Synopsis of material from EGA Chapter II, §3

3. Homogeneous spectrum of a sheaf of graded algebras

3.1. Homogeneous spectrum of a graded quasi-coherent \mathcal{O}_Y algebra.

(3.1.1). Let Y be a prescheme. A sheaf of graded \mathcal{O}_Y algebras $\mathcal{S} = \bigoplus_n \mathcal{S}_n$ is quasi-coherent iff each \mathcal{S}_n is; similarly for a graded \mathcal{S} module \mathcal{M} . The notations $\mathcal{S}^{(d)}$, $\mathcal{M}(n)$, etc., are used analogously to those for graded algebras and modules [see (2.1.1)].

Let $U = \operatorname{Spec}(A) \subseteq Y$ be an open affine. Then $\mathcal{S}|U = S$, where $S = \Gamma(U, \mathcal{S})$ is a graded A algebra. Set $X_U = \operatorname{Proj}(S)$. Given another affine $U' = \operatorname{Spec}(A') \subseteq U$, we have a ring homomorphism $A \to A'$ corresponding to $U' \hookrightarrow U$, and the restriction homomorphism $S \to S' = \Gamma(U', \mathcal{S})$ is just the induced map $S \to S' = S \otimes_A A'$ (I, 1.6.4). Hence $X_{U'} = X_U \times_U U'$ by (2.8.10), *i.e.*, $X_{U'} = f_U^{-1}(U')$, where $f_U \colon X_U \to U$ is the stucture morphism. Let $\rho_{U',U} \colon X_{U'} \to X_U$ be the open immersion thus defined. Given $U'' \subseteq U' \subseteq U$, we have $\rho_{U'',U} = \rho_{U',U} \circ \rho_{U'',U'}$.

Proposition (3.1.2). — Given a quasi-coherent sheaf of positively graded \mathcal{O}_Y algebras \mathcal{S} , there is a prescheme $f: X \to Y$ over Y, unique up to canonical isomorphism, such that for every open affine $U \subseteq Y$, $f^{-1}(U)$ is identified with X_U , in such a way that for every $U' \subseteq U$, the inclusion $f^{-1}(U') \subseteq f^{-1}(U)$ is identified with $\rho_{U',U}$.

(3.1.3). The prescheme X in (3.1.2) is the homogeneous spectrum of \mathcal{S} , denoted $\operatorname{Proj}(\mathcal{S})$. X is separated over Y by (2.4.2) and (I, 5.5.5), and if \mathcal{S} is an \mathcal{O}_Y algebra of finite type (I, 9.6.2), then X is of finite type over Y. For any open $U \subseteq Y$, we clearly have $f^{-1}(U) \cong \operatorname{Proj}(\mathcal{S}|U)$.

Proposition (3.1.4). — Let $f \in \Gamma(Y, \mathcal{S}_d)$, d > 0. There is an open subset $X_f \subseteq X$ such that $X_f \cap X_U$ is the basic open set $D_+(f|U)$ of X_U for each affine U. In particular, $X_f \cong \operatorname{Spec}(\mathcal{S}^{(d)}/(f-1)\mathcal{S}^{(d)})$ is affine over Y.

We call X_f the non-vanishing locus of f.

Corollary (3.1.5). $-X_{fg} = X_f \cap X_g$.

Corollary (3.1.6). — If (f_{α}) is a family of homogeneous sections of S, and if the sheaf of ideals in S that they generate contains S_n for all sufficiently large n, then the open sets $X_{f_{\alpha}}$ cover X.

Corollary (3.1.7). — If \mathcal{A} is a quasi-coherent sheaf of \mathcal{O}_Y algebras, then $\operatorname{Proj}(\mathcal{A}[t]) = \operatorname{Spec}(\mathcal{A})$. In particular, $\operatorname{Proj}(\mathcal{O}_Y[t]) = Y$.

Proposition (3.1.8). — (i) $\operatorname{Proj}(\mathcal{S}) \cong \operatorname{Proj}(\mathcal{S}^{(d)})$ as a Y-scheme [see (2.4.7, (i))].

(ii) Let $\mathcal{S}' = \mathcal{O}_Y \oplus \bigoplus_{n>0} \mathcal{S}_n$. Then $\operatorname{Proj}(\mathcal{S}) \cong \operatorname{Proj}(\mathcal{S}')$ as a Y-scheme [see (2.4.8)].

(iii) Let \mathcal{L} be an invertible sheaf on Y, and let $\mathcal{S}_{(\mathcal{L})} = \bigoplus_n (\mathcal{S}_n \otimes_{\mathcal{O}_Y} \mathcal{L}^{\otimes n})$. Then there is a canonical isomorphism of Y-schemes $\operatorname{Proj}(\mathcal{S}) \cong \operatorname{Proj}(\mathcal{S}_{(\mathcal{L})})$.

(3.1.9). By (0, 4.1.3) and (I, 1.3.14), S_1 generates S iff $\Gamma(U_{\alpha}, S_1)$ generates $\Gamma(U_{\alpha}, S)$, for all U_{α} in an affine covering; and if so, this holds for every affine $U \subseteq Y$.

Proposition (3.1.10). — Suppose Y has a finite affine open covering (U_i) such that each $\Gamma(U_i, S)$ is of finite type over $\Gamma(U_i, \mathcal{O}_Y)$. Then for some d, $S^{(d)}$ is generated by S_d , and S_d is an \mathcal{O}_Y module of finite type.

Corollary (3.1.11). — Under the hypotheses of (3.1.10), $\operatorname{Proj}(\mathcal{S}) \cong \operatorname{Proj}(\mathcal{S}')$, where \mathcal{S}' is generated as an \mathcal{O}_Y algebra by \mathcal{S}'_1 , which is a finitely generated \mathcal{O}_Y module.

(3.1.12). Let \mathcal{N} be the nilradical of \mathcal{S} . It's quasi-coherent by (I, 5.5.1). Put $\mathcal{N}_+ = \mathcal{N} \cap \mathcal{S}_+$, a graded \mathcal{S}_0 module by (2.1.10). We call \mathcal{S} essentially reduced if $\mathcal{N}_+ = 0$, which is equivalent to \mathcal{S}_y being essentially reduced [see (2.1.10)] for all $y \in Y$. We call \mathcal{S} integral if \mathcal{S}_y is an integral domain with $(\mathcal{S}_y)_+ \neq 0$ for all $y \in Y$.

Proposition (3.1.13). — If $X = \operatorname{Proj}(\mathcal{S})$, then $X_{\operatorname{red}} \cong \operatorname{Proj}(\mathcal{S}/\mathcal{N}_+)$. In particular, X is reduced if \mathcal{S} is essentially reduced [see (2.4.4, (i))].

Proposition (3.1.14). — Let Y be an integral prescheme, S a graded quasi-coherent \mathcal{O}_Y algebra such that $S_0 = \mathcal{O}_Y$.

(i) If S is integral (3.1.12), then $X = \operatorname{Proj}(S)$ is integral, and the structure morphism $\phi: X \to Y$ is dominant.

(ii) Conversely, if S is essentially reduced, X is integral, and ϕ is dominant, then S is integral.

3.2. Sheaf on $\operatorname{Proj}(S)$ associated to a graded S module.

(3.2.1). Let \mathcal{S} be a quasi-coherent sheaf of graded \mathcal{O}_Y modules, \mathcal{M} a quasi-coherent sheaf of graded \mathcal{S} modules (quasi-coherent as an \mathcal{S} module sheaf equivalently as an \mathcal{O}_Y module sheaf). Keeping the notation of (3.1.1), let $\widetilde{\mathcal{M}}_U$ be the sheaf on X_U associated to $\Gamma(U, \mathcal{M})$ (2.5.3). If $U' \subseteq U$, then $\Gamma(U', \mathcal{M}) = \Gamma(U, \mathcal{M}) \otimes_A A'$, hence $\widetilde{\mathcal{M}}_{U'} = \rho_{U',U}^* \widetilde{\mathcal{M}}_U = \widetilde{\mathcal{M}}_U | X_{U'}$.

Proposition (3.2.2). — There is a unique quasi-coherent \mathcal{O}_X module $\widetilde{\mathcal{M}}$ such that $\widetilde{\mathcal{M}}|X_U = \widetilde{\mathcal{M}}_U$ for all open affines $U \subseteq Y$.

Proposition (3.2.3). — Let $f \in \Gamma(Y, \mathcal{S}_d)$, d > 0. The isomorphism $X_f \cong \operatorname{Spec}(\mathcal{S}^{(d)}/(f-1)\mathcal{S}^{(d)})$ identifies $\widetilde{\mathcal{M}}|X_f$ with the sheaf associated to the $\mathcal{S}^{(d)}/(f-1)\mathcal{S}^{(d)}$ module $\mathcal{M}^{(d)}/(f-1)\mathcal{M}^{(d)}$ [see (2.8.12)].

Proposition (3.2.4). — $\mathcal{M} \mapsto \widetilde{\mathcal{M}}$ is an exact, covariant functor, which preserves direct sums and direct limits.

In particular, if $\mathcal{J} \subseteq \mathcal{S}$ is a homogeneous ideal sheaf, then $\widetilde{\mathcal{J}}$ is a sheaf of ideals in \mathcal{O}_X . If \mathcal{I} is a sheaf of ideals in \mathcal{O}_Y , then $(\mathcal{IM})^{\sim} = \mathcal{I} \cdot \widetilde{\mathcal{M}}$.

Proposition (3.2.5). — Let $f \in S_d$. The restriction of $S(nd)^{\sim}$ to X_f is isomorphic to \mathcal{O}_{X_f} [with generating section f^n]. In particular, if S_1 generates S, then each $S(n)^{\sim}$ is invertible [see (2.5.7–9)]. As before, we define

- $(3.2.5.1) \qquad \qquad \mathcal{O}_X(n) = \mathcal{S}(n)^{\sim},$
- (3.2.5.2) $\mathcal{F}_X(n) = \mathcal{F} \otimes_{\mathcal{O}_X} \mathcal{O}_X(n).$

Proposition (3.2.6). — There are canonical, functorial homomorphisms

(3.2.6.1) $\lambda \colon \widetilde{\mathcal{M}} \otimes_{\mathcal{O}_X} \widetilde{\mathcal{N}} \to (\mathcal{M} \otimes_{\mathcal{S}} \mathcal{N})^{\tilde{}},$

(3.2.6.2)
$$\mu \colon \mathcal{H}om_{\mathcal{S}}(\mathcal{M}, \mathcal{N})^{\sim} \to \mathcal{H}om_{\mathcal{O}_{X}}(\widetilde{\mathcal{M}}, \widetilde{\mathcal{N}}).$$

If S_1 generates S, then λ is an isomorphism, and if in addition \mathcal{M} is finitely presented, then μ is an isomorphism [see (2.5.11-13)].

Corollary (3.2.7). — [see (2.5.14)] If S_1 generates S, then for all $m, n \in \mathbb{Z}$,

$$(3.2.7.1) \qquad \qquad \mathcal{O}_X(m) \otimes_{\mathcal{O}_X} \mathcal{O}_X(n) = \mathcal{O}_X(m+n)$$

$$(3.2.7.2) \qquad \qquad \mathcal{O}_X(n) = \mathcal{O}_X(1)^{\otimes n}.$$

Corollary (3.2.8). — [see (2.5.15)] If \mathcal{S}_1 generates \mathcal{S} , then $(\mathcal{M}(n))^{\sim} = \widetilde{\mathcal{M}}(n)$.

Remarks (3.2.9). — (i) If $\mathcal{S} = \mathcal{A}[t]$ as in (3.1.7), then $\mathcal{O}_X(n) \cong \mathcal{O}_X$ for all n. If \mathcal{N} is a quasi-coherent sheaf of \mathcal{A} modules, $\mathcal{M} = \mathcal{N} \otimes_{\mathcal{A}} \mathcal{A}[t]$, then $\widetilde{\mathcal{M}}$ is the sheaf on $X \cong \text{Spec}(\mathcal{A})$ associated to \mathcal{N} as in (1.4.3).

(ii) If $\mathcal{S}'_0 = \mathcal{O}_Y$, $\mathcal{S}'_n = \mathcal{S}'_n$ for n > 0, then the canonical isomorphism $X \cong X'$ identifies $\mathcal{O}_X(n)$ with $\mathcal{O}_{X'}(n)$. If $X^{(d)} = \operatorname{Proj}(\mathcal{S}^{(d)})$, the canonical isomorphism $X \cong X^{(d)}$ identifies $\mathcal{O}_{X^{(d)}}(n)$ with $\mathcal{O}_X(nd)$ [see (2.5.16)].

Proposition (3.2.10). — Let \mathcal{L} be an invertible sheaf on Y. The canonical isomorphism $X_{(\mathcal{L})} = \operatorname{Proj}(\mathcal{S}_{(\mathcal{L})}) \cong X = \operatorname{Proj}(S)$ in (3.1.8, (iii)) identifies $\mathcal{O}_{X_{(\mathcal{L})}}(n)$ with $\mathcal{O}_X(n) \otimes_Y \mathcal{L}^{\otimes n}$.

3.3. Graded S module associated with a sheaf on $\operatorname{Proj}(S)$.

In this section we assume that S_1 generates S. Recall that by (3.1.8 (i)), this is no essential restriction when the finiteness conditions in (3.1.10) hold.

(3.3.1). Let $p: X = \operatorname{Proj}(\mathcal{S}) \to Y$ be the structure morphism. For any sheaf of \mathcal{O}_X modules \mathcal{F} , put

(3.3.1.1)
$$\Gamma_*(\mathcal{F}) = \bigoplus_{n \in \mathbb{Z}} p_*(\mathcal{F}(n)).$$

In particular,

(3.3.1.2)
$$\Gamma_*(\mathcal{O}) = \bigoplus_{n \in \mathbb{Z}} p_*(\mathcal{O}(n))$$

The canonical homomorphism (0, 4.2.2) $p_*(\mathcal{F}) \otimes_{\mathcal{O}_Y} p_*(\mathcal{G}) \to p_*(\mathcal{F} \otimes_{\mathcal{O}_X} \mathcal{G})$ makes $\Gamma_*(\mathcal{O})$ a graded \mathcal{O}_Y algebra, and $\Gamma_*(\mathcal{F})$ a graded $\Gamma_*(\mathcal{O})$ module. The functor $\Gamma_*(-)$ is left exact; in particular, if $\mathcal{J} \subseteq \mathcal{O}_X$ is an ideal sheaf, then $\Gamma_*(\mathcal{J})$ is a homogeneous ideal sheaf in $\Gamma_*(\mathcal{O})$.

(3.3.2). As in (2.6.2), for any graded S module \mathcal{M} , there is a canonical homomorphism of graded sheaves

$$(3.3.2.3) \qquad \qquad \alpha \colon \mathcal{M} \to \Gamma_*(\mathcal{M}).$$

In particular, $\alpha \colon \mathcal{S} \to \Gamma_*(\mathcal{O})$ is a homomorphism of sheaves of graded algebras, which makes $\Gamma_*(\widetilde{\mathcal{M}})$ a graded \mathcal{S} module, and (3.3.2.3) an \mathcal{S} module homomorphism.

Note that α_n induces $p^*(\mathcal{M}_n) \to \widetilde{\mathcal{M}}(n)$; this is the sheaf homomorphism associated by (3.2.4) to the canonical graded \mathcal{O}_Y module homomorphism $\mathcal{M}_n \otimes_{\mathcal{O}_Y} \mathcal{S} \to \mathcal{M}(n)$.

Proposition (3.3.3). — Given $f \in \Gamma(X, \mathcal{S}_d)$, d > 0, X_f is the non-vanishing locus of the section $\alpha_d(f)$ of the invertible sheaf $\mathcal{O}_X(d)$.

(3.3.4). Suppose now that for every quasi-coherent \mathcal{F} on X, the sheaves $p_*(\mathcal{F})$ and hence $\Gamma_*(\mathcal{F})$ are quasi-coherent on Y. In particular, this holds if X is of finite type over Y (I, 9.2.2). Then $\Gamma_*(\mathcal{F})^{\sim}$ is defined and quasi-coherent on X. As in (2.6.4), there is a canonical homomorphism

(3.3.4.1)
$$\beta \colon \Gamma_*(\mathcal{F})^{\widetilde{}} \to \mathcal{F}.$$

Proposition (3.3.5). — Let \mathcal{M} be a quasi-coherent graded \mathcal{S} module, \mathcal{F} a quasi-coherent sheaf on \mathcal{O}_X . Then each of the following maps in the identity [see (2.6.5)]:

(3.3.5.1) $\widetilde{\mathcal{M}} \stackrel{\widetilde{\alpha}}{\to} \Gamma_*(\widetilde{\mathcal{M}})^{\widetilde{}} \stackrel{\beta}{\to} \widetilde{\mathcal{M}},$

(3.3.5.2) $\Gamma_*(\mathcal{F}) \xrightarrow{\alpha} \Gamma_*(\Gamma_*(\mathcal{F})) \xrightarrow{\Gamma_*(\beta)} \Gamma_*(\mathcal{F}).$

3.4. Finiteness conditions.

Proposition (3.4.1). — Let S be a quasi-coherent sheaf of graded \mathcal{O}_Y algebras, generated by S_1 , and suppose further that S_1 is an \mathcal{O}_Y module of finite type. Then $X = \operatorname{Proj}(S)$ is of finite type over Y [see (2.7.1, (ii))].

(3.4.2). Consider two conditions on a graded \mathcal{S} module \mathcal{M} :

(TF) There exists n such that $\bigoplus_{k>n} \mathcal{M}_k$ is a sheaf of \mathcal{S} modules of finite type;

(TN) There exists n such that $\mathcal{M}_k = 0$ for $k \ge n$.

The terminology of (2.7.2) will be used in this context also.

Proposition (3.4.3). — [see (2.7.3)] Assume that S_1 is of finite type and generates S.

(i) If \mathcal{M} satisfies (TF), then $\widetilde{\mathcal{M}}$ is of finite type.

(ii) If \mathcal{M} satisfies (TF), then $\widetilde{\mathcal{M}} = 0$ if and only if M satisfies (TN).

Theorem (3.4.4). — Assume that S_1 is of finite type and generates S. For every quasicoherent sheaf of \mathcal{O}_X modules \mathcal{F} , the canonical homomorphism β in (3.3.4) is an isomorphism [see (2.7.5)]. Corollary (3.4.5). — Under the hypotheses of (3.4.4), every quasi-coherent \mathcal{O}_X module \mathcal{F} is of the form $\widetilde{\mathcal{M}}$ for some graded \mathcal{S} module \mathcal{M} [see (2.7.7)]. If \mathcal{F} is of finite type, and if Yis quasi-compact and separated, or if its underlying space is Noetherian, then \mathcal{M} can be taken to be of finite type [see (2.7.8)—the hypotheses on Y serve to imply that X is quasi-compact, by (3.4.1)].

Corollary (3.4.6). — Under the hypotheses of (3.4.4), suppose further that Y is quasicompact, and \mathcal{F} is of finite type. Then the canonical homomorphism $\sigma: p^*(p_*(\mathcal{F}(n))) \to \mathcal{F}(n)$ is surjective for all sufficiently large n.

Remarks (3.4.7). — For any morphism $p: X \to Y$ of ringed spaces, and \mathcal{O}_X module \mathcal{F} , the surjectivity of $\sigma: p^*(p_*(\mathcal{F})) \to \mathcal{F}$ amounts to the following: for every $x \in X$ and every section s of \mathcal{F} on a neighborhood V of x, there is a neighborhood U of p(x) in Y, a neighborhood $W \subseteq V \cap p^{-1}(U)$ of x, and finitely many sections $t_i \in \mathcal{F}(p^{-1}(U))$ and $a_i \in \mathcal{O}_X(W)$, such that

$$s|W = \sum_{i} a_i(t_i|W).$$

If Y is an affine scheme, and $p_*(\mathcal{F})$ is quasi-coherent, this is equivalent to \mathcal{F} being generated by its global sections on X. Hence for any morphism $p: X \to Y$ of preschemes, and any quasi-coherent \mathcal{O}_X module \mathcal{F} such that $p_*(\mathcal{F})$ is quasi-coherent, the following are equivalent: (a) $\sigma: p^*(p_*(\mathcal{F})) \to \mathcal{F}$ is surjective;

(a) $0 \cdot p (p_*(S)) \neq S$ is sufficience,

(b) there exists a quasi-coherent \mathcal{O}_Y module \mathcal{G} such that $p^*(\mathcal{G}) \to \mathcal{F}$ is surjective;

(c) for every open affine $U \subseteq Y$, $\mathcal{F}|p^{-1}(U)$ is generated by its sections on $p^{-1}(U)$.

Corollary (3.4.8). — Under the hypotheses of (3.4.4), suppose that Y is quasi-compact and separated, or its underlying space is Noetherian. Let \mathcal{F} be a quasi-coherent \mathcal{O}_X module of finite type. Then for sufficiently large n, \mathcal{F} is isomorphic to a quotient of an \mathcal{O}_X module of the form $(p^*(\mathcal{G}))(-n)$, where \mathcal{G} is a quasi-coherent \mathcal{O}_Y module of finite type (depending on n).

3.5. Functorial behavior.

(3.5.1). Let $\phi: \mathcal{S}' \to \mathcal{S}$ be a homomorphism of graded quasi-coherent \mathcal{O}_Y algebras, and set $X = \operatorname{Proj}(\mathcal{S}), X' = \operatorname{Proj}(\mathcal{S}')$, with structure morphisms $p: X \to Y, p': X' \to Y$. For each open affine $U \subseteq Y$, the homomorphism $\phi_U: \Gamma(U, \mathcal{S}') = S'_U \to S_U = \Gamma(U, \mathcal{S})$ induces a U-morphism $\Phi_U: G(\phi_U) \to X'_U$, by (2.8.1). For $V \subseteq U$, we have $G(\phi_V) = G(\phi_U) \cap p^{-1}(V)$, and Φ_V is the restriction of Φ_U to $G(\phi_V)$. Hence there is an open set $G(\phi) \subseteq X$ such that $G(\phi) \cap p^{-1}(U) = G(\phi_U)$ for every affine U, and a morphism $\Phi: G(\phi) \to X'$ whose restriction to $G(\phi_U)$ is Φ_U .

If every $y \in Y$ has a neighborhood U such that $\phi_U((S'_U)_+)$ generates $(S_U)_+$ [or more generally, such that the radical of the ideal it generates contains $(S_U)_+$], then $G(\phi) = X$.

Proposition (3.5.2). — (i) [see (2.8.7)] If \mathcal{M} is a quasi-coherent graded \mathcal{S} module, then $(\mathcal{M}_{[\phi]})^{\widetilde{}} \cong \Phi_*(\widetilde{\mathcal{M}}).$

(ii) [see (2.8.8)] If \mathcal{M}' is a quasi-coherent graded \mathcal{S}' module, there is a canonical functional homomorphism $\Phi^*(\widetilde{\mathcal{M}}') \to (\mathcal{M}' \otimes_{\mathcal{S}'} \mathcal{S})^{\widetilde{}}|G(\phi)$. If \mathcal{S}'_1 generates \mathcal{S}' , it is an isomorphism.

In particular, for each n there is a canonical homomorphism

$$(3.5.2.1) \qquad \Phi^*(\mathcal{O}_{X'}(n)) \to \mathcal{O}_X(n) | G(\phi).$$

Proposition (3.5.3). — Given a morphism $\psi: Y' \to Y$, and a quasi-coherent graded \mathcal{O}_Y algebra \mathcal{S} , set $\mathcal{S}' = \psi^* \mathcal{S}$. Then $\operatorname{Proj}(\mathcal{S}') \cong \operatorname{Proj}(\mathcal{S}) \times_Y Y'$, and if \mathcal{M} is a quasi-coherent graded \mathcal{S} module, then $\psi^*(\mathcal{M})^{\sim} \cong \widetilde{\mathcal{M}} \otimes_Y \mathcal{O}_{Y'}$.

Corollary (3.5.4). — In the setting of (3.5.3), $\mathcal{O}_{X'}(n) \cong \mathcal{O}_X(n) \otimes_Y Y'$, where $X' = \operatorname{Proj}(\mathcal{S}')$, $X = \operatorname{Proj}(\mathcal{S})$.

(3.5.5). Keeping the preceding notation, let $\Psi: X' \to X$ be the canonical morphism, and set $\mathcal{M}' = \psi^*(\mathcal{M})$. Assume that \mathcal{S}_1 generates \mathcal{S} and that X is of finite type over Y; then the same hold for \mathcal{S}', X', Y' . Given an \mathcal{O}_X module \mathcal{F} , set $\mathcal{F}' = \Psi^*(\mathcal{F})$. By (3.5.4) and (0, 4.3.3), we have $\mathcal{F}'(n) = \Psi^*(\mathcal{F}(n))$. Let

$$q: X \to Y, \qquad q': X' \to Y'$$

be the structure morphisms. The canonical homomorphism $\mathcal{F}(n) \to \Psi_*(\Psi^*(\mathcal{F}(n))) = \Psi_*(\mathcal{F}'(n))$ gives rise to $q_*(\mathcal{F}(n)) \to q_*(\Psi_*(\mathcal{F}'(n))) = \psi_*(q'_*(\mathcal{F}'(n)))$. Hence we have a canonical Ψ -homomorphism $\theta \colon \Gamma_*(\mathcal{F}) \to \Gamma_*(\mathcal{F}')$. Then (2.8.13.1-2) yield commutative diagrams

${\cal F}$	\longrightarrow	\mathcal{F}'
$\beta_{\mathcal{F}}$		$\int \beta_{\mathcal{F}'}$
$\Gamma_*(\mathcal{F})$	$\xrightarrow[]{\widetilde{\theta}}$	$\Gamma_*(\mathcal{F}'),$
$\Gamma_*(\widetilde{\mathcal{M}})$	$\xrightarrow{\theta}$	$\Gamma_*(\widetilde{\mathcal{M}'})$
$\alpha_{\mathcal{M}}$		$\int \alpha_{\mathcal{M}'}$
${\mathcal M}$	\longrightarrow	\mathcal{M}' ,

where the unlabelled horizontal arrows are the canonical Ψ - or ψ -morphisms.

(3.5.6). Now suppose given a morphism $g: Y' \to Y$, a graded quasi-coherent \mathcal{O}_Y algebra (resp. $\mathcal{O}_{Y'}$ algebra) \mathcal{S} (resp. \mathcal{S}'), and a g-homomorphism of graded algebras $u: \mathcal{S} \to \mathcal{S}'$ (*i.e.*, a homomorphism $u: \mathcal{S} \to g_*(\mathcal{S}')$, or equivalently $u^{\sharp}: g^*(\mathcal{S}) \to \mathcal{S}'$). This gives a Y'-morphism $G(u^{\sharp}) \to \operatorname{Proj}(g^*(\mathcal{S})) = X \times_Y Y'$, where $X = \operatorname{Proj}(\mathcal{S})$, and $G(u^{\sharp})$ is open in $X' = \operatorname{Proj}(\mathcal{S}')$. Composing with the projection of $X \times_Y Y'$ on X, we get a morphism $v: G(u^{\sharp}) \to X$, denoted $v = \operatorname{Proj}(u)$, and commutative diagram

$$\begin{array}{cccc} G(u^{\sharp}) & \stackrel{v}{\longrightarrow} & X \\ & & & \downarrow \\ & & & \downarrow \\ Y' & \stackrel{g}{\longrightarrow} & Y. \end{array}$$

To any quasi-coherent graded \mathcal{S} module \mathcal{M} there corresponds a canonical v-morphism

(3.5.6.1)
$$\upsilon \colon \widetilde{\mathcal{M}} \to (g^*(\mathcal{M}) \otimes_{g^*(\mathcal{S})} \mathcal{S}') \widetilde{|} G(u^{\sharp}),$$

and if \mathcal{S}_1 generates \mathcal{S} , then v^{\sharp} is an isomorphism. In particular, we have

(3.5.6.2)
$$\upsilon \colon \mathcal{O}_X(n) \to \mathcal{O}_{X'}(n) | G(u^{\sharp}).$$

3.6. Closed subschemes of $\operatorname{Proj}(\mathcal{S})$.

(3.6.1). Using (3.1.8), the analog of (2.9.1) holds for a homomorphism of graded quasicoherent \mathcal{O}_Y -alebras $\phi: \mathcal{S} \to \mathcal{S}'$.

Proposition (3.6.2). — [see (2.9.2)] Let $X = \operatorname{Proj}(S)$.

(i) If $\phi: S \to S'$ is (TN)-surjective, then the associated morphism $\Phi = \operatorname{Proj}(\phi)$ (3.5.1) is defined on all of $\operatorname{Proj}(S')$ and is a closed immersion into X. If $\mathcal{I} = \ker(\phi)$, the image of Φ is the closed subscheme defined by the ideal sheaf $\widetilde{\mathcal{I}} \subseteq \mathcal{O}_X$.

(ii) Suppose further that $S_0 = \mathcal{O}_Y$, S_1 generates S, and S_1 is of finite type. Let $X' \subseteq X$ be a closed subscheme, defined by a quasi-coherent sheaf of ideals $\mathcal{I} \subseteq \mathcal{O}_X$, and let $\mathcal{J} \subseteq S$ be the preimage of $\Gamma_*(\mathcal{I})$ under $\alpha \colon S \to \Gamma_*(\mathcal{O}_X)$ (3.3.2). Set $S' = S/\mathcal{J}$. Then X' is the image of the closed immersion $\operatorname{Proj}(S') \to X$ associated to the canonical surjection $S \to S'$.

Corollary (3.6.3). — In (3.6.2, (i)), if S_1 generates S, then $\Phi^*(\mathcal{O}_X(n)) = \mathcal{O}_{X'}(n)$ [see (2.9.3)].

Corollary (3.6.4). — Let S be a quasi-coherent sheaf of graded \mathcal{O}_Y algebras such that S_1 generates S, let $u: \mathcal{M} \to S_1$ be a surjective homomorphism of quasi-coherent \mathcal{O}_Y modules, and let $\overline{u}: \mathbf{S}_{\mathcal{O}_Y}(\mathcal{M}) \to S$ be the graded algebra homomorphism that extends u (1.7.4). Then the morphism $\operatorname{Proj}(\overline{u})$ is a closed immersion of $\operatorname{Proj}(S)$ into $\operatorname{Proj}(\mathbf{S}_{\mathcal{O}_Y}(\mathcal{M}))$.

3.7. Morphisms from a prescheme to a homogeneous spectrum.

(3.7.1). Let $q: X \to Y$ be a morphism of preschemes, \mathcal{L} an invertible \mathcal{O}_X module, \mathcal{S} a graded quasi-coherent \mathcal{O}_Y algebra; then $q^*(\mathcal{S})$ is a graded quasi-coherent \mathcal{O}_X algebra. Suppose given a graded \mathcal{O}_X algebra homomorphism

$$\psi \colon q^*(\mathcal{S}) \to \mathcal{S}' = \bigoplus_{n \ge 0} \mathcal{L}^{\otimes n},$$

or equivalently, a q-morphism of graded algebras

$$\psi^{\flat} \colon \mathcal{S} \to q_*(\mathcal{S}')$$

Now, $\operatorname{Proj}(\mathcal{S}') = X$, by (3.1.7) and (3.1.8, (iii)), so we get an open subset $G(\psi) \subseteq X$ and a Y-morphism

(3.7.1.1) $r_{\mathcal{L},\psi} \colon G(\psi) \to \operatorname{Proj}(\mathcal{S}) = P$

associated to \mathcal{L} and ψ , as in (3.5.6).

(3.7.2). Let us describe $r = r_{\mathcal{L},\psi}$ more explicitly when $Y = \operatorname{Spec}(A)$ is affine, so $\mathcal{S} = \widetilde{S}$. First suppose X = Spec(B) affine and $\mathcal{L} = L$, where L is a free B module of rank 1, with generator c, say. Then ψ corresponds to a graded A algebra homomorphism $S \otimes_A B \to B[c]$, necessarily of the form $(s \otimes b) \mapsto bv(s)c^n$ for $s \in S_n$, where $v: S \to B$ is an (ungraded) A algebra homomorphism. Given $f \in S_d$, set g = v(f). Then $r^{-1}(D_+(f)) = D(g)$, and the restriction $r: D(g) \to D_+(f)$ corresponds to the ring homomorphism $S_{(f)} \subseteq S_f \to B_q$ induced by v. Here $G(\psi)$ is the union of such open sets $D(q) \subset X$. The generalization to arbitrary X (Y still affine) is as follows.

Proposition (3.7.3). — If Y = Spec(A) is affine and $S = \widetilde{S}$, then for every $f \in S_d$, we have

(3.7.3.1)
$$r_{\mathcal{L},\psi}^{-1}(D_+(f)) = X_{\psi^{\flat}(f)} \qquad (where \ \psi^{\flat}(f) \in \Gamma(X, \mathcal{L}^{\otimes d}))$$

and the restriction $X_{\psi^{\flat}(f)} \to D_+(f) = \operatorname{Spec}(S_{(f)})$ corresponds (I, 2.2.4) to the algebra homomorphism

(3.7.3.2)
$$\psi_f^{\flat} \colon S_{(f)} \to \Gamma(X_{\psi^{\flat}(f)}, \mathcal{O}_X)$$

given, for $s \in S_{nd}$, by

(3.7.3.3)
$$\psi_{(f)}^{\flat}(s/f^n) = (\psi^{\flat}(s)|X_{\psi^{\flat}(f)})/(\psi^{\flat}(f)|X_{\psi^{\flat}(f)})^n.$$

Note that $G(\psi)$ is the union of the open sets $X_{\psi^{\flat}(f)}$ for $f \in S_d$, d > 0. We say that $r_{\mathcal{L},\psi}$ is defined everywhere if $G(\psi) = X$. This property is local with respect to Y.

Corollary (3.7.4). — Under the hypotheses of (3.7.3), $r_{\mathcal{L},\psi}$ is defined everywhere if and only if for every $x \in X$ there exists d > 0 and $s \in S_d$ such that $t = \psi^{\flat}(s) \in \Gamma(X, \mathcal{L}^{\otimes n})$ satisfies $t(x) \neq 0$.

This condition always holds if ψ is (TN)-surjective.

Similarly, the property that $r_{\mathcal{L},\psi}$ is *dominant* is local on Y, and for Y affine, we have:

Corollary (3.7.5). — Under the hypotheses of (3.7.3), $r_{\mathcal{L},\psi}$ is dominant if and only if for every n > 0, every $s \in S_n$ such that $\psi^{\flat}(s) \in \Gamma(X, \mathcal{L}^{\otimes n})$ is locally nilpotent, is itself nilpotent. Proof: the condition says that if $r_{\mathcal{L},\psi}^{-1}(D_+(s))$ is empty, then $D_+(s)$ is empty [see (2.3.7)].

Proposition (3.7.6). — Given a morphism $q: X \to Y$, an invertible \mathcal{O}_X module \mathcal{L} , quasicoherent graded \mathcal{O}_Y algebras $\mathcal{S}, \mathcal{S}', and$ algebra homomorphisms $u: \mathcal{S}' \to \mathcal{S}, \psi: q^*(\mathcal{S}) \to \mathcal{S}$ $\bigoplus_{n>0} \mathcal{L}^{\otimes n}$, let $\psi' = \psi \circ q^*(u)$. If $r_{\mathcal{L},\psi'}$ is defined everywhere, then so is $r_{\mathcal{L},\psi}$. If u is (TN)surjective and $r_{\mathcal{L},\psi'}$ is dominant, then so is $r_{\mathcal{L},\psi}$. Conversely, if u is (TN)-injective and $r_{\mathcal{L},\psi}$ is dominant, then so is $r_{\mathcal{L},\psi'}$.

Proposition (3.7.7). — Let Y be a quasi-compact prescheme, $q: X \to Y$ a quasi-compact morphism, \mathcal{L} an invertible \mathcal{O}_X module, \mathcal{S} a quasi-coherent graded \mathcal{O}_Y algebra, $\psi: q^*(\mathcal{S}) \to \mathcal{O}_Y$ $\bigoplus_{n>0} \mathcal{L}^{\otimes n}$ an algebra homomorphism. Suppose \mathcal{S} is the inductive limit of a filtered system of quasi-coherent graded \mathcal{O}_Y algebras (\mathcal{S}^{λ}) , and set $\psi_{\lambda} = \psi \circ q^*(\phi_{\lambda})$, where $\phi_{\lambda} \colon \mathcal{S}^{\lambda} \to \mathcal{S}$ is the canonical homomorphism. Then $r_{\mathcal{L},\psi}$ is defined everywhere if and only if some $r_{\mathcal{L},\psi_{\lambda}}$ is defined everywhere; in that case $r_{\mathcal{L},\psi_{\mu}}$ is defined everywhere for all $\mu \geq \lambda$.

Corollary (3.7.8). — Under the hypotheses of (3.7.7), if the $r_{\mathcal{L},\psi_{\lambda}}$ are dominant, then so is $r_{\mathcal{L},\psi}$. The converse holds if the ϕ_{λ} are injective.

Remarks (3.7.9). — (i) With the notation of (3.7.1), there is a canonical homomorphism

(3.7.9.1)
$$\theta \colon r^*_{\mathcal{L},\psi}(\mathcal{O}_P(n)) \to \mathcal{L}^{\otimes n}$$

defined as in (3.5.6.2).

(ii) Let \mathcal{F} be a quasi-coherent \mathcal{O}_X module. Suppose q quasi-compact and separated, whence $q_*(\mathcal{F} \otimes \mathcal{L}^{\otimes n})$ is quasi-coherent on Y. Then $\mathcal{M}' = \bigoplus_n \mathcal{F} \otimes \mathcal{L}^{\otimes n}$ is a quasi-coherent graded \mathcal{S}' module, and $\mathcal{M} = q_*(\mathcal{M}') = \bigoplus_n q_*(\mathcal{F} \otimes \mathcal{L}^{\otimes n})$ is a quasi-coherent \mathcal{S} module via ψ^{\flat} . There is a canonical \mathcal{O}_X module homomorphism

(3.7.9.2)
$$\xi \colon r^*_{\mathcal{L},\psi}(\mathcal{M}) \to \mathcal{F}|G(\psi).$$

3.8. Criteria for immersion into a homogeneous spectrum.

(3.8.1). With the notation of (3.7.1), the property that $r_{\mathcal{L},\psi}$ is an (open, closed) immersion is local on Y.

Proposition (3.8.2). — Under the hypotheses of (3.7.3), $r_{\mathcal{L},\psi}$ is defined everywhere and is an immersion if and only if there exist sections $s_{\alpha} \in S_{n_{\alpha}}$ $(n_{\alpha} > 0)$ such that, setting $f_{\alpha} = \psi^{\flat}(s_{\alpha})$, the following hold:

(i) The open sets $X_{f_{\alpha}}$ cover X.

(ii) The $X_{f_{\alpha}}$ are affine.

(iii) For every α and every $t \in \Gamma(X_{f_{\alpha}}, \mathcal{O}_X)$, there exists m > 0 and $s \in S_{mn_{\alpha}}$ such that $t = (\psi^{\flat}(s)|X_{f_{\alpha}})/(f_{\alpha}|X_{f_{\alpha}})^m$.

Moreover, $r_{\mathcal{L},\psi}$ is an open immersion if there exists (s_{α}) satisfying (i)-(iii) and:

(iv) For every m > 0 and $s \in mn_{\alpha}$ such that $\psi^{\flat}(s)|X_{f_{\alpha}} = 0$, there exists k such that $s_{\alpha}^{k}s = 0$.

Likewise, $r_{\mathcal{L},\psi}$ is a closed immersion if there exists (s_{α}) satisfying (i)-(iii) and: (v) The open sets $D_{+}(s_{\alpha})$ cover $P = \operatorname{Proj}(S)$.

Corollary (3.8.3). — Under the hypotheses of (3.7.6), if $r_{\mathcal{L},\psi'}$ is defined everywhere and is an immersion, then so is $r_{\mathcal{L},\psi}$. If in addition u is (TN)-surjective and $r_{\mathcal{L},\psi'}$ is an open (resp. closed) immersion, then so is $r_{\mathcal{L},\psi}$.

Proposition (3.8.4). — Assume the hypotheses of (3.7.7) and also that $q: X \to Y$ is of finite type. Then $r_{\mathcal{L},\psi}$ is defined everywhere and is an immersion if and only if the same holds for some $r_{\mathcal{L},\lambda}$, in which case it also holds for $r_{\mathcal{L},\mu}$, for all $\mu \geq \lambda$.

Proposition (3.8.5). — Assume that Y is quasi-compact and separated, or that its underlying space is Noetherian. Let $q: X \to Y$ be a morphism of finite type, \mathcal{L} an invertible \mathcal{O}_X module, \mathcal{S} a quasi-coherent graded \mathcal{O}_Y algebra, $\psi: \mathcal{S} \to \bigoplus_{n\geq 0} \mathcal{L}^{\otimes n}$ a graded algebra homomorphism. Then $r_{\mathcal{L},\psi}$ is defined everywhere and is an immersion if and only if there exist n > 0 and a sub- \mathcal{O}_Y module $\mathcal{E} \subseteq \mathcal{S}_n$ of finite type such that: (a) the homomorphism $\psi_n \circ q^*(j_n) \colon q^*(\mathcal{E}) \to \mathcal{L}^{\otimes n}$ (where $j_n \colon \mathcal{E} \to \mathcal{S}_n$ is the inclusion) is surjective; and

(b) letting \mathcal{S}' be the (graded) sub- \mathcal{O}_Y algebra of \mathcal{S} generated by \mathcal{E} , $j' \colon \mathcal{S}' \to \mathcal{S}$ the inclusion, and $\psi' = \psi \circ q^*(j')$, $r_{\mathcal{L},\psi'}$ is defined everywhere and is an immersion.

When these conditions hold, they also hold for every quasi-coherent sub- \mathcal{O}_Y module $\mathcal{E} \subseteq \mathcal{E}' \subseteq \mathcal{S}_n$, and for the image of $\mathcal{E}^{\otimes k}$ in \mathcal{S}_{kn} .