SYNOPSIS OF MATERIAL FROM EGA CHAPTER II, §2.1-2.4

2. HOMOGENEOUS PRIME SPECTRA

2.1. Generalities on graded rings and modules.

(2.1.1). Notation. Let S be an non-negatively graded ring. Its degree n component is
denoted S,,. The subset S, = @, 5, is a graded ideal and S is a subring. The degree n
component M, of a graded S module M is an Sy submodule, for every n € Z. By convention
we set S, = 0 for n < 0 when considering S as a graded S module.

For every d > 0, we have a graded subring S = @, S,q of S, and for each integer
0 <k < d, a graded S¥ submodule M%) = @ M,a,), of M. We write M@ for M(®0).

The degree shifted module M (n) is defined by (M(n))y = M. A graded module M
isomorphic to a direct sum €, S(n;) is said to be free. This is equivalent to M admitting a
homogeneous basis.

A graded module M is finitely presented if there is an exact sequence P — () — M, where
P, @ are finitely-generated free graded modules, and the maps are homogeneous of degree
Zero.

(2.1.2). M®gN is graded, with (M ®s N), the image of @, ,_,, M, ®s, N,. Let H,, be the
set of S-module homomorphisms M — N homogeneous of degree n. We set Homg(M, N) =
D, H,; it is a graded S-module. In general, Homg(M, N) is a proper subset of the set
of all S-module homomorphisms M — N. They are equal if M is finitely generated. A
homomorphism of graded S-modules from M to N is an element of (Homg(M, N)),. We
have

(2.1.2.1) M(m) ®s N(n) = (M ©5 N)(m +n),

(2.1.2.2) Homg (M (m), N(n)) = (Homg(M, N))(n —m)

If : S — S’ is a ring homomorphism homogeneous of degree 0, it makes S’ a graded S-
algebra. Then M ®g S’ is naturally a graded S’-module.

Lemma (2.1.3). — A set of homogeneous elements E C S, generates Sy as an ideal if
and only if it generates S as an Sy-algebra.

Corollary (2.1.4). — Sy is a finitely generated ideal iff S is a finitely generated Sy-algebra.

Corollary (2.1.5). — S is Noetherian iff Sy is Noetherian and S is a finitely generated
So-algebra.

Lemma (2.1.6). — Let S be non-negatively graded and finitely generated as an Sy-algebra.
Let M be a finitely generated graded S-module. Then:

(i) Each M, is a finitely generated So-module, and there exists an ng such that M, = 0
for all n < ng.

(ii) There exist h > 0 and ny such that M,y = S, M, for alln > n;.

(i4i) For every d >0 and 0 < k < d, M%*) is a finitely generated S'Y-module.

(iv) For every d > 0, S is a finitely generated Sy-algebra.
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(v) There exists h > 0 such that Sy, = (Sp)" for all m > 0.
(vi) For every n > 0, there exists mo such that S,, C (Sy)™ for all m > my.

Corollary (2.1.7). — If S is Noetherian, so is every S\@,

(2.1.8). Let p = @,(p N S,) be a graded prime ideal of S. Suppose p 2 S,. If f €S, \p,
we have f"z € p iff x € p. In particular, if f € Sy (d > 0), and = € S,,_nq, then f"x € p,,
iff v € Prm—nd-

Proposition (2.1.9). — Let ng > 0, and for all n > ng let p,, be a subgroup of S,. For
there to exist a graded prime ideal p 2 Sy such that pN S, = p, for alln > ng, it is necessary
and sufficient that the following condintions hold.

(i) Spmbn C Piman for all m > ng and m > 0.

(ii) For all m,n > ng, f € Sy, g € Sn, f9 € Pman implies f € p,, or g € po,.

(7i) p,, # Sy for some n > ny.

Moreover, p is then unique.

(2.1.10). We call an ideal Z of S contained in S, an ideal of Sy. If Z = pN S, for a graded
prime ideal p 2 S, (unique by (2.1.9)), we call Z a graded prime ideal of S..

We define the radical in S; of an ideal Z of S; to be \/,T = (/Z) N S;. If T is graded,
then so is \/,Z. The nilradical of S is My = /, 0. We say that S is essentially reduced if
N, =0.

(2.1.11). We call S essentially integral if S, considered as a ring without unit, is not zero
and has no zero-divisors. Since the highest degree component of a zero-divisor = € S is again
a zero-divisor, it suffices that S, # 0 and .S has no homogeneous zero-divisors of degree > 0.
If p is a graded prime ideal of S, then S/p is essentially integral.

Suppose S essentially integral. If x¢ € Sy, and zof = 0 for some homogeneous f € S, it
follows that 2¢S, = 0. Hence S is an integral domain if and only Sy is an integral domain
and the annihilator of S, is zero.

2.2. Rings of fractions of a graded ring.

(2.2.1). If Sis graded, f € Sy, d > 0, then S} is Z-graded, with (S}), = {z/f*: x € Syyra}-
We put S(s) = (S¢)o. The monomials (f/1)" (h € Z) are a basis of (S?); as a free module
over S(y); thus (S@), = 5[t t71].

If M is a graded S-module, then M; is a graded Sy-module, with (M), = {z/f* : z €
Mn+kd}- We denote by M(f) the S(f) module (Mf)o. Then (M(d))f = M(f) ®5(f) (S(d))f.

Lemma (2.2.2). — Let f € Sy, g € Se, d,e > 0. There is a canonical isomorphism

of rings S(yg) = (S(p))g/pe, and after identifying these rings, a canonical isomorphism of

~

modules M(zq) = (M(p))gt/se-

(2.2.3). The canonical homomorphism Sz — (S(f))gd/pe = S(yg) is the degree zero part of
Sy — Sgy, mapping z/f* to g*z/(fg)*. Likewise for modules.

Lemma (2.2.4). — For f,g € Sy homogeneous, the ring S(;q) is generated by the images
of the canonical homomorphisms from Sipy and Sg).
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Proposition (2.2.5). — Let f € Sy, d > 0. There is a canonical isomorphism of rings
Sy = S@/(f —1)SD and after identifying them, a canonical isomorphism of modules
My = MD/(f = 1)M?.

Corollary (2.2.6). — If S is Noetherian, so is Siy) for all f homogeneous of degree > 0.

(2.2.7). If T' is a multiplicative set of homogeneous elements in S, then 7o = T"U {1} is
a multiplicative set in S; T, 'S is graded in the obvious way; we set Sy = (Ty 19)0. Since
T, 'S is the inductive limit of the rings .S 7, as f ranges over Ty, therefore S(ry is the inductive
limit of the rings S(y). Defining M7y similarly, it is the inductive limit of the modules M.
If p is a graded prime ideal of S, then Sy, M) stand for Siry, M1y, where T is the set of
homogeneous elements in Sy \ p.

2.3. Homogeneous prime spectrum of a graded ring. [see also Liu, §2.3.3]

(2.3.1). Given a non-negatively graded ring S, its homogeneous prime spectrum Proj(S) is
the set of graded prime ideals of S (2.1.10), that is, the set of graded prime ideals of S not
containing S;. We will make Proj(.S) the underlying set of a scheme.

(2.3.2). For any subset £ C S, define V. (E) to be the set of graded primes of S such that
E Cp 2 S, that is, V. (F) = V(E) N Proj(S) C Spec(S). Using (I, 1.1.2), we see that the
sets V. (E) are the closed sets of the subspace topology on Proj(S) C Spec(S). Let Z be the
graded ideal generated by all homogeneous components of elements of F. Then V,(Z) =
Vi(E). For any graded ideal Z C S and integer n, we have Vi(Z) = Vi.(U,5,(Z N S,)).
Finally V. (Z) = V (v, 1).

(2.3.3). We regard Proj(S) as a topological space with closed subsets V, (E). For f € S,
define

(2.3.3.1) D.(f) = D(f) NProj(S) = Proj(S) — V.(f).
Then
(2.3.3.2) D.(fg) = Di(f) N Di(g)
Proposition (2.3.4). — As f ranges over homogeneous elements of S, the sets D, (f)

form a base for the topology on Proj(sS).

(2.3.5). Let f € Sy (d > 0), and let p be a graded prime ideal of S such that f ¢ p. Then
ps is a prime ideal in Sy (0, 1.2.6), and ¢¢(p) = ps N S(y) is a prime ideal in Sy, consisting
of elements z/f™ where x € pN S,4. This defines a map

vy Dy (f) — Spec(Siy))-

Given g € S, (e > 0), we get a commutative diagram

D.(f) — Spec(S(y))

(2.3.5.1) T T

brg
Di(fg) — Spec(S(sy))-



Proposition (2.3.6). — [Liu, 2.83.36(a)] }y: D (f) — Spec(S(y)) is a homeomorphism.
Corollary (2.3.7). — D, (f) =0 if and only if f is nilpotent.

Corollary (2.3.8). — Let EC Sy. The following are equivalent:

(a) Vi(E) = X = Proj(S).

(b) Every element of E is nilpotent.

(c) The homogeneous components of every element of E are nilpotent.

Corollary (2.3.9). — IfZ1 is a graded ideal of Sy, then /. T is the intersection of the the
graded prime ideals of S which contain I.

(2.3.10). For any subset Y C Proj(S), let j.(Y)={fe€ Sy : Y CV,(f)} =i(Y)N S, an
ideal of S, equal to its radical in S;.

Proposition (2.3.11). — (i) For every E C Sy, j (V4(E)) = /. Z, where T is the ideal

generated by the homogeneous components of elements of E.
(i1) For every Y C Proj(S), Vi (i+(Y)) is the closure of Y in Proj(S).

Corollary (2.3.12). — There is a containment-reversing bijection Y — j(Y), T — V()
between radical ideals of Sy and closed subsets of Proj(S). The union Yy U Yy corresponds
to the intersection of ideals; the intersection of any family (Y\) corresponds to the radical of
the sum of their ideals.

Corollary (2.3.13). — Let T be a graded ideal of Sy.. Then V(Z) = 0 iff every element
of Sy has a power in T.

Corollary (2.3.14). — Let (f,) be graded elements of Si. The open sets D, (f.) cover
Proj(S) iff every element of Sy has a power in the ideal generated by the f,’s.

Corollary (2.3.15). — With (fa) asin (2.3.14), and f € S, the following are equivalent:
(@) Do(f) € Uy Da(fa)i (b) Vilf) 2 Ny Vilfa)i (c) some power of f is in the ideal
generated by the f,’s.

Corollary (2.3.16). — Proj(S) = 0 iff every element of Sy is nilpotent.

Corollary (2.3.17). — In the correspondence of (2.3.12), the irreducible closed subsets
correspond to the graded prime ideals of Sy.

2.4. The scheme structure on Proj(.S).

(2.4.1). Let f,g € Sy be homogeneous. We can carry the structure of affine scheme on
Y; = Spec(S(y)) to Do (f) via the homeomorphism 1; in (2.3.6). By (2.2.2) and (2.3.5), if
we make D, (fg) an affine scheme in the same way, then its inclusion into D, (f) is an open
immersion. In particular, the scheme structures on D, (f) and D, (g) agree on D, (fg). This
makes Proj(S) a prescheme.

Proposition (2.4.2). — The prescheme Proj(S) is a scheme [i.e., it is separated).
This follows from (I, 5.5.6) and (2.2.4).

Ezxample (2.4.3). — For S = K|ty, 5], Proj(S) is the projective line from (I, 2.3.2).



Proposition (2.4.4). — Let S be a non-negatively graded ring, X = Proj(S).
(i) Let Ny be the nilradical of Sy. Then Xieqa = Proj(S/M,).
(ii) Suppose S essentially reduced. Then X is integral iff S is essentially integral.

(2.4.5). A graded A-algebra is a graded ring S with an A-algebra structure such that each
S, is an A-submodule; equivalently the structural homomorphism A — S has image in 5.

Proposition (2.4.6). — If S is a graded A-algebra, X = Proj(S), then Ox is a sheaf of
A-algebras; that is, X is a scheme over Spec(A).

Proposition (2.4.7). — Let S be a non-negatively graded ring.

(i) For all d > 0, Proj(S) is canonically isomorphic to Proj(S@).

(ii) Let S" be the graded ring with S{ = Z, S|, = S, for alln > 0. Then Proj(S) = Proj(S’).

Corollary (2.4.8). — If S is a graded A-algebra, and S’y is the graded A-algebra with
(Sh)o=A, S, =8, forn >0, then Proj(S) = Proj(5’,).



