SYNOPSIS OF MATERIAL FROM EGA CHAPTER II, §2.5-2.9

2.5. Sheaf associated to a graded module.

(2.5.1). If M is a graded S module, then M) is an S(;) module, giving a quasi-coherent
sheaf ]\/Z(f) on Spec(S(y)) = D4(f) C Proj(S) (I, 1.3.4).
NProposition (2.5.2). — Given a graded S module M, thfe\ie is a unique quasi-coherent sheaf

M of Ox modules on X = Proj(S) such that I'(D4(f), M) = M) for every homogeneous
f € Sy, with restriction from D, (f) to Di(fg) given by the canonical homomorphism
Mgy = Mzg)-

Definition (2.5.3). — M in (2.5.2) is the sheaf associated to the graded S module M.

Proposition (2.5.4). — M — M is an ezact functor which commutes with inductive limits
and arbitrary direct sums.

Proposition (2.5.5). — For all p € Proj(S), we have ]\7p = M.

Proposition (2.5.6). — Suppose that for every z € M and every homogeneous f € S,
some power of f annihilates z. Then M = 0. If S; generates S as an Sy-algebra, the converse
holds.

Proposition (2.5.7). — Let f € Sy, d > 0. For every integer n, the sheaf S(nd) |D(f)
is isomorphic to Ox|D4(f).

Corollary (2.5.8). —  The restriction of S(nd) to the open set U = U;cq, D+(f) is
invertible [i.e., locally free of rank 1 (0, 5.4.1)].

Corollary (2.5.9). — If Sy generates S, then S(n) is an invertible sheaf on X = Proj(S)
for every n.

(2.5.10). From now on we use the notation

(2.5.10.1) Ox(n) = S(n)
and also, for any open U C X and sheaf of Ox|U modules F,
(2.5.10.2) F(n) =F Qoyu (O(n)|U).

If Sy generates Sy then the functor F +— F(n) is exact.
(2.5.11). Given graded modules M, N, there are canonical functorial homomorphisms

(2.5.11.1) )\(f)i M(f) ®S(f) N(f) — (M ®g N)(f),
and hence
(2.5.11.2) A: M@0, N — (M ®gN) .

If 7 and J are graded ideals, then since i, J are ideal sheaves, there is a canonical homo-
morphism 7 ®p, J — Ox. It is equal to the composite

(2.5.11.3) I ®0y J > (T®sJ) — Ox.
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Finally, given three graded modules, there is a canonical homomorphism
(25114) M@ox N ®0X ﬁ — (M Kg N®5 P)~

given by A\o(A® 1) = Ao (1®\).
(2.5.12). Similarly, there is a canonical functorial homomorphism of Sy modules

(2.5.12.1) Hp) - Homg(M, N)(f) — HOHlS(f) (M(f), N(f)),
and hence, using (I, 1.3.8), a canonical homomorphism of Ox module sheaves

(2.5.12.2) pu: Homg(M, N)” — Home, (M, N).

Proposition (2.5.13). — Suppose Sy generates Sy. Then X in (2.5.11.2) is an isomor-
phism; and if M 1is finitely presented (2.1.1), then so is p in (2.5.12.2). If T is a graded

ideal, then IM = (IM) .

Corollary (2.5.14). — If Sy generates Sy, then there are canonical isomorphisms
(2.5.14.2) Ox(n) = (Ox(1))®"

for all integers m, n.

T

Corollary (2.5.15). — If Sy generates S, then there is a canonical isomorphism M (n)
M(n), for every graded module M.

(2.5.16). Under the identifications X = Proj(S) & X' = Proj(S’) & X@ = Proj(S@) of
(2.4.7), we have Ox(n) = Ox/(n) and Oxw (n) = Ox(nd).

Proposition (2.5.17). — The canonical homomorphisms Ox (nd) @0 Ox(md) — Ox((m+
n)d) restrict to isomorphisms on U = g, D+ (f)-
d

2.6. Graded S module associated to a sheaf on Proj(5).
In this section we assume that Sy generates the ideal S, and put X = Proj(S).

(2.6.1). By (2.5.9), the sheaf Ox(1) is invertible. For any Ox module sheaf F we define
as in (0, 5.4.6)

(2.6.1.1) I.(F) =T.(0x(1), F) = @PT(X, F(n)),

ne”L

the second equality following from (2.5.14.2). Then (0, 5.4.6) I'.(Ox) is a graded ring and
[.(F) is a graded T',(Ox) module sheaf. Since Ox(n) is locally free, F +— ['\(F) is a left
exact functor. In particular, if Z is an ideal sheaf, then I',(Z) is a graded ideal in I',(Ox).
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(2.6.2). The map = + x/1: My — My induces maps My — I'(D,(f), M) for all homo-
geneous f € S, compatible with restricions, and hence a map

(2.6.2.1) ag: My — T(X, M).
Applying this to M (n) and using (2.5.15), we get
(2.6.2.2) n: M, = M(n)y — T(X, M(n)),

and hence a homomorphism of graded abelian groups

—~

(2.6.2.3) a: M — T,(M).

The map a: S — I',(Ox) is a graded ring homomorphism, and (2.6.2.3) is an S module
homomorphism.

Proposition (2.6.3). — For every f € Sq (d > 0), the open set D (f) is the non-vanishing
locus of the section a(f) of Ox(d) (0, 5.5.2).

(2.6.4). Set M = I'.(F), which we may consider as an S module via S — I'.(Ox). By
(2.6.3), the section ay(f) of Ox(d) is invertible on D, (f). Hence there is an Sy module
homomorphism

(2.6.4.1) By Mpy — T(Do(f), F)

given by z/f" +— (2| Dy (f))/(aq(f)|Ds(f))™. This is compatible with restriction to D, (fg),
giving a canonical homomorphism of sheaves of Oy modules

(2.6.4.2) B:T.(F) — F.

Proposition (2.6.5). — For any graded S module M and sheaf of Ox modules F, each of
the following maps is the identity:

2.7. Finiteness conditions.

Proposition (2.7.1). — (i) If S is a Noetherian graded ring, then X = Proj(S) is a
Noetherian scheme.

(i1) If S is a finitely-generated graded A-algebra, then X is a scheme of finite type over
Y = Spec(A).

(2.7.2). Consider two conditions on a graded S module M:

(TF) There exists n such that €,~, M} is a finitely generated S module;

(TN) There exists n such that M = 0 for k > n.

A graded S module homomorphism u will be called (TN)-injective (resp. (TN)-surjective,
(TN)-bijective) if its kernel (resp. cokernel, both) satisfies (TN). By (2.5.4), this implies that
u is injective (resp. surjective, bijective).



Proposition (2.7.3). — Assume that Sy is a finitely generated ideal.

(i) If M satisfies (TF), then M is an Ox module of finite type.

(i) If M satisfies (TF), then M =0 if and only if M satisfies (TN).

Corollary (2.7.4). — If Sy is finitely generated, then Proj(S) = 0 iff there is an n such
that Sy = 0 for all k > n.

Theorem (2.7.5). — Let X = Proj(S), where Sy is generated by finitely many elements,
homogeneous of degree 1. Then for every quasi-coherent sheaf of Ox modules F, the canon-
ical homomorphism B: T'wW(F) — F (2.6.4) is an isomorphism.

Remark (2.7.6). — If S is Noetherian and S; generates S, then the hypotheses of (2.7.5)
hold.

Corollary (2.7.7). — Under the hypotheses of (2.7.5), every quasi-coherent Ox module F
is isomorphic to M for some graded S module M.

Corollary (2.7.8). — Under the hypotheses of (2.7.5), every quasi-coherent Ox module F
of finite type is isomorphic to N for some finitely generated graded S module N.

Corollary (2.7.9). — Under the hypotheses of (2.7.5), let F be a quasi-coherent Ox module
of finite type. Then there exists ng such that for alln > ngy, F(n) is isomorphic to a quotient

of O% (where k depends on n), i.e., F(n) is generated by finitely many global sections (0,
5.1.1).

Corollary (2.7.10). — Under the hypotheses of (2.7.5), let F be a quasi-coherent Ox
module of finite type. Then there exists ng such that for all n > ng, F is isomorphic to a
quotient of Ox(—n)k (where k depends on n).

Proposition (2.7.11). — Assume the hypotheses of (2.7.5) hold, and let M be a graded S

module. . .
(i) The canonical homomorphism a: M — T'.(M) is an isomorphism.

(i) Let G C M be a quasi-coherent Ox submodule sheaf, and let N C M be the preimage
of I'.(G) CT'w(M) via . Then N = G.

2.8. Functorial behavior.

(2.8.1). Let ¢p: S” — S be a graded ring homomorphism. Let G(¢) denote the complement
of Vi(¢(S})) in X = Proj(S), that is, the union of the open sets D (¢(f’)) for homogeneous
/"€ Si. Then “¢: Spec(S) — Spec(S’) induces a continuous map *¢: G(¢) — Proj(S’)
such that

(2.8.1.1) “6 (D4 (f') = Dy (o).

Let f ¢( f'). Then ¢ induces ¢y : S — Sy(py and ¢y S(py = Sie(s)), hence a morphism
D.(f) — Dy (f"), which on the underlying space is the restriction of *¢ to the open
8.1.

sets in (2 1). These are compatible with restriction to D, (fg).



5

Proposition (2.8.2). — There is a unique morphism (“¢, ¢): G(¢) — Proj(S’) (called the
morphism associated to ¢ and denoted Proj(¢)) whose restriction to each Do (¢(f")) coincides
with agb(f).

Corollary (2.8.3). — (i) Proj(¢) is an affine morphism.

(i) If ker(¢) is nilpotent (in particular, if ¢ is injective), then Proj(¢) is dominant.

In general a morphism Proj(S) — Proj(S’) need not be affine, hence not of the form
Proj(¢). An example is Proj(S) — Spec(A) = Proj(A[t]) when S is an A-algebra.

(2.8.4). Given a third ring S” and ¢': S” — 5’ let ¢" = ¢ o ¢'. Then G(¢") C G(¢), and
if &, @’ d” are the associated morphisms, then ®” = &' o (P|G(¢")).

(2.8.5). Suppose S (resp. S’) is a graded A-algebra (resp. A’-algebra), and ¢: A" — A
commutes with ¢: " — S. Then G(¢) and Proj(S’) are schemes over Spec(A) and Spec(A’)
respectively, and the the corresponding diagram commutes.

(2.8.6). Let M be a graded S module, which we may consider as a graded S’ module M.

Proposition (2.8.7). — There is a canonical functorial isomorphism (M) = QD*(M|G(¢)),
where ® = Proj(¢).

Proposition (2.8.8). — Let M’ be a graded S’ module. There is a canonical functorial
homomorphism v: ®*(M') — (M' ®¢ S) |G(¢). If S} generates S'., then v is an isomor-
phism.

(2.8.9). Let ¢»: A’ — A be a ring homomorphism, ¥: Y = Spec(A) — Spec(A’) = Y’
its associated morphism. Let S’ be a positively graded A’-algebra; then S = 5" ®4 A is a
positively graded A-algebra. We have the ring homomorphism ¢: S" — S, ¢(s') = s’ ® 1,
and ¢(5’) generates S, as an A module, hence G(¢) = Proj(S) = X. Set X’ = Proj(5’).
Further, let M’ be a graded S’ module, and set M = M' @4 A= M' ®g S.

Proposition (2.8.10). —  With the notation of (2.8.9), we have X = X' Xy/Y, and the
canonical homomorphism v: ®*(M') — M (2.8.8) is an isomorphism.

Corollary (2.8.11). — For alln € Z, M(n) is identified with @*(M’(n)) = ]/\Z’(n) ®yr Oy.
In particular, Ox(n) = ®*Ox/(n) = Ox/(n) @y Oy.

(2.8.12). For f" € 5; (d > 0) and f = ¢(f’), the canonical map M{.) — My, is identified
with M@ /(f' — 1)M" D — M@D/(f —1)MD by (2.2.5).

(2.8.13). In the setting of (2.8.9), let 7’ be an Oxs module, and set F = ®*(F’). Then
F(n) = ®*(F'(n)) by (2.8.11) and (0, 4.3.3). From (0, 4.4.3) we have I'(p): I'(X’, F'(n)) —
['(X, F(n)) for all n € Z, giving a homomorphism of graded modules I',(F’) — I'.(F).



If S; generates S, and F' = ]TJ/’, then F = ]Tf, where M = M’ ®4 A, and we have

commutative diagrams
M2 T (M)
(2.8.13.1) l l
M -5 T (M),

NJ(F) 22 F
(2.8.13.2) l l
P(F) - F,

in which the vertical arrows are ®-morphisms.
(2.8.14). Given a second graded S” module N’, we have a canonical homomorphism

(2.8.14.1) (M ®g N') ) = (M ®g N)

and a commutative diagram

q)*(M/ ®@X, N/) ;> M@OX N
(2.8.14.2) <I>*(>\)l )\l

*(M'®sy N') ) —— (M ®g N)
where the top row is the canonical isomorphism (0, 4.3.3). If S] generates S’ , then S;
generates S, the vertical arrows are isomorphisms by (2.5.13), and hence (2.8.14.1) is an
isomorphism.
Similarly, there is a commutative diagram

CI)*(HOI’HS/(M/,NI) ) — HOIHS(M,N)

<I>*(u)l Nl

@*(Homox,(ﬁ’, N’)) e Homox(ﬁ, N),

with bottom row given by (0, 4.4.6) and vertical arrows by (2.5.12).
(2.8.15). One can replace Sy and Sj) by Z, or replace S and S’ by S@ and S'?@ as in
(2.4.7), without changing ®.

2.9. Closed subschemes of Proj(.5).

(2.9.1). If ¢: 8" — S'is (TN)-ingective (resp. (TN)-surjective, (TN)-bijective) (2.7.2), then
(2.8.15) shows that where ® is concerned we can reduce to the case that ¢ is actually injective
(resp. surjective, bijective).



Proposition (2.9.2). — Let X = Proj(5).

(i) If ¢: S — S" is (TN)-surjective, then the associated morphism ® is defined on all of
Proj(S’) and is a closed immersion into X. If T = ker(¢), the image of ¢ is the closed
subscheme defined by the ideal sheaff.

(71) Suppose further that Sy is generated by finitely many elements, homogeneous of degree
1. Let X' C X be a closed subscheme, defined by a quasi-coherent sheaf of ideals J, and let
Z C S be the preimage of T'.(J) under a: S — I'\(Ox) (2.6.2). Set S = S/Z. Then X’
is the image of the closed immersion Proj(S’) — X associated to the canonical surjection

S — 5.

Corollary (2.9.3). — In (2.9.2 (i), if Si generates Sy, then ®*(S(n) ) = S'(n) for all
n, and ®*(F(n)) = (®*(F))(n) for every Ox module sheaf F.

Corollary (2.9.4). — In (2.9.2 (ii)), the subscheme X' is integral if and only if the ideal
T is prime.

[“If” is clear from (2.4.4). “Only if” uses (I, 7.4.4).]

Corollary (2.9.5). — Let S be a graded A-algebra which is generated by Si, M an A
module, and u: M — Sy a surjective A module homomorphism, inducing u: S(M) — S,

where S(M) is the symmetric algebra of M. Then @ induces a closed immersion of Proj(5)
into Proj(S(M)).



