Synopsis of material from EGA Chapter II, $\S2.1-2.4$

2. Homogeneous prime spectra

2.1. Generalities on graded rings and modules.

(2.1.1). Notation. Let S be an non-negatively graded ring. Its degree n component is denoted S_n . The subset $S_+ = \bigoplus_{n>0} S_n$ is a graded ideal and S_0 is a subring. The degree n component M_n of a graded S module M is an S_0 submodule, for every $n \in \mathbb{Z}$. By convention we set $S_n = 0$ for n < 0 when considering S as a graded S module.

For every d > 0, we have a graded subring $S^{(d)} = \bigoplus_n S_{nd}$ of S, and for each integer $0 \le k < d$, a graded $S^{(d)}$ submodule $M^{(d,k)} = \bigoplus_n M_{nd+k}$ of M. We write $M^{(d)}$ for $M^{(d,0)}$.

The degree shifted module M(n) is defined by $(M(n))_k = M_{n+k}$. A graded module M isomorphic to a direct sum $\bigoplus_i S(n_i)$ is said to be *free*. This is equivalent to M admitting a homogeneous basis.

A graded module M is *finitely presented* if there is an exact sequence $P \to Q \to M$, where P, Q are finitely-generated free graded modules, and the maps are homogeneous of degree zero.

(2.1.2). $M \otimes_S N$ is graded, with $(M \otimes_S N)_n$ the image of $\bigoplus_{p+q=n} M_p \otimes_{S_0} N_q$. Let H_n be the set of S-module homomorphisms $M \to N$ homogeneous of degree n. We set $\operatorname{Hom}_S(M, N) = \bigoplus_n H_n$; it is a graded S-module. In general, $\operatorname{Hom}_S(M, N)$ is a proper subset of the set of all S-module homomorphisms $M \to N$. They are equal if M is finitely generated. A homomorphism of graded S-modules from M to N is an element of $(\operatorname{Hom}_S(M, N))_0$. We have

(2.1.2.1)
$$M(m) \otimes_S N(n) = (M \otimes_S N)(m+n),$$

(2.1.2.2)
$$\operatorname{Hom}_{S}(M(m), N(n)) = (\operatorname{Hom}_{S}(M, N))(n - m)$$

If $\phi: S \to S'$ is a ring homomorphism homogeneous of degree 0, it makes S' a graded S-algebra. Then $M \otimes_S S'$ is naturally a graded S'-module.

Lemma (2.1.3). — A set of homogeneous elements $E \subseteq S_+$ generates S_+ as an ideal if and only if it generates S as an S_0 -algebra.

Corollary (2.1.4). — S_+ is a finitely generated ideal iff S is a finitely generated S_0 -algebra.

Corollary (2.1.5). — S is Noetherian iff S_0 is Noetherian and S is a finitely generated S_0 -algebra.

Lemma (2.1.6). — Let S be non-negatively graded and finitely generated as an S_0 -algebra. Let M be a finitely generated graded S-module. Then:

(i) Each M_n is a finitely generated S_0 -module, and there exists an n_0 such that $M_n = 0$ for all $n < n_0$.

(ii) There exist h > 0 and n_1 such that $M_{n+h} = S_h M_n$ for all $n \ge n_1$.

(iii) For every d > 0 and $0 \le k < d$, $M^{(d,k)}$ is a finitely generated $S^{(d)}$ -module.

(iv) For every d > 0, $S^{(d)}$ is a finitely generated S_0 -algebra.

- (v) There exists h > 0 such that $S_{mh} = (S_m)^h$ for all m > 0.
- (vi) For every n > 0, there exists m_0 such that $S_m \subseteq (S_+)^n$ for all $m \ge m_0$.

Corollary (2.1.7). — If S is Noetherian, so is every $S^{(d)}$.

(2.1.8). Let $\mathfrak{p} = \bigoplus_n (\mathfrak{p} \cap S_n)$ be a graded prime ideal of S. Suppose $\mathfrak{p} \not\supseteq S_+$. If $f \in S_+ \setminus \mathfrak{p}$, we have $f^n x \in \mathfrak{p}$ iff $x \in \mathfrak{p}$. In particular, if $f \in S_d$ (d > 0), and $x \in S_{m-nd}$, then $f^n x \in \mathfrak{p}_m$ iff $x \in \mathfrak{p}_{m-nd}$.

Proposition (2.1.9). — Let $n_0 > 0$, and for all $n \ge n_0$ let \mathfrak{p}_n be a subgroup of S_n . For there to exist a graded prime ideal $\mathfrak{p} \not\supseteq S_+$ such that $\mathfrak{p} \cap S_n = \mathfrak{p}_n$ for all $n \ge n_0$, it is necessary and sufficient that the following conditions hold.

(i) $S_m \mathfrak{p}_n \subseteq \mathfrak{p}_{m+n}$ for all $n \ge n_0$ and $m \ge 0$.

(ii) For all $m, n \ge n_0$, $f \in S_m$, $g \in S_n$, $fg \in \mathfrak{p}_{m+n}$ implies $f \in \mathfrak{p}_m$ or $g \in \mathfrak{p}_n$.

(iii) $\mathfrak{p}_n \neq S_n$ for some $n \geq n_0$.

Moreover, \mathfrak{p} is then unique.

(2.1.10). We call an ideal \mathcal{I} of S contained in S_+ an *ideal of* S_+ . If $\mathcal{I} = \mathfrak{p} \cap S_+$ for a graded prime ideal $\mathfrak{p} \not\supseteq S_+$ (unique by (2.1.9)), we call \mathcal{I} a graded prime ideal of S_+ .

We define the radical in S_+ of an ideal \mathcal{I} of S_+ to be $\sqrt{\mathcal{I}} = (\sqrt{\mathcal{I}}) \cap S_+$. If \mathcal{I} is graded, then so is $\sqrt{\mathcal{I}}$. The nilradical of S_+ is $\mathfrak{N}_+ = \sqrt{\mathcal{I}}_+ 0$. We say that S is essentially reduced if $\mathfrak{N}_+ = 0$.

(2.1.11). We call S essentially integral if S_+ , considered as a ring without unit, is not zero and has no zero-divisors. Since the highest degree component of a zero-divisor $x \in S$ is again a zero-divisor, it suffices that $S_+ \neq 0$ and S has no homogeneous zero-divisors of degree > 0. If \mathfrak{p} is a graded prime ideal of S_+ , then S/\mathfrak{p} is essentially integral.

Suppose S essentially integral. If $x_0 \in S_0$, and $x_0 f = 0$ for some homogeneous $f \in S_+$, it follows that $x_0 S_+ = 0$. Hence S is an integral domain if and only S_0 is an integral domain and the annihilator of S_+ is zero.

2.2. Rings of fractions of a graded ring.

(2.2.1). If S is graded, $f \in S_d$, d > 0, then S_f is \mathbb{Z} -graded, with $(S_f)_n = \{x/f^k \colon x \in S_{n+kd}\}$. We put $S_{(f)} = (S_f)_0$. The monomials $(f/1)^h$ $(h \in \mathbb{Z})$ are a basis of $(S^{(d)})_f$ as a free module over $S_{(f)}$; thus $(S^{(d)})_f \cong S_{(f)}[t, t^{-1}]$.

If M is a graded S-module, then M_f is a graded S_f -module, with $(M_f)_n = \{z/f^k : z \in M_{n+kd}\}$. We denote by $M_{(f)}$ the $S_{(f)}$ module $(M_f)_0$. Then $(M^{(d)})_f = M_{(f)} \otimes_{S_{(f)}} (S^{(d)})_f$.

Lemma (2.2.2). — Let $f \in S_d$, $g \in S_e$, d, e > 0. There is a canonical isomorphism of rings $S_{(fg)} \cong (S_{(f)})_{g^d/f^e}$, and after identifying these rings, a canonical isomorphism of modules $M_{(fg)} \cong (M_{(f)})_{g^d/f^e}$.

(2.2.3). The canonical homomorphism $S_{(f)} \to (S_{(f)})_{g^d/f^e} \cong S_{(fg)}$ is the degree zero part of $S_f \to S_{fg}$, mapping x/f^k to $g^k x/(fg)^k$. Likewise for modules.

Lemma (2.2.4). — For $f, g \in S_+$ homogeneous, the ring $S_{(fg)}$ is generated by the images of the canonical homomorphisms from $S_{(f)}$ and $S_{(g)}$.

Proposition (2.2.5). — Let $f \in S_d$, d > 0. There is a canonical isomorphism of rings $S_{(f)} \cong S^{(d)}/(f-1)S^{(d)}$, and after identifying them, a canonical isomorphism of modules $M_{(f)} \cong M^{(d)}/(f-1)M^{(d)}$.

Corollary (2.2.6). — If S is Noetherian, so is $S_{(f)}$ for all f homogeneous of degree > 0.

(2.2.7). If T is a multiplicative set of homogeneous elements in S_+ , then $T_0 = T \cup \{1\}$ is a multiplicative set in S; $T_0^{-1}S$ is graded in the obvious way; we set $S_{(T)} = (T_0^{-1}S)_0$. Since $T_0^{-1}S$ is the inductive limit of the rings S_f , as f ranges over T_0 , therefore $S_{(T)}$ is the inductive limit of the rings $S_{(f)}$. Defining $M_{(T)}$ similarly, it is the inductive limit of the modules $M_{(f)}$. If \mathfrak{p} is a graded prime ideal of S_+ , then $S_{(\mathfrak{p})}$, $M_{(\mathfrak{p})}$ stand for $S_{(T)}$, $M_{(T)}$, where T is the set of homogeneous elements in $S_+ \setminus \mathfrak{p}$.

2.3. Homogeneous prime spectrum of a graded ring. [see also Liu, §2.3.3]

(2.3.1). Given a non-negatively graded ring S, its homogeneous prime spectrum $\operatorname{Proj}(S)$ is the set of graded prime ideals of S_+ (2.1.10), that is, the set of graded prime ideals of S not containing S_+ . We will make $\operatorname{Proj}(S)$ the underlying set of a scheme.

(2.3.2). For any subset $E \subseteq S$, define $V_+(E)$ to be the set of graded primes of S such that $E \subseteq \mathfrak{p} \not\supseteq S_+$, that is, $V_+(E) = V(E) \cap \operatorname{Proj}(S) \subseteq \operatorname{Spec}(S)$. Using (I, 1.1.2), we see that the sets $V_+(E)$ are the closed sets of the subspace topology on $\operatorname{Proj}(S) \subseteq \operatorname{Spec}(S)$. Let \mathcal{I} be the graded ideal generated by all homogeneous components of elements of E. Then $V_+(\mathcal{I}) = V_+(E)$. For any graded ideal $\mathcal{I} \subseteq S$ and integer n, we have $V_+(\mathcal{I}) = V_+(\bigcup_{q \ge n} (\mathcal{I} \cap S_q))$. Finally $V_+(\mathcal{I}) = V_+(\sqrt{\mathcal{I}})$.

(2.3.3). We regard $\operatorname{Proj}(S)$ as a topological space with closed subsets $V_+(E)$. For $f \in S$, define

(2.3.3.1)
$$D_+(f) = D(f) \cap \operatorname{Proj}(S) = \operatorname{Proj}(S) - V_+(f)$$

Then

(2.3.3.2)
$$D_+(fg) = D_+(f) \cap D_+(g)$$

Proposition (2.3.4). — As f ranges over homogeneous elements of S_+ , the sets $D_+(f)$ form a base for the topology on $\operatorname{Proj}(S)$.

(2.3.5). Let $f \in S_d$ (d > 0), and let \mathfrak{p} be a graded prime ideal of S such that $f \notin \mathfrak{p}$. Then \mathfrak{p}_f is a prime ideal in S_f (0, 1.2.6), and $\psi_f(\mathfrak{p}) = \mathfrak{p}_f \cap S_{(f)}$ is a prime ideal in $S_{(f)}$, consisting of elements x/f^n where $x \in \mathfrak{p} \cap S_{nd}$. This defines a map

$$\psi_f \colon D_+(f) \to \operatorname{Spec}(S_{(f)}).$$

Given $g \in S_e$ (e > 0), we get a commutative diagram

$$(2.3.5.1) \qquad \begin{array}{c} D_{+}(f) & \stackrel{\psi_{f}}{\longrightarrow} & \operatorname{Spec}(S_{(f)}) \\ \uparrow & \uparrow \\ D_{+}(fg) & \stackrel{\psi_{fg}}{\longrightarrow} & \operatorname{Spec}(S_{(fg)}). \end{array}$$

Proposition (2.3.6). — [Liu, 2.3.36(a)] $\psi_f \colon D_+(f) \to \operatorname{Spec}(S_{(f)})$ is a homeomorphism.

Corollary (2.3.7). — $D_+(f) = \emptyset$ if and only if f is nilpotent.

Corollary (2.3.8). — Let $E \subseteq S_+$. The following are equivalent:

(a) $V_{+}(E) = X = \operatorname{Proj}(S).$

(b) Every element of E is nilpotent.

(c) The homogeneous components of every element of E are nilpotent.

Corollary (2.3.9). — If \mathcal{I} is a graded ideal of S_+ , then $\sqrt{\mathcal{I}}$ is the intersection of the the graded prime ideals of S_+ which contain \mathcal{I} .

(2.3.10). For any subset $Y \subseteq \operatorname{Proj}(S)$, let $\mathfrak{j}_+(Y) = \{f \in S_+ : Y \subseteq V_+(f)\} = \mathfrak{j}(Y) \cap S_+$, an ideal of S_+ equal to its radical in S_+ .

Proposition (2.3.11). — (i) For every $E \subseteq S_+$, $\mathfrak{j}_+(V_+(E)) = \sqrt{\mathcal{I}}$, where \mathcal{I} is the ideal generated by the homogeneous components of elements of E.

(ii) For every $Y \subseteq \operatorname{Proj}(S)$, $V_+(i_+(Y))$ is the closure of Y in $\operatorname{Proj}(S)$.

Corollary (2.3.12). — There is a containment-reversing bijection $Y \to \mathfrak{j}_+(Y)$, $\mathcal{I} \to V_+(\mathcal{I})$ between radical ideals of S_+ and closed subsets of $\operatorname{Proj}(S)$. The union $Y_1 \cup Y_2$ corresponds to the intersection of ideals; the intersection of any family (Y_{λ}) corresponds to the radical of the sum of their ideals.

Corollary (2.3.13). — Let \mathcal{I} be a graded ideal of S_+ . Then $V_+(\mathcal{I}) = \emptyset$ iff every element of S_+ has a power in \mathcal{I} .

Corollary (2.3.14). — Let (f_{α}) be graded elements of S_+ . The open sets $D_+(f_{\alpha})$ cover $\operatorname{Proj}(S)$ iff every element of S_+ has a power in the ideal generated by the f_{α} 's.

Corollary (2.3.15). — With (f_{α}) as in (2.3.14), and $f \in S_+$, the following are equivalent: (a) $D_+(f) \subseteq \bigcup_{\alpha} D_+(f_{\alpha})$; (b) $V_+(f) \supseteq \bigcap_{\alpha} V_+(f_{\alpha})$; (c) some power of f is in the ideal generated by the f_{α} 's.

Corollary (2.3.16). — $\operatorname{Proj}(S) = \emptyset$ iff every element of S_+ is nilpotent.

Corollary (2.3.17). — In the correspondence of (2.3.12), the irreducible closed subsets correspond to the graded prime ideals of S_+ .

2.4. The scheme structure on $\operatorname{Proj}(S)$.

(2.4.1). Let $f, g \in S_+$ be homogeneous. We can carry the structure of affine scheme on $Y_f = \operatorname{Spec}(S_{(f)})$ to $D_+(f)$ via the homeomorphism ψ_f in (2.3.6). By (2.2.2) and (2.3.5), if we make $D_+(fg)$ an affine scheme in the same way, then its inclusion into $D_+(f)$ is an open immersion. In particular, the scheme structures on $D_+(f)$ and $D_+(g)$ agree on $D_+(fg)$. This makes $\operatorname{Proj}(S)$ a prescheme.

Proposition (2.4.2). — The prescheme Proj(S) is a scheme [i.e., it is separated]. This follows from (I, 5.5.6) and (2.2.4).

Example (2.4.3). — For $S = K[t_1, t_2]$, $\operatorname{Proj}(S)$ is the projective line from (I, 2.3.2).

Proposition (2.4.4). — Let S be a non-negatively graded ring, $X = \operatorname{Proj}(S)$.

(i) Let \mathfrak{N}_+ be the nilradical of S_+ . Then $X_{\text{red}} = \text{Proj}(S/\mathfrak{N}_+)$.

(ii) Suppose S essentially reduced. Then X is integral iff S is essentially integral.

(2.4.5). A graded A-algebra is a graded ring S with an A-algebra structure such that each S_n is an A-submodule; equivalently the structural homomorphism $A \to S$ has image in S_0 .

Proposition (2.4.6). — If S is a graded A-algebra, $X = \operatorname{Proj}(S)$, then \mathcal{O}_X is a sheaf of A-algebras; that is, X is a scheme over $\operatorname{Spec}(A)$.

Proposition (2.4.7). — Let S be a non-negatively graded ring.

(i) For all d > 0, $\operatorname{Proj}(S)$ is canonically isomorphic to $\operatorname{Proj}(S^{(d)})$.

(ii) Let S' be the graded ring with $S'_0 = \mathbb{Z}$, $S'_n = S_n$ for all n > 0. Then $\operatorname{Proj}(S) \cong \operatorname{Proj}(S')$.

Corollary (2.4.8). — If S is a graded A-algebra, and S'_A is the graded A-algebra with $(S'_A)_0 = A, S'_n = S_n$ for n > 0, then $\operatorname{Proj}(S) \cong \operatorname{Proj}(S'_A)$.