ox modules F, the canonical homomorphism [ in (3.3.4) is an isomor-
phism [see (2.7.5)].
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Corollary (3i5) — Under the hypotheses of (3.4.4), every quasi-coherent Ox module F
is of the form M for some graded S module M [see (2.7.7)]. If F is of finite type, and if Y

18 quasi-compact and separated, or if its underlying space is Noetherian, then M can be taken
to be of finite type [see (2.7.8)—the hypotheses on'Y serve to imply that X is quasi-compact,

by (3.4.1)].
Corollary (3.4.6). — Under the hypotheses of (3.4.4), suppose further that Y is quasi-

compact, and F is of finite type. Then the canonical homomorphism o: p*(p.(F(n))) — F(n)
15 surjective for all sufficiently large n.

Remarks (3.4.7). — For any morphism p: X — Y of ringed spaces, and Ox module
F, the surjectivity of o: p*(p.(F)) — F amounts to the following: for every z € X and
every section s of F on a neighborhood V' of z, there is a neighborhood U of p(x) in Y,
a neighborhood W C V N p~'(U) of z, and finitely many sections ¢; € F(p~(U)) and
a; € Ox (W), such that

s|W = Zai(ti\W).

If Y is an affine scheme, and p,(F) is quasi-coherent, this is equivalent to F being generated
by its global sections on X. Hence for any morphism p: X — Y of preschemes, and any
quasi-coherent Oy module F such that p.(F) is quasi-coherent, the following are equivalent:

(a) o: p*(p«(F)) — F is surjective;

(b) there exists a quasi-coherent Oy module G such that p*(G) — F is surjective;

(c) for every open affine U C Y, F|p~}(U) is generated by its sections on p~!(U).

Corollary (3.4.8). — Under the hypotheses of (3.4.4), suppose that'Y is quasi-compact
and separated, or its underlying space is Noetherian. Let F be a quasi-coherent Ox module
of finite type. Then for sufficiently large n, F is isomorphic to a quotient of an Ox module
of the form (p*(G))(—n), where G is a quasi-coherent Oy module of finite type (depending
onmn).

3.5. Functorial behavior.

(3.5.1). Let ¢: 8" — S be a homomorphism of graded quasi-coherent Oy algebras, and
set X = Proj(S), X' = Proj(S’), with structure morphisms p: X — Y, p': X’ — Y. For
each open affine U C Y, the homomorphism ¢y : I'(U,S’) = S, — Sy = I'(U, S) induces a
U-morphism @y : G(¢y) — X}, by (2.8.1). For V C U, we have G(¢y) = G(¢py) Np~H(V),
and @y is the restriction of &y to G(¢v). Hence there is an open set G(¢) C X such that
G(¢)Np~H(U) = G(¢y) for every affine U, and a morphism ®: G(¢) — X’ whose restriction
to G(oy) is Oy

If every y € Y has a neighborhood U such that ¢y ((S])+) generates (Sy)+ [or more
generally, such that the radical of the ideal it generates contains (Sy)4], then G(¢) = X.

Proposition (3.5.2). — (i) [see (2.8.7)] If M is a quasi-coherent graded S module, then

(Mpg) = 0. (M).



(i) [see (2.8.8)] If M is a quasi-coherent graded S’ module, there is a canonical fucntorial
homomorphism ®*(M') — (M’ @5 S) |G(¢). If S| generates S', it is an isomorphism.
In particular, for each n there is a canonical homomorphism

Proposition (3.5.3). — Given a morphism ¢¥: Y’ — Y, and a quasi-coherent graded Oy
algebra S, set 8" = Y*S. Then Proj(S’) = Proj(S) xy Y, and if M is a quasi-coherent
graded S module, then ¥*(M) = M @y Oy:.

Corollary (3.5.4). — In the setting of (3.5.3), Ox:/(n) = Ox(n) @y Y', where X' =
Proj(§’), X = Proj(S).

(3.5.5). Keeping the preceding notation, let W: X’ — X be the canonical morphism, and
set M’ = ¢p*(M). Assume that S; generates S and that X is of finite type over Y; then
the same hold for &', X', Y’. Given an Ox module F, set F' = U*(F). By (3.5.4) and (0,
4.3.3), we have F'(n) = V*(F(n)). Let

q: X =Y, ¢: X =Y
be the structure morphisms. The canonical homomorphism F(n) — W, (V*(F(n))) =
U, (F'(n)) gives rise to ¢«(F(n)) = ¢ (V.(F'(n))) = ¥u(¢.(F'(n))). Hence we have a canon-
ical W-homomorphism 60: I',(F) — I'.(F’). Then (2.8.13.1-2) yield commutative diagrams

F — F

S

r(F), — 1),

I, (M) —2= D (M)

ol
M — M
where the unlabelled horizontal arrows are the canonical W- or y)-morphisms.

(3.5.6). Now suppose given a morphism g: Y' — Y, a graded quasi-coherent Oy algebra
(resp. Oy algebra) S (resp. &’), and a g-homomorphism of graded algebras u: § — &' (i.e.,
a homomorphism u: S — ¢.(S'), or equivalently uf: g*(S) — S’). This gives a Y’-morphism
G(u*) — Proj(g*(S)) = X xy Y’ where X = Proj(S), and G(u*) is open in X’ = Proj(S’).
Composing with the projection of X xy Y’ on X, we get a morphism v: G(u*) — X, denoted
v = Proj(u), and commutative diagram

Gut) —— X

L

y —2.vy.



To any quasi-coherent graded S module M there corresponds a canonical v-morphism
(3.5.6.1) v M = (g5(M) @) S') |G (),
and if S; generates S, then v is an isomorphism. In particular, we have

(3.5.6.2) v: Ox(n) — Ox:(n)|G(u?).

3.6. Closed subschemes of Proj(S).

(3.6.1). Using (3.1.8), the analog of (2.9.1) holds for a homomorphism of graded quasi-
coherent Oy-alebras ¢: S — S'.

Proposition (3.6.2). — [see (2.9.2)] Let X = Proj(S).

(i) If : S — 8" is (TN)-surjective, then the associated morphism ® = Proj(¢) (3.5.1) is
defined on all of Proj(S’) and is a closed immersion into X. If T = ker(¢), the image of ®
1s the closed subscheme defined by the ideal sheaff C Oyx.

(i1) Suppose further that So = Oy, Si generates S, and Sy is of finite type. Let X' C X
be a closed subscheme, defined by a quasi-coherent sheaf of ideals T C Ox, and let J C .S be
the preimage of U'\(Z) under a: § — I'v(Ox) (3.3.2). Set 8" =8/J. Then X' is the image
of the closed immersion Proj(S’) — X associated to the canonical surjection S — S'.

Corollary (3.6.3). — In (3.6.2, (i)), if S1 generates S, then ®*(Ox(n)) = Ox/(n) [see

Corollary (3.6.4). — Let S be a quasi-coherent sheaf of graded Oy algebras such that S
generates S, let u: M — S be a surjective homomorphism of quasi-coherent Oy modules,
and let u: Sp, (M) — S be the graded algebra homomorphism that extends u (1.7.4). Then
the morphism Proj(w) is a closed immersion of Proj(S) into Proj(Se, (M)).

3.7. Morphisms from a prescheme to a homogeneous spectrum.

(3.7.1). Let ¢: X — Y be a morphism of preschemes, £ an invertible Ox module, S
a graded quasi-coherent Oy algebra; then ¢*(S) is a graded quasi-coherent Ox algebra.
Suppose given a graded Ox algebra homomorphism

V" (S) = S = @ Lo
n>0
or equivalently, a g-morphism of graded algebras
VS = q.(S).

Now, Proj(§’") = X, by (3.1.7) and (3.1.8, (iii)), so we get an open subset G(¢) C X and a
Y -morphism

(3.7.1.1) rey: G(¥) = Proj(S) =P
associated to L and 1, as in (3.5.6).



(3.7.2). Let us describe r = r,,, more explicitly when Y = Spec(A) is affine, so S = S.
First suppose X = Spec(B) affine and £ = Z, where L is a free B module of rank 1, with
generator ¢, say. Then v corresponds to a graded A algebra homomorphism S®4 B — Blc],
necessarily of the form (s ® b) — bv(s)c" for s € S, where v: S — B is an (ungraded)
A algebra homomorphism. Given f € Sy, set ¢ = v(f). Then r~*(D,(f)) = D(g), and
the restriction r: D(g) — D, (f) corresponds to the ring homomorphism Syy C Sy — By
induced by v. Here G(¢) is the union of such open sets D(g) C X. The generalization to
arbitrary X (Y still affine) is as follows.

Proposition (3.7.3). — IfY = Spec(A) is affine and S = S’l then for every f € Sy, we
have
(3.7.3.1) res(De(f)) = Xyoipy (where ¢7(f) € T(X, £59))

and the restriction Xy ;) — Dy (f) = Spec(S(y)) corresponds (I, 2.2.4) to the algebra homo-
morphism

(3.7.3.2) Wi Sty = T(Xy(p), Ox)
giwen, for s € Spq, by
(3.7.3.3) D (/1) = (0 ()1 Xy (1) (& ()| X ()"

Note that G(¢) is the union of the open sets X, for f € Sq, d > 0. We say that rz
is defined everywhere if G(1») = X. This property is local with respect to Y.

Corollary (3.7.4). — Under the hypotheses of (3.7.3), rc.y is defined everywhere if and
only if for every x € X there exists d > 0 and s € Sy such that t = ¢°(s) € T'(X, L®")
satisfies t(x) # 0.

This condition always holds if ¢ is (TN)-surjective.

Similarly, the property that r., is dominant is local on Y, and for Y affine, we have:

Corollary (3.7.5). — Under the hypotheses of (3.7.3), rr. is dominant if and only if for
everyn > 0, every s € S, such that ¢’(s) € T'(X, L®") is locally nilpotent, is itself nilpotent.
Proof: the condition says that if TZ,%Z)(DJF(S)) is empty, then D, (s) is empty [see (2.3.7)].

Proposition (3.7.6). — Given a morphism q: X — Y, an invertible Ox module L, quasi-
coherent graded Oy algebras S, S', and algebra homomorphisms u: 8" — S, : ¢*(S) —
D, >0 LE", let ¥/ = poq*(u). If rey is defined everywhere, then so is rzy. If w is (TN)-
surjective and rey 08 dominant, then so is rp. Conversely, if u is (T'N)-injective and 1
is dominant, then so is 1 yr.

Proposition (3.7.7). — LetY be a quasi-compact prescheme, ¢: X — Y a quasi-compact
morphism, L an invertible Ox module, S a quasi-coherent graded Oy algebra, ¥ : ¢*(S) —
D,,~0 LZ an algebra homomorphism. Suppose S is the inductive limit of a filtered system
of quasi-coherent graded Oy algebras (S*), and set 1y = 1 o q¢*(¢y), where ¢y: S* — S is
the canonical homomorphism. Then rp ., ts defined everywhere if and only if some rr ., is
defined everywhere; in that case 1.y, is defined everywhere for all i > A.
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Corollary (3.7.8). — Under the hypotheses of (3.7.7), if the vz, are dominant, then so
is rz. The converse holds if the ¢y are injective.

Remarks (3.7.9). — (i) With the notation of (3.7.1), there is a canonical homomorphism
(3.7.9.1) 0:17.,(Op(n)) — L.

defined as in (3.5.6.2).

(ii) Let F be a quasi-coherent Ox module. Suppose ¢ quasi-compact and separated,
whence ¢,(F ® L") is quasi-coherent on Y. Then M’ = @, F ® LZ" is a quasi-coherent
graded &’ module, and M = ¢, (M’) = ,, ¢.(F ® L") is a quasi-coherent S module via
Y”. There is a canonical Ox module homomorphism

(3.7.9.2) &1y (M) = FIG().

3.8. Criteria for immersion into a homogeneous spectrum.

(3.8.1). With the notation of (3.7.1), the property that ., is an (open, closed) immersion
is local on Y.

Proposition (3.8.2). — Under the hypotheses of (3.7.8), rr is defined everywhere and
is an immersion if and only if there exist sections s, € Sy, (no > 0) such that, setting
fo =V (54), the following hold:

(1) The open sets Xy, cover X.

(1) The Xy, are affine.

(111) For every o and every t € I'(Xy,, Ox), there exists m > 0 and s € Sy, such that
E= ()X ) (fal Xp )"

Moreover, rr is an open immersion if there exists (s,) satisfying (i)- (i) and:

(iv) For every m > 0 and s € mn, such that ¥°(s)|X;, = 0, there exists k such that
sks=0.

Likewise, vz is a closed immersion if there exists (so) satisfying (i)-(iii) and:

(v) The open sets Dy(s,) cover P = Proj(S).

Corollary (3.8.3). — Under the hypotheses of (3.7.6), if vz is defined everywhere and is
an immersion, then so is re.. If in addition u is (TN )-surjective and rz 4 is an open (resp.
closed) immersion, then o is 1 .

Proposition (3.8.4). — Assume the hypotheses of (3.7.7) and also that q: X — Y is of
finite type. Then . is defined everywhere and is an immersion if and only if the same
holds for some rc 5, in which case it also holds for vz, for all p > A.

Proposition (3.8.5). — Assume that Y is quasi-compact and separated, or that its under-
lying space is Noetherian. Let q: X — Y be a morphism of finite type, L an invertible Ox
module, S a quasi-coherent graded Oy algebra, 1: S — D,~q LZ" a graded algebra homo-
morphism. Then g, is defined everywhere and is an immersion if and only if there exist
n >0 and a sub-Oy module £ C §,, of finite type such that:
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(a) the homomorphism 1, o ¢*(jn): ¢*(E) — LB (where j,: € — S, is the inclusion) is
surjective; and

(b) letting S’ be the (graded) sub-Oy algebra of S generated by €, j': §' — S the inclusion,
and ' =1 o q*(j'), rry is defined everywhere and is an immersion.

When these conditions hold, they also hold for every quasi-coherent sub-Oy module £ C
&' C S, and for the image of E%F in Spy.



