
Synopsis of material from EGA Chapter II, §3

3. Homogeneous spectrum of a sheaf of graded algebras

3.1. Homogeneous spectrum of a graded quasi-coherent OY algebra.

(3.1.1). Let Y be a prescheme. A sheaf of graded OY algebras S =
⊕

n Sn is quasi-coherent
iff each Sn is; similarly for a graded S moduleM. The notations S(d), M(n), etc., are used
analogously to those for graded algebras and modules [see (2.1.1)].

Let U = Spec(A) ⊆ Y be an open affine. Then S|U = S̃, where S = Γ(U,S) is a
graded A algebra. Set XU = Proj(S). Given another affine U ′ = Spec(A′) ⊆ U , we have a
ring homomorphism A → A′ corresponding to U ′ ↪→ U , and the restriction homomorphism
S → S ′ = Γ(U ′,S) is just the induced map S → S ′ = S ⊗A A′ (I, 1.6.4). Hence XU ′ =
XU ×U U ′ by (2.8.10), i.e., XU ′ = f−1

U (U ′), where fU : XU → U is the stucture morphism.
Let ρU ′,U : XU ′ → XU be the open immersion thus defined. Given U ′′ ⊆ U ′ ⊆ U , we have
ρU ′′,U = ρU ′,U ◦ ρU ′′,U ′ .

Proposition (3.1.2). — Given a quasi-coherent sheaf of positively graded OY algebras S,
there is a prescheme f : X → Y over Y , unique up to canonical isomorphism, such that for
every open affine U ⊆ Y , f−1(U) is identified with XU , in such a way that for every U ′ ⊆ U ,
the inclusion f−1(U ′) ⊆ f−1(U) is identified with ρU ′,U .

(3.1.3). The prescheme X in (3.1.2) is the homogeneous spectrum of S, denoted Proj(S). X
is separated over Y by (2.4.2) and (I, 5.5.5), and if S is an OY algebra of finite type (I, 9.6.2),
then X is of finite type over Y . For any open U ⊆ Y , we clearly have f−1(U) ∼= Proj(S|U).

Proposition (3.1.4). — Let f ∈ Γ(Y,Sd), d > 0. There is an open subset Xf ⊆ X
such that Xf ∩ XU is the basic open set D+(f |U) of XU for each affine U . In particular,
Xf
∼= Spec(S(d)/(f − 1)S(d)) is affine over Y .

We call Xf the non-vanishing locus of f .

Corollary (3.1.5). — Xfg = Xf ∩Xg.

Corollary (3.1.6). — If (fα) is a family of homogeneous sections of S, and if the sheaf of
ideals in S that they generate contains Sn for all sufficiently large n, then the open sets Xfα

cover X.

Corollary (3.1.7). — If A is a quasi-coherent sheaf of OY algebras, then Proj(A[t]) =
Spec(A). In particular, Proj(OY [t]) = Y .

Proposition (3.1.8). — (i) Proj(S) ∼= Proj(S(d)) as a Y -scheme [see (2.4.7, (i))].
(ii) Let S ′ = OY ⊕

⊕
n>0 Sn. Then Proj(S) ∼= Proj(S ′) as a Y -scheme [see (2.4.8)].

(iii) Let L be an invertible sheaf on Y , and let S(L) =
⊕

n(Sn ⊗OY L⊗n). Then there is a
canonical isomorphism of Y -schemes Proj(S) ∼= Proj(S(L)).

(3.1.9). By (0, 4.1.3) and (I, 1.3.14), S1 generates S iff Γ(Uα,S1) generates Γ(Uα,S), for
all Uα in an affine covering; and if so, this holds for every affine U ⊆ Y .
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Proposition (3.1.10). — Suppose Y has a finite affine open covering (Ui) such that each
Γ(Ui,S) is of finite type over Γ(Ui,OY ). Then for some d, S(d) is generated by Sd, and Sd
is an OY module of finite type.

Corollary (3.1.11). — Under the hypotheses of (3.1.10), Proj(S) ∼= Proj(S ′), where S ′ is
generated as an OY algebra by S ′1, which is a finitely generated OY module.

(3.1.12). Let N be the nilradical of S. It’s quasi-coherent by (I, 5.5.1). Put N+ = N ∩S+,
a graded S0 module by (2.1.10). We call S essentially reduced if N+ = 0, which is equivalent
to Sy being essentially reduced [see (2.1.10)] for all y ∈ Y . We call S integral if Sy is an
integral domain with (Sy)+ 6= 0 for all y ∈ Y .

Proposition (3.1.13). — If X = Proj(S), then Xred
∼= Proj(S/N+). In particular, X is

reduced if S is essentially reduced [seee (2.4.4, (i))].

Proposition (3.1.14). — Let Y be an integral prescheme, S a graded quasi-coherent OY
algebra such that S0 = OY .

(i) If S is integral (3.1.12), then X = Proj(S) is integral, and the structure morphism
φ : X → Y is dominant.

(ii) Conversely, if S is essentially reduced, X is integral, and φ is dominant, then S is
integral.

3.2. Sheaf on Proj(S) associated to a graded S module.

(3.2.1). Let S be a quasi-coherent sheaf of graded OY modules,M a quasi-coherent sheaf
of graded S modules (quasi-coherent as an S module sheaf equivalently as an OY module

sheaf). Keeping the notation of (3.1.1), let M̃U be the sheaf on XU associated to Γ(U,M)

(2.5.3). If U ′ ⊆ U , then Γ(U ′,M) = Γ(U,M)⊗A A′, hence M̃U ′ = ρ∗U ′,UM̃U = M̃U |XU ′ .

Proposition (3.2.2). — There is a unique quasi-coherent OX module M̃ such that M̃|XU =

M̃U for all open affines U ⊆ Y .

Proposition (3.2.3). — Let f ∈ Γ(Y,Sd), d > 0. The isomorphism Xf
∼= Spec(S(d)/

(f − 1)S(d)) identifies M̃|Xf with the sheaf associated to the S(d)/(f − 1)S(d) module M(d)/
(f − 1)M(d) [see (2.8.12)].

Proposition (3.2.4). — M 7→ M̃ is an exact, covariant functor, which preserves direct
sums and direct limits.

In particular, if J ⊆ S is a homogeneous ideal sheaf, then J̃ is a sheaf of ideals in OX . If

I is a sheaf of ideals in OY , then (IM)˜ = I · M̃.

Proposition (3.2.5). — Let f ∈ Sd. The restriction of S(nd)˜ to Xf is isomorphic to OXf
[with generating section fn]. In particular, if S1 generates S, then each S(n)˜ is invertible
[see (2.5.7–9)].
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As before, we define

OX(n) = S(n)˜,(3.2.5.1)

FX(n) = F ⊗OX OX(n).(3.2.5.2)

Proposition (3.2.6). — There are canonical, functorial homomorphisms

λ : M̃ ⊗OX Ñ → (M⊗S N )˜,(3.2.6.1)

µ : HomS(M,N )˜ → HomOX (M̃, Ñ ).(3.2.6.2)

If S1 generates S, then λ is an isomorphism, and if in addition M is finitely presented, then
µ is an isomorphism [see (2.5.11-13)].

Corollary (3.2.7). — [see (2.5.14)] If S1 generates S, then for all m,n ∈ Z,

OX(m)⊗OX OX(n) = OX(m+ n)(3.2.7.1)

OX(n) = OX(1)⊗n.(3.2.7.2)

Corollary (3.2.8). — [see (2.5.15)] If S1 generates S, then (M(n))˜ = M̃(n).

Remarks (3.2.9). — (i) If S = A[t] as in (3.1.7), then OX(n) ∼= OX for all n. If N is a

quasi-coherent sheaf of A modules, M = N ⊗A A[t], then M̃ is the sheaf on X ∼= Spec(A)
associated to N as in (1.4.3).

(ii) If S ′0 = OY , S ′n = Sn for n > 0, then the canonical isomorphism X ∼= X ′ identifies
OX(n) with OX′(n). If X(d) = Proj(S(d)), the canonical isomorphism X ∼= X(d) identifies
OX(d)(n) with OX(nd) [see (2.5.16)].

Proposition (3.2.10). — Let L be an invertible sheaf on Y . The canonical isomorphism
X(L) = Proj(S(L)) ∼= X = Proj(S) in (3.1.8, (iii)) identifies OX(L)(n) with OX(n)⊗Y L⊗n.

3.3. Graded S module associated with a sheaf on Proj(S).

In this section we assume that S1 generates S. Recall that by (3.1.8 (i)), this is no essential
restriction when the finiteness conditions in (3.1.10) hold.

(3.3.1). Let p : X = Proj(S) → Y be the structure morphism. For any sheaf of OX
modules F , put

(3.3.1.1) Γ∗(F) =
⊕
n∈Z

p∗(F(n)).

In particular,

(3.3.1.2) Γ∗(O) =
⊕
n∈Z

p∗(O(n)).

The canonical homomorphism (0, 4.2.2) p∗(F) ⊗OY p∗(G) → p∗(F ⊗OX G) makes Γ∗(O) a
graded OY algebra, and Γ∗(F) a graded Γ∗(O) module. The functor Γ∗(−) is left exact; in
particular, if J ⊆ OX is an ideal sheaf, then Γ∗(J ) is a homogeneous ideal sheaf in Γ∗(O).
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(3.3.2). As in (2.6.2), for any graded S moduleM, there is a canonical homomorphism of
graded sheaves

(3.3.2.3) α : M→ Γ∗(M̃).

In particular, α : S → Γ∗(O) is a homomorphism of sheaves of graded algebras, which makes

Γ∗(M̃) a graded S module, and (3.3.2.3) an S module homomorphism.

Note that αn induces p∗(Mn) → M̃(n); this is the sheaf homomorphism associated by
(3.2.4) to the canonical graded OY module homomorphism Mn ⊗OY S →M(n).

Proposition (3.3.3). — Given f ∈ Γ(X,Sd), d > 0, Xf is the non-vanishing locus of the
section αd(f) of the invertible sheaf OX(d).

(3.3.4). Suppose now that for every quasi-coherent F on X, the sheaves p∗(F) and hence
Γ∗(F) are quasi-coherent on Y . In particular, this holds if X is of finite type over Y (I,
9.2.2). Then Γ∗(F)˜ is defined and quasi-coherent on X. As in (2.6.4), there is a canonical
homomorphism

(3.3.4.1) β : Γ∗(F)˜ → F .
Proposition (3.3.5). — Let M be a quasi-coherent graded S module, F a quasi-coherent

sheaf on OX . Then each of the following maps in the identity [see (2.6.5)]:

M̃ α̃→ Γ∗(M̃)˜ β→ M̃,(3.3.5.1)

Γ∗(F)
α→ Γ∗(Γ∗(F)˜ )

Γ∗(β)→ Γ∗(F).(3.3.5.2)

3.4. Finiteness conditions.

Proposition (3.4.1). — Let S be a quasi-coherent sheaf of graded OY algebras, generated
by S1, and suppose further that S1 is an OY module of finite type. Then X = Proj(S) is of
finite type over Y [see (2.7.1, (ii))].

(3.4.2). Consider two conditions on a graded S module M:
(TF) There exists n such that

⊕
k≥nMk is a sheaf of S modules of finite type;

(TN) There exists n such that Mk = 0 for k ≥ n.
The terminology of (2.7.2) will be used in this context also.

Proposition (3.4.3). — [see (2.7.3)] Assume that S1 is of finite type and generates S.

(i) If M satisfies (TF), then M̃ is of finite type.

(ii) If M satisfies (TF), then M̃ = 0 if and only if M satisfies (TN).

Theorem (3.4.4). — Assume that S1 is of finite type and generates S. For every quasi-
coherent sheaf of OX modules F , the canonical homomorphism β in (3.3.4) is an isomor-
phism [see (2.7.5)].
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Corollary (3.4.5). — Under the hypotheses of (3.4.4), every quasi-coherent OX module F
is of the form M̃ for some graded S module M [see (2.7.7)]. If F is of finite type, and if Y
is quasi-compact and separated, or if its underlying space is Noetherian, thenM can be taken
to be of finite type [see (2.7.8)—the hypotheses on Y serve to imply that X is quasi-compact,
by (3.4.1)].

Corollary (3.4.6). — Under the hypotheses of (3.4.4), suppose further that Y is quasi-
compact, and F is of finite type. Then the canonical homomorphism σ : p∗(p∗(F(n)))→ F(n)
is surjective for all sufficiently large n.

Remarks (3.4.7). — For any morphism p : X → Y of ringed spaces, and OX module
F , the surjectivity of σ : p∗(p∗(F)) → F amounts to the following: for every x ∈ X and
every section s of F on a neighborhood V of x, there is a neighborhood U of p(x) in Y ,
a neighborhood W ⊆ V ∩ p−1(U) of x, and finitely many sections ti ∈ F(p−1(U)) and
ai ∈ OX(W ), such that

s|W =
∑
i

ai(ti|W ).

If Y is an affine scheme, and p∗(F) is quasi-coherent, this is equivalent to F being generated
by its global sections on X. Hence for any morphism p : X → Y of preschemes, and any
quasi-coherent OX module F such that p∗(F) is quasi-coherent, the following are equivalent:

(a) σ : p∗(p∗(F))→ F is surjective;
(b) there exists a quasi-coherent OY module G such that p∗(G)→ F is surjective;
(c) for every open affine U ⊆ Y , F|p−1(U) is generated by its sections on p−1(U).

Corollary (3.4.8). — Under the hypotheses of (3.4.4), suppose that Y is quasi-compact
and separated, or its underlying space is Noetherian. Let F be a quasi-coherent OX module
of finite type. Then for sufficiently large n, F is isomorphic to a quotient of an OX module
of the form (p∗(G))(−n), where G is a quasi-coherent OY module of finite type (depending
on n).

3.5. Functorial behavior.

(3.5.1). Let φ : S ′ → S be a homomorphism of graded quasi-coherent OY algebras, and
set X = Proj(S), X ′ = Proj(S ′), with structure morphisms p : X → Y , p′ : X ′ → Y . For
each open affine U ⊆ Y , the homomorphism φU : Γ(U,S ′) = S ′U → SU = Γ(U,S) induces a
U -morphism ΦU : G(φU) → X ′U , by (2.8.1). For V ⊆ U , we have G(φV ) = G(φU) ∩ p−1(V ),
and ΦV is the restriction of ΦU to G(φV ). Hence there is an open set G(φ) ⊆ X such that
G(φ)∩p−1(U) = G(φU) for every affine U , and a morphism Φ: G(φ)→ X ′ whose restriction
to G(φU) is ΦU .

If every y ∈ Y has a neighborhood U such that φU((S ′U)+) generates (SU)+ [or more
generally, such that the radical of the ideal it generates contains (SU)+], then G(φ) = X.

Proposition (3.5.2). — (i) [see (2.8.7)] If M is a quasi-coherent graded S module, then

(M[φ])
˜ ∼= Φ∗(M̃).
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(ii) [see (2.8.8)] IfM′ is a quasi-coherent graded S ′ module, there is a canonical fucntorial

homomorphism Φ∗(M̃′)→ (M′ ⊗S′ S)˜|G(φ). If S ′1 generates S ′, it is an isomorphism.
In particular, for each n there is a canonical homomorphism

(3.5.2.1) Φ∗(OX′(n))→ OX(n)|G(φ).

Proposition (3.5.3). — Given a morphism ψ : Y ′ → Y , and a quasi-coherent graded OY
algebra S, set S ′ = ψ∗S. Then Proj(S ′) ∼= Proj(S) ×Y Y ′, and if M is a quasi-coherent

graded S module, then ψ∗(M)˜ ∼= M̃ ⊗Y OY ′.
Corollary (3.5.4). — In the setting of (3.5.3), OX′(n) ∼= OX(n) ⊗Y Y ′, where X ′ =

Proj(S ′), X = Proj(S).

(3.5.5). Keeping the preceding notation, let Ψ: X ′ → X be the canonical morphism, and
set M′ = ψ∗(M). Assume that S1 generates S and that X is of finite type over Y ; then
the same hold for S ′, X ′, Y ′. Given an OX module F , set F ′ = Ψ∗(F). By (3.5.4) and (0,
4.3.3), we have F ′(n) = Ψ∗(F(n)). Let

q : X → Y, q′ : X ′ → Y ′

be the structure morphisms. The canonical homomorphism F(n) → Ψ∗(Ψ
∗(F(n))) =

Ψ∗(F ′(n)) gives rise to q∗(F(n))→ q∗(Ψ∗(F ′(n))) = ψ∗(q
′
∗(F ′(n))). Hence we have a canon-

ical Ψ-homomorphism θ : Γ∗(F)→ Γ∗(F ′). Then (2.8.13.1-2) yield commutative diagrams

F −−−→ F ′

βF

x xβF′
Γ∗(F)˜ θ̃−−−→ Γ∗(F ′),

Γ∗(M̃)
θ−−−→ Γ∗(M̃′)

αM

x xαM′
M −−−→ M′ ,

where the unlabelled horizontal arrows are the canonical Ψ- or ψ-morphisms.
(3.5.6). Now suppose given a morphism g : Y ′ → Y , a graded quasi-coherent OY algebra

(resp. OY ′ algebra) S (resp. S ′), and a g-homomorphism of graded algebras u : S → S ′ (i.e.,
a homomorphism u : S → g∗(S ′), or equivalently u] : g∗(S)→ S ′). This gives a Y ′-morphism
G(u])→ Proj(g∗(S)) = X ×Y Y ′, where X = Proj(S), and G(u]) is open in X ′ = Proj(S ′).
Composing with the projection of X×Y Y ′ on X, we get a morphism v : G(u])→ X, denoted
v = Proj(u), and commutative diagram

G(u])
v−−−→ Xy y

Y ′
g−−−→ Y .
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To any quasi-coherent graded S module M there corresponds a canonical v-morphism

(3.5.6.1) υ : M̃ → (g∗(M)⊗g∗(S) S ′)˜|G(u]),

and if S1 generates S, then υ] is an isomorphism. In particular, we have

(3.5.6.2) υ : OX(n)→ OX′(n)|G(u]).

3.6. Closed subschemes of Proj(S).

(3.6.1). Using (3.1.8), the analog of (2.9.1) holds for a homomorphism of graded quasi-
coherent OY -alebras φ : S → S ′.

Proposition (3.6.2). — [see (2.9.2)] Let X = Proj(S).
(i) If φ : S → S ′ is (TN)-surjective, then the associated morphism Φ = Proj(φ) (3.5.1) is

defined on all of Proj(S ′) and is a closed immersion into X. If I = ker(φ), the image of Φ

is the closed subscheme defined by the ideal sheaf Ĩ ⊆ OX .
(ii) Suppose further that S0 = OY , S1 generates S, and S1 is of finite type. Let X ′ ⊆ X

be a closed subscheme, defined by a quasi-coherent sheaf of ideals I ⊆ OX , and let J ⊆ S be
the preimage of Γ∗(I) under α : S → Γ∗(OX) (3.3.2). Set S ′ = S/J . Then X ′ is the image
of the closed immersion Proj(S ′)→ X associated to the canonical surjection S → S ′.

Corollary (3.6.3). — In (3.6.2, (i)), if S1 generates S, then Φ∗(OX(n)) = OX′(n) [see
(2.9.3)].

Corollary (3.6.4). — Let S be a quasi-coherent sheaf of graded OY algebras such that S1

generates S, let u : M → S1 be a surjective homomorphism of quasi-coherent OY modules,
and let u : SOY (M)→ S be the graded algebra homomorphism that extends u (1.7.4). Then
the morphism Proj(u) is a closed immersion of Proj(S) into Proj(SOY (M)).

3.7. Morphisms from a prescheme to a homogeneous spectrum.

(3.7.1). Let q : X → Y be a morphism of preschemes, L an invertible OX module, S
a graded quasi-coherent OY algebra; then q∗(S) is a graded quasi-coherent OX algebra.
Suppose given a graded OX algebra homomorphism

ψ : q∗(S)→ S ′ =
⊕
n≥0

L⊗n,

or equivalently, a q-morphism of graded algebras

ψ[ : S → q∗(S ′).

Now, Proj(S ′) = X, by (3.1.7) and (3.1.8, (iii)), so we get an open subset G(ψ) ⊆ X and a
Y -morphism

(3.7.1.1) rL,ψ : G(ψ)→ Proj(S) = P

associated to L and ψ, as in (3.5.6).
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(3.7.2). Let us describe r = rL,ψ more explicitly when Y = Spec(A) is affine, so S = S̃.

First suppose X = Spec(B) affine and L = L̃, where L is a free B module of rank 1, with
generator c, say. Then ψ corresponds to a graded A algebra homomorphism S⊗AB → B[c],
necessarily of the form (s ⊗ b) 7→ bv(s)cn for s ∈ Sn, where v : S → B is an (ungraded)
A algebra homomorphism. Given f ∈ Sd, set g = v(f). Then r−1(D+(f)) = D(g), and
the restriction r : D(g) → D+(f) corresponds to the ring homomorphism S(f) ⊆ Sf → Bg

induced by v. Here G(ψ) is the union of such open sets D(g) ⊆ X. The generalization to
arbitrary X (Y still affine) is as follows.

Proposition (3.7.3). — If Y = Spec(A) is affine and S = S̃, then for every f ∈ Sd, we
have

(3.7.3.1) r−1
L,ψ(D+(f)) = Xψ[(f) (where ψ[(f) ∈ Γ(X,L⊗d))

and the restriction Xψ[(f) → D+(f) = Spec(S(f)) corresponds (I, 2.2.4) to the algebra homo-
morphism

(3.7.3.2) ψ[f : S(f) → Γ(Xψ[(f),OX)

given, for s ∈ Snd, by

(3.7.3.3) ψ[(f)(s/f
n) = (ψ[(s)|Xψ[(f))/(ψ

[(f)|Xψ[(f))
n.

Note that G(ψ) is the union of the open sets Xψ[(f) for f ∈ Sd, d > 0. We say that rL,ψ
is defined everywhere if G(ψ) = X. This property is local with respect to Y .

Corollary (3.7.4). — Under the hypotheses of (3.7.3), rL,ψ is defined everywhere if and
only if for every x ∈ X there exists d > 0 and s ∈ Sd such that t = ψ[(s) ∈ Γ(X,L⊗n)
satisfies t(x) 6= 0.

This condition always holds if ψ is (TN)-surjective.
Similarly, the property that rL,ψ is dominant is local on Y , and for Y affine, we have:

Corollary (3.7.5). — Under the hypotheses of (3.7.3), rL,ψ is dominant if and only if for
every n > 0, every s ∈ Sn such that ψ[(s) ∈ Γ(X,L⊗n) is locally nilpotent, is itself nilpotent.

Proof: the condition says that if r−1
L,ψ(D+(s)) is empty, then D+(s) is empty [see (2.3.7)].

Proposition (3.7.6). — Given a morphism q : X → Y , an invertible OX module L, quasi-
coherent graded OY algebras S, S ′, and algebra homomorphisms u : S ′ → S, ψ : q∗(S) →⊕

n≥0 L⊗n, let ψ′ = ψ ◦ q∗(u). If rL,ψ′ is defined everywhere, then so is rL,ψ. If u is (TN)-
surjective and rL,ψ′ is dominant, then so is rL,ψ. Conversely, if u is (TN)-injective and rL,ψ
is dominant, then so is rL,ψ′.

Proposition (3.7.7). — Let Y be a quasi-compact prescheme, q : X → Y a quasi-compact
morphism, L an invertible OX module, S a quasi-coherent graded OY algebra, ψ : q∗(S) →⊕

n≥0 L⊗n an algebra homomorphism. Suppose S is the inductive limit of a filtered system

of quasi-coherent graded OY algebras (Sλ), and set ψλ = ψ ◦ q∗(φλ), where φλ : Sλ → S is
the canonical homomorphism. Then rL,ψ is defined everywhere if and only if some rL,ψλ is
defined everywhere; in that case rL,ψµ is defined everywhere for all µ ≥ λ.
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Corollary (3.7.8). — Under the hypotheses of (3.7.7), if the rL,ψλ are dominant, then so
is rL,ψ. The converse holds if the φλ are injective.

Remarks (3.7.9). — (i) With the notation of (3.7.1), there is a canonical homomorphism

(3.7.9.1) θ : r∗L,ψ(OP (n))→ L⊗n.

defined as in (3.5.6.2).
(ii) Let F be a quasi-coherent OX module. Suppose q quasi-compact and separated,

whence q∗(F ⊗ L⊗n) is quasi-coherent on Y . Then M′ =
⊕

nF ⊗ L⊗n is a quasi-coherent
graded S ′ module, and M = q∗(M′) =

⊕
n q∗(F ⊗ L⊗n) is a quasi-coherent S module via

ψ[. There is a canonical OX module homomorphism

(3.7.9.2) ξ : r∗L,ψ(M̃)→ F|G(ψ).

3.8. Criteria for immersion into a homogeneous spectrum.

(3.8.1). With the notation of (3.7.1), the property that rL,ψ is an (open, closed) immersion
is local on Y .

Proposition (3.8.2). — Under the hypotheses of (3.7.3), rL,ψ is defined everywhere and
is an immersion if and only if there exist sections sα ∈ Snα (nα > 0) such that, setting
fα = ψ[(sα), the following hold:

(i) The open sets Xfα cover X.
(ii) The Xfα are affine.
(iii) For every α and every t ∈ Γ(Xfα ,OX), there exists m > 0 and s ∈ Smnα such that

t = (ψ[(s)|Xfα)/(fα|Xfα)m.
Moreover, rL,ψ is an open immersion if there exists (sα) satisfying (i)-(iii) and:
(iv) For every m > 0 and s ∈ mnα such that ψ[(s)|Xfα = 0, there exists k such that

skαs = 0.
Likewise, rL,ψ is a closed immersion if there exists (sα) satisfying (i)-(iii) and:
(v) The open sets D+(sα) cover P = Proj(S).

Corollary (3.8.3). — Under the hypotheses of (3.7.6), if rL,ψ′ is defined everywhere and is
an immersion, then so is rL,ψ. If in addition u is (TN)-surjective and rL,ψ′ is an open (resp.
closed) immersion, then so is rL,ψ.

Proposition (3.8.4). — Assume the hypotheses of (3.7.7) and also that q : X → Y is of
finite type. Then rL,ψ is defined everywhere and is an immersion if and only if the same
holds for some rL,λ, in which case it also holds for rL,µ, for all µ ≥ λ.

Proposition (3.8.5). — Assume that Y is quasi-compact and separated, or that its under-
lying space is Noetherian. Let q : X → Y be a morphism of finite type, L an invertible OX
module, S a quasi-coherent graded OY algebra, ψ : S →

⊕
n≥0 L⊗n a graded algebra homo-

morphism. Then rL,ψ is defined everywhere and is an immersion if and only if there exist
n > 0 and a sub-OY module E ⊆ Sn of finite type such that:
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(a) the homomorphism ψn ◦ q∗(jn) : q∗(E) → L⊗n (where jn : E → Sn is the inclusion) is
surjective; and

(b) letting S ′ be the (graded) sub-OY algebra of S generated by E, j′ : S ′ → S the inclusion,
and ψ′ = ψ ◦ q∗(j′), rL,ψ′ is defined everywhere and is an immersion.

When these conditions hold, they also hold for every quasi-coherent sub-OY module E ⊆
E ′ ⊆ Sn, and for the image of E⊗k in Skn.


