
Synopsis of material from EGA Chapter II, §2.1–2.4

2. Homogeneous prime spectra

2.1. Generalities on graded rings and modules.
(2.1.1). Notation. Let S be an non-negatively graded ring. Its degree n component is

denoted Sn. The subset S+ =
⊕

n>0 Sn is a graded ideal and S0 is a subring. The degree n
component Mn of a graded S module M is an S0 submodule, for every n ∈ Z. By convention
we set Sn = 0 for n < 0 when considering S as a graded S module.

For every d > 0, we have a graded subring S(d) =
⊕

n Snd of S, and for each integer
0 ≤ k < d, a graded S(d) submodule M (d,k) =

⊕
nMnd+k of M . We write M (d) for M (d,0).

The degree shifted module M(n) is defined by (M(n))k = Mn+k. A graded module M
isomorphic to a direct sum

⊕
i S(ni) is said to be free. This is equivalent to M admitting a

homogeneous basis.
A graded module M is finitely presented if there is an exact sequence P → Q→M , where

P , Q are finitely-generated free graded modules, and the maps are homogeneous of degree
zero.

(2.1.2). M⊗SN is graded, with (M⊗SN)n the image of
⊕

p+q=nMp⊗S0Nq. Let Hn be the

set of S-module homomorphisms M → N homogeneous of degree n. We set HomS(M,N) =⊕
nHn; it is a graded S-module. In general, HomS(M,N) is a proper subset of the set

of all S-module homomorphisms M → N . They are equal if M is finitely generated. A
homomorphism of graded S-modules from M to N is an element of (HomS(M,N))0. We
have

(2.1.2.1) M(m)⊗S N(n) = (M ⊗S N)(m+ n),

(2.1.2.2) HomS(M(m), N(n)) = (HomS(M,N))(n−m)

If φ : S → S ′ is a ring homomorphism homogeneous of degree 0, it makes S ′ a graded S-
algebra. Then M ⊗S S ′ is naturally a graded S ′-module.

Lemma (2.1.3). — A set of homogeneous elements E ⊆ S+ generates S+ as an ideal if
and only if it generates S as an S0-algebra.

Corollary (2.1.4). — S+ is a finitely generated ideal iff S is a finitely generated S0-algebra.

Corollary (2.1.5). — S is Noetherian iff S0 is Noetherian and S is a finitely generated
S0-algebra.

Lemma (2.1.6). — Let S be non-negatively graded and finitely generated as an S0-algebra.
Let M be a finitely generated graded S-module. Then:

(i) Each Mn is a finitely generated S0-module, and there exists an n0 such that Mn = 0
for all n < n0.

(ii) There exist h > 0 and n1 such that Mn+h = ShMn for all n ≥ n1.
(iii) For every d > 0 and 0 ≤ k < d, M (d,k) is a finitely generated S(d)-module.
(iv) For every d > 0, S(d) is a finitely generated S0-algebra.
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(v) There exists h > 0 such that Smh = (Sm)h for all m > 0.
(vi) For every n > 0, there exists m0 such that Sm ⊆ (S+)n for all m ≥ m0.

Corollary (2.1.7). — If S is Noetherian, so is every S(d).

(2.1.8). Let p = ⊕n(p ∩ Sn) be a graded prime ideal of S. Suppose p 6⊇ S+. If f ∈ S+ \ p,
we have fnx ∈ p iff x ∈ p. In particular, if f ∈ Sd (d > 0), and x ∈ Sm−nd, then fnx ∈ pm
iff x ∈ pm−nd.

Proposition (2.1.9). — Let n0 > 0, and for all n ≥ n0 let pn be a subgroup of Sn. For
there to exist a graded prime ideal p 6⊇ S+ such that p∩Sn = pn for all n ≥ n0, it is necessary
and sufficient that the following condintions hold.

(i) Smpn ⊆ pm+n for all n ≥ n0 and m ≥ 0.
(ii) For all m,n ≥ n0, f ∈ Sm, g ∈ Sn, fg ∈ pm+n implies f ∈ pm or g ∈ pn.
(iii) pn 6= Sn for some n ≥ n0.
Moreover, p is then unique.

(2.1.10). We call an ideal I of S contained in S+ an ideal of S+. If I = p∩S+ for a graded
prime ideal p 6⊇ S+ (unique by (2.1.9)), we call I a graded prime ideal of S+.

We define the radical in S+ of an ideal I of S+ to be
√

+I = (
√
I) ∩ S+. If I is graded,

then so is
√

+I. The nilradical of S+ is N+ =
√

+0. We say that S is essentially reduced if
N+ = 0.

(2.1.11). We call S essentially integral if S+, considered as a ring without unit, is not zero
and has no zero-divisors. Since the highest degree component of a zero-divisor x ∈ S is again
a zero-divisor, it suffices that S+ 6= 0 and S has no homogeneous zero-divisors of degree > 0.
If p is a graded prime ideal of S+, then S/p is essentially integral.

Suppose S essentially integral. If x0 ∈ S0, and x0f = 0 for some homogeneous f ∈ S+, it
follows that x0S+ = 0. Hence S is an integral domain if and only S0 is an integral domain
and the annihilator of S+ is zero.

2.2. Rings of fractions of a graded ring.
(2.2.1). If S is graded, f ∈ Sd, d > 0, then Sf is Z-graded, with (Sf )n = {x/fk : x ∈ Sn+kd}.

We put S(f) = (Sf )0. The monomials (f/1)h (h ∈ Z) are a basis of (S(d))f as a free module

over S(f); thus (S(d))f ∼= S(f)[t, t
−1].

If M is a graded S-module, then Mf is a graded Sf -module, with (Mf )n = {z/fk : z ∈
Mn+kd}. We denote by M(f) the S(f) module (Mf )0. Then (M (d))f = M(f) ⊗S(f)

(S(d))f .

Lemma (2.2.2). — Let f ∈ Sd, g ∈ Se, d, e > 0. There is a canonical isomorphism
of rings S(fg)

∼= (S(f))gd/fe, and after identifying these rings, a canonical isomorphism of
modules M(fg)

∼= (M(f))gd/fe.

(2.2.3). The canonical homomorphism S(f) → (S(f))gd/fe ∼= S(fg) is the degree zero part of

Sf → Sfg, mapping x/fk to gkx/(fg)k. Likewise for modules.

Lemma (2.2.4). — For f, g ∈ S+ homogeneous, the ring S(fg) is generated by the images
of the canonical homomorphisms from S(f) and S(g).
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Proposition (2.2.5). — Let f ∈ Sd, d > 0. There is a canonical isomorphism of rings
S(f)

∼= S(d)/(f − 1)S(d), and after identifying them, a canonical isomorphism of modules

M(f)
∼= M (d)/(f − 1)M (d).

Corollary (2.2.6). — If S is Noetherian, so is S(f) for all f homogeneous of degree > 0.

(2.2.7). If T is a multiplicative set of homogeneous elements in S+, then T0 = T ∪ {1} is
a multiplicative set in S; T−10 S is graded in the obvious way; we set S(T ) = (T−10 S)0. Since
T−10 S is the inductive limit of the rings Sf , as f ranges over T0, therefore S(T ) is the inductive
limit of the rings S(f). Defining M(T ) similarly, it is the inductive limit of the modules M(f).
If p is a graded prime ideal of S+, then S(p), M(p) stand for S(T ), M(T ), where T is the set of
homogeneous elements in S+ \ p.

2.3. Homogeneous prime spectrum of a graded ring. [see also Liu, §2.3.3]
(2.3.1). Given a non-negatively graded ring S, its homogeneous prime spectrum Proj(S) is

the set of graded prime ideals of S+ (2.1.10), that is, the set of graded prime ideals of S not
containing S+. We will make Proj(S) the underlying set of a scheme.

(2.3.2). For any subset E ⊆ S, define V+(E) to be the set of graded primes of S such that
E ⊆ p 6⊇ S+, that is, V+(E) = V (E) ∩ Proj(S) ⊆ Spec(S). Using (I, 1.1.2), we see that the
sets V+(E) are the closed sets of the subspace topology on Proj(S) ⊆ Spec(S). Let I be the
graded ideal generated by all homogeneous components of elements of E. Then V+(I) =
V+(E). For any graded ideal I ⊆ S and integer n, we have V+(I) = V+(

⋃
q≥n(I ∩ Sq)).

Finally V+(I) = V+(
√

+I).
(2.3.3). We regard Proj(S) as a topological space with closed subsets V+(E). For f ∈ S,

define

(2.3.3.1) D+(f) = D(f) ∩ Proj(S) = Proj(S)− V+(f).

Then

(2.3.3.2) D+(fg) = D+(f) ∩D+(g)

Proposition (2.3.4). — As f ranges over homogeneous elements of S+, the sets D+(f)
form a base for the topology on Proj(S).

(2.3.5). Let f ∈ Sd (d > 0), and let p be a graded prime ideal of S such that f 6∈ p. Then
pf is a prime ideal in Sf (0, 1.2.6), and ψf (p) = pf ∩ S(f) is a prime ideal in S(f), consisting
of elements x/fn where x ∈ p ∩ Snd. This defines a map

ψf : D+(f)→ Spec(S(f)).

Given g ∈ Se (e > 0), we get a commutative diagram

(2.3.5.1)

D+(f)
ψf−−−→ Spec(S(f))x x

D+(fg)
ψfg−−−→ Spec(S(fg)).
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Proposition (2.3.6). — [Liu, 2.3.36(a)] ψf : D+(f)→ Spec(S(f)) is a homeomorphism.

Corollary (2.3.7). — D+(f) = ∅ if and only if f is nilpotent.

Corollary (2.3.8). — Let E ⊆ S+. The following are equivalent:
(a) V+(E) = X = Proj(S).
(b) Every element of E is nilpotent.
(c) The homogeneous components of every element of E are nilpotent.

Corollary (2.3.9). — If I is a graded ideal of S+, then
√

+I is the intersection of the the
graded prime ideals of S+ which contain I.

(2.3.10). For any subset Y ⊆ Proj(S), let j+(Y ) = {f ∈ S+ : Y ⊆ V+(f)} = j(Y ) ∩ S+, an
ideal of S+ equal to its radical in S+.

Proposition (2.3.11). — (i) For every E ⊆ S+, j+(V+(E)) =
√

+I, where I is the ideal
generated by the homogeneous components of elements of E.

(ii) For every Y ⊆ Proj(S), V+(i+(Y )) is the closure of Y in Proj(S).

Corollary (2.3.12). — There is a containment-reversing bijection Y → j+(Y ), I → V+(I)
between radical ideals of S+ and closed subsets of Proj(S). The union Y1 ∪ Y2 corresponds
to the intersection of ideals; the intersection of any family (Yλ) corresponds to the radical of
the sum of their ideals.

Corollary (2.3.13). — Let I be a graded ideal of S+. Then V+(I) = ∅ iff every element
of S+ has a power in I.

Corollary (2.3.14). — Let (fα) be graded elements of S+. The open sets D+(fα) cover
Proj(S) iff every element of S+ has a power in the ideal generated by the fα’s.

Corollary (2.3.15). — With (fα) as in (2.3.14), and f ∈ S+, the following are equivalent:
(a) D+(f) ⊆

⋃
αD+(fα); (b) V+(f) ⊇

⋂
α V+(fα); (c) some power of f is in the ideal

generated by the fα’s.

Corollary (2.3.16). — Proj(S) = ∅ iff every element of S+ is nilpotent.

Corollary (2.3.17). — In the correspondence of (2.3.12), the irreducible closed subsets
correspond to the graded prime ideals of S+.

2.4. The scheme structure on Proj(S).

(2.4.1). Let f, g ∈ S+ be homogeneous. We can carry the structure of affine scheme on
Yf = Spec(S(f)) to D+(f) via the homeomorphism ψf in (2.3.6). By (2.2.2) and (2.3.5), if
we make D+(fg) an affine scheme in the same way, then its inclusion into D+(f) is an open
immersion. In particular, the scheme structures on D+(f) and D+(g) agree on D+(fg). This
makes Proj(S) a prescheme.

Proposition (2.4.2). — The prescheme Proj(S) is a scheme [i.e., it is separated].

This follows from (I, 5.5.6) and (2.2.4).

Example (2.4.3). — For S = K[t1, t2], Proj(S) is the projective line from (I, 2.3.2).
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Proposition (2.4.4). — Let S be a non-negatively graded ring, X = Proj(S).
(i) Let N+ be the nilradical of S+. Then Xred = Proj(S/N+).
(ii) Suppose S essentially reduced. Then X is integral iff S is essentially integral.

(2.4.5). A graded A-algebra is a graded ring S with an A-algebra structure such that each
Sn is an A-submodule; equivalently the structural homomorphism A→ S has image in S0.

Proposition (2.4.6). — If S is a graded A-algebra, X = Proj(S), then OX is a sheaf of
A-algebras; that is, X is a scheme over Spec(A).

Proposition (2.4.7). — Let S be a non-negatively graded ring.
(i) For all d > 0, Proj(S) is canonically isomorphic to Proj(S(d)).
(ii) Let S ′ be the graded ring with S ′0 = Z, S ′n = Sn for all n > 0. Then Proj(S) ∼= Proj(S ′).

Corollary (2.4.8). — If S is a graded A-algebra, and S ′A is the graded A-algebra with
(S ′A)0 = A, S ′n = Sn for n > 0, then Proj(S) ∼= Proj(S ′A).


