1. Affine morphisms

1.1. S-preschemes and \mathcal{O}_S -algebras.

(1.1.1). Given an S-prescheme $f: X \to S$, $\mathcal{A}(X)$ denotes the sheaf of \mathcal{O}_S algebras $f_*\mathcal{O}_X$. Given a sheaf of \mathcal{O}_X modules (or \mathcal{O}_X algebras) \mathcal{F} , $\mathcal{A}(\mathcal{F})$ denotes the sheaf of $\mathcal{A}(X)$ -modules (or $\mathcal{A}(X)$ algebras) $f_*(\mathcal{F})$.

(1.1.2–3). $X \mapsto \mathcal{A}(X)$ is a contravariant functor from S-preschemes to sheaves of \mathcal{O}_S algebras. More generally, there is a contravariant functor $(X, \mathcal{F}) \mapsto (\mathcal{A}(X), \mathcal{A}(\mathcal{F}))$ from pairs consisting of an S-prescheme X and sheaf of \mathcal{O}_X modules \mathcal{F} to pairs consisting of a sheaf of \mathcal{O}_S algebras and a sheaf of modules over it.

1.2. Preschemes affine over a prescheme.

Definition (1.2.1). — An S-prescheme $f: X \to S$ is affine over S if S has an affine open covering (S_{α}) such that each $f^{-1}(S_{\alpha})$ is affine.

Example (1.2.2). — By (I, 4.2.3-4) any closed sub-prescheme of S is affine over S.

Remark (1.2.3). — A prescheme affine over S need not be affine, e.g., X = S. An affine scheme X that is a prescheme over S need not be affine over S (see (1.3.3)), but if S is a scheme [*i.e.*, a separated presecheme] then any S-prescheme which is an affine scheme is affine over S (I, 5.5.10).

Proposition (1.2.4). — Every prescheme affine over S is separated over S, i.e., it is a scheme over S.

Proposition (1.2.5). — If $f: X \to S$ is affine, then for every open $U \subseteq S$, $f^{-1}(U)$ is affine over U.

Proposition (1.2.6). — If $f: X \to S$ is affine, then for every quasi-coherent sheaf of \mathcal{O}_X modules \mathcal{F} , $f_*(\mathcal{F})$ is quasi coherent.

In particular, $\mathcal{A}(X)$ is a quasi-coherent sheaf of \mathcal{O}_S algebras.

Proposition (1.2.7). — Let X be affine over S. For every S-prescheme Y, the canonical map $\operatorname{Hom}_{S}(Y, X) \to \operatorname{Hom}_{\mathcal{O}_{S}-Alg}(\mathcal{A}(X), \mathcal{A}(Y))$ is bijective.

Corollary (1.2.8). — If X and Y are affine over S, then an S-morphism $h: X \to Y$ is an isomorphism iff it induces an isomorphism $\mathcal{A}(X) \cong \mathcal{A}(Y)$.

1.3. Prescheme affine over S associated to an \mathcal{O}_S algebra.

Proposition (1.3.1). — Given any quasi-coherent sheaf of \mathcal{O}_S algebra \mathcal{B} , there exists a prescheme X affine over S, unique up to canonical isomorphism, such that $\mathcal{A}(X) = \mathcal{B}$.

The prescheme X in the proposition is denoted $\text{Spec}(\mathcal{B})$.

Corollary (1.3.2). — Let $f: X \to S$ be affine. For every affine $U \subseteq S$, $f^{-1}(U)$ is an affine scheme $\text{Spec}(\Gamma(U, \mathcal{A}(X)))$.

Example (1.3.3). — Let K be a field, S the affine plane with the origin doubled, so $S = Y_1 \cup Y_2$, where each $Y_i \cong \mathbb{A}^2_K$. Let f be the open immersion $Y_1 \hookrightarrow S$. Then $f^{-1}(Y_2)$ is not affine, so Y_1 is not affine over S, even though Y_1 is an affine scheme.

Corollary (1.3.4). — Let S be an affine scheme. Then an S-prescheme X is affine over S iff X is an affine scheme.

Corollary (1.3.5). — Let X be affine over S and let Y be an X-prescheme. Then Y is affine over X iff Y is affine over S.

(1.3.6). Let X be affine over S. To give an S-prescheme Y affine over X, it is equivalent to give a quasi-coherent sheaf of \mathcal{O}_S algebras \mathcal{B} and a homomorphism $\mathcal{A}(X) \to \mathcal{B}$; that is, to give a quasi-coherent sheaf of $\mathcal{A}(X)$ algebra on S.

Corollary (1.3.7). — Let X be affine over S. Then X is of finite type over S iff $\mathcal{A}(X)$ is of finite type as a sheaf of \mathcal{O}_S algebras (I, 9.6.2).

Corollary (1.3.8). — A prescheme X affine over S is reduced iff $\mathcal{A}(X)$ is reduced (0, 4.1.4).

1.4. Quasi-coherent sheaves on a prescheme affine over S.

Proposition (1.4.1). — Let X be affine over S, Y any S-prescheme, \mathcal{F}, \mathcal{G} quasi-coherent sheaves of $\mathcal{O}_X, \mathcal{O}_Y$ modules. The functorial correspondence from morphisms $(h, u): (Y, \mathcal{G}) \to$ (X, \mathcal{F}) to di-homomorphisms $(\mathcal{A}(h), \mathcal{A}(u)): (\mathcal{A}(X), \mathcal{A}(\mathcal{F})) \to (\mathcal{A}(Y), \mathcal{A}(\mathcal{G}))$ is bijective.

Corollary (1.4.2). — In (1.4.1), suppose Y is also affine over S. Then (h, u) is an isomorphism iff $(\mathcal{A}(h), \mathcal{A}(u))$ is an isomorphism.

Proposition (1.4.3). — Given quasi-coherent sheaves of \mathcal{O}_X algebras \mathcal{B} and \mathcal{B} modules \mathcal{M} , there exists a prescheme X affine over S and a quasi-coherent sheaf \mathcal{F} of \mathcal{O}_X modules, unique up to canonical isomorphism, such that $(\mathcal{A}(X), \mathcal{A}(\mathcal{F})) \cong (\mathcal{B}, \mathcal{M})$.

The sheaf \mathcal{F} in the proposition is denoted \mathcal{M} .

Corollary (1.4.4). — $\mathcal{M} \mapsto \widetilde{\mathcal{M}}$ is a covariant exact functor, which commutes with direct limits and direct sums.

Corollary (1.4.5). — Under the hypotheses of (1.4.3), $\widetilde{\mathcal{M}}$ is an \mathcal{O}_X module of finite type iff \mathcal{M} is a \mathcal{B} module of finite type.

Proposition (1.4.6). — Let Y be affine over S and X, X' affine over Y (hence over S (1.3.5)). Then $X \times_Y X' = \operatorname{Spec}(\mathcal{A}(X) \otimes_{\mathcal{A}(Y)} \mathcal{A}(X'))$ is affine over Y (and over S).

Corollary (1.4.7). — If \mathcal{F} , \mathcal{F}' are quasi-coherent sheaves of \mathcal{O}_X , $\mathcal{O}_{X'}$ modules, then $\mathcal{A}(\mathcal{F} \otimes_Y \mathcal{F}') \cong \mathcal{A}(\mathcal{F}) \otimes_{\mathcal{A}(Y)} \mathcal{A}(\mathcal{F}')$.

(1.4.8). In particular, taking X = X' = Y affine over S, if \mathcal{F} , \mathcal{G} are quasi-coherent sheaves of \mathcal{O}_X modules, then

(1.4.8.1)
$$\mathcal{A}(\mathcal{F} \otimes_{\mathcal{O}_X} \mathcal{G}) = \mathcal{A}(\mathcal{F}) \otimes_{\mathcal{A}(X)} \mathcal{A}(\mathcal{G}).$$

If \mathcal{F} is finitely presented, then (I, 1.6.3 and 1.3.12) imply

(1.4.8.2)
$$\mathcal{A}(\mathcal{H}om(\mathcal{F},\mathcal{G})) = \mathcal{H}om_{\mathcal{A}(X)}(\mathcal{A}(\mathcal{F}),\mathcal{A}(\mathcal{G})),$$

up to canonical isomorphism.

Remark (1.4.9). — If X, X' are affine over S, then so is $X \coprod X'$.

Proposition (1.4.10). — Let \mathcal{B} be a quasi-coherent sheaf of \mathcal{O}_S algebras, $X = \operatorname{Spec}(\mathcal{B})$. If $\mathcal{I} \subseteq \mathcal{B}$ is a quasi-coherent sheaf of ideals, then $\widetilde{\mathcal{I}}$ is a quasi-coherent sheaf of ideals in \mathcal{O}_X , and the closed subscheme $Y \subseteq X$ which it defines is canonically isomorphic to $\operatorname{Spec}(\mathcal{B}/\mathcal{I})$.

Put another way, if $h: \mathcal{B} \to \mathcal{B}'$ is a surjective homomorphism of quasi-coherent sheaves of \mathcal{O}_S algebras, then the induced morphism $\operatorname{Spec}(\mathcal{B}') \to \operatorname{Spec}(\mathcal{B})$ is a closed immersion.

Proposition (1.4.11). — Let \mathcal{B} be a quasi-coherent sheaf of \mathcal{O}_S algebras, $X = \text{Spec}(\mathcal{B})$, $f: X \to S$ the structure morphism. If $\mathcal{J} \subseteq \mathcal{O}_S$ is a quasi-coherent sheaf of ideals, then $f^*(\mathcal{J})\mathcal{O}_X \cong (\mathcal{J}\mathcal{B})^{\sim}$, canonically.

1.5. Change of base prescheme.

Proposition (1.5.1). — If X is affine over S, then any base change $X_{(S')}$ is affine over S'.

Corollary (1.5.2). — Let $f: X \to S$ be affine, $g: S' \to S$ any S-prescheme, $X' = X_{(S')}$, $f': X' \to S', g': X' \to X$ the projections (note $g \circ f' = f \circ g'$). For every quasi-coherent \mathcal{O}_X -module, there is a canonical isomorphism

(1.5.2.1)
$$u: g^*(f_*(\mathcal{F})) \cong f'_*(g'^*(\mathcal{F}))$$

In particular, $\mathcal{A}(X') \cong g^*(\mathcal{A}(X))$.

Remark (1.5.3). — Although (1.5.2) fails if X is not affine over S, a weaker version is valid for coherent sheaves on X when f is proper and S is Noetherian (III, 4.2.4).

Corollary (1.5.4). — For $f: X \to S$ affine and $s \in S$, the fiber $f^{-1}(s)$ is an affine scheme. Corollary (1.5.5). — If X is an S-prescheme via $f: X \to S$, and S' is affine over S, then $X' = X_{(S')}$ is affine over X. Moreover $\mathcal{A}(X') \cong f^*(\mathcal{A}(S'))$ and for every quasi-coherent $\mathcal{A}(S')$ -module \mathcal{M} , $f^*(\mathcal{M}) \cong \mathcal{A}(f'^*(\widetilde{\mathcal{M}}))$, where $f' = f_{(S')}$.

(1.5.6). Let $q: S' \to S$ be a morphism, $\mathcal{B}, \mathcal{B}'$ quasi-coherent sheaves of $\mathcal{O}_S, \mathcal{O}_{S'}$ algebras, $u: \mathcal{B} \to \mathcal{B}'$ a q-morphism (*i.e.* an \mathcal{O}_S algebra homomorphism $\mathcal{B} \to q_*(\mathcal{B}')$). Then u induces a morphism

$$v = \operatorname{Spec}(u) \colon X' = \operatorname{Spec}(\mathcal{B}') \to \operatorname{Spec}(\mathcal{B}) = X,$$

such that the following diagram commutes

$$(1.5.6.1) \qquad \begin{array}{c} X' \xrightarrow{\circ} X \\ \downarrow \\ S' \xrightarrow{q} S \end{array}$$

(1.5.7). Moreover, if \mathcal{M} is a quasi-coherent \mathcal{B} -module, then

(1.5.7.1)
$$v^*(\widetilde{\mathcal{M}}) \cong (q^*(\mathcal{M}) \otimes_{q^*(\mathcal{B})} \mathcal{B}')^{\widetilde{}}.$$

1.6. Affine morphisms.

(1.6.1). A morphism $f: X \to Y$ is affine if it makes X affine over Y.

Proposition (1.6.2). — (i) A closed immersion is affine. (ii) The composite of affine morphisms is affine. (iii) If f is affine, so is any base change $f_{(S')}$. (iv) If f, g are affine, so is $f \times_S g$. (v) If $g \circ f$ is affine and g is separated, then f is affine. (vi) If f is affine, then f_{red} is affine.

Corollary (1.6.3). — If X is an affine scheme and Y is a [separated] scheme, then any morphism $X \to Y$ is affine.

Proposition (1.6.4). — Let Y be locally Noetherian and $f: X \to Y$ a morphism of finite type. Then f is affine iff f_{red} is affine.

1.7. Vector bundle associated to a sheaf of modules.

(1.7.1). The symmetric algebra $\mathbf{S}(E)$ of an A-module E is the quotient of the tensor algebra $\mathbf{T}(E)$ by the relations $x \otimes y - y \otimes x$ for $x, y \in E$. It has the universal property that any A-linear map $E \to B$, where B is a commutative A-algebra, factors uniquely as $E \to \mathbf{S}(E) \to B$. $\mathbf{S}(-)$ is a functor from A-modules to commutative A-algebras; it commutes with direct limits and has $\mathbf{S}(E \oplus F) = \mathbf{S}(E) \otimes_A \mathbf{S}(F)$. $\mathbf{S}(E)$ is graded, with $\mathbf{S}_n(E)$ [the *n*-th symmetric power of E] the A-linear span of products of n elements of E. We have $\mathbf{S}(A^m) \cong A[t_1, \ldots, t_m]$.

(1.7.2). Let $\phi: A \to B$ be a ring homomorphism, F a B-module. $F_{[\phi]}$ denotes F regarded as an A-module. The inclusion $F_{[\phi]} \to \mathbf{S}(F)_{[\phi]}$ and the universal property induce a canonical A-algebra homomorphism $\mathbf{S}(F_{[\phi]}) \to \mathbf{S}(F)_{[\phi]}$. Any A-module homomorphism $E \to F_{[\phi]}$ induces $\mathbf{S}(E) \to \mathbf{S}(F)_{[\phi]}$. We also have $\mathbf{S}(E \otimes_A B) = \mathbf{S}(E) \otimes_A B$.

(1.7.3). Let $R \subseteq A$ be a multiplicative set, and $B = R^{-1}A$. Then $\mathbf{S}(R^{-1}E) = R^{-1}\mathbf{S}(E)$, and if $R \subseteq R'$, then $R^{-1}E \to R'^{-1}E$ commutes with $\mathbf{S}(R^{-1}E) \to \mathbf{S}(R'^{-1}E)$.

(1.7.4). Given a ringed space (S, \mathcal{A}) and an \mathcal{A} -module \mathcal{E} , we have a presheaf of \mathcal{A} -algebras $U \mapsto \mathbf{S}(\mathcal{E}(U))$. Its associated sheaf is the symmetric algebra of \mathcal{E} , denoted $\mathbf{S}(\mathcal{E})$ or $\mathbf{S}_{\mathcal{A}}(\mathcal{E})$. It is functorial and has the corresponding universal property as for the symmetric algebra of a module.

We have $\mathbf{S}(\mathcal{E})_s = \mathbf{S}(\mathcal{E}_s)$ (because **S** commutes with direct limits) and $\mathbf{S}(\mathcal{E} \oplus \mathcal{F}) = \mathbf{S}(\mathcal{E}) \otimes_{\mathcal{A}} \mathbf{S}(\mathcal{F})$. $\mathbf{S}(\mathcal{E})$ is graded, and $\mathbf{S}(\mathcal{A}) = \mathcal{A}[t] = \mathcal{A} \otimes_{\mathbb{Z}} \mathbb{Z}[t]$ (regarding $\mathbb{Z}, \mathbb{Z}[t]$ as constant sheaves on S).

(1.7.5). Given a morphism of ringed spaces $f: (S, \mathcal{A}) \to (T, \mathcal{B})$ and a \mathcal{B} -module \mathcal{F} , we have $\mathbf{S}(f^*\mathcal{F}) \cong f^*\mathbf{S}(\mathcal{F})$, canonically.

Proposition (1.7.6). — Let S = Spec(A), $\mathcal{E} = \widetilde{M}$. Then $\mathbf{S}(\mathcal{E}) = \mathbf{S}(M)^{\sim}$.

Corollary (1.7.7). — If \mathcal{E} is a quasi-coherent sheaf of \mathcal{O}_S modules on a prescheme S, then $\mathbf{S}(\mathcal{E})$ is a quasi-coherent sheaf of \mathcal{O}_S algebras. If \mathcal{E} is of finite type, then each $\mathbf{S}_n(\mathcal{E})$ is of finite type.

Definition (1.7.8). — $\mathbf{V}(\mathcal{E}) = \operatorname{Spec}(\mathbf{S}(\mathcal{E}))$ is the vector bundle over S associated to the quasi-coherent sheaf \mathcal{E} .

[It is more conventional to use the term 'vector bundle' only in the special case when \mathcal{E} is locally free of finite rank.]

Note that S-morphisms $X \to \mathbf{V}(\mathcal{E})$ correspond bijectively to \mathcal{O}_S -algebra homomorphisms $\mathbf{S}(\mathcal{E}) \to \mathcal{A}(X)$, and in turn to \mathcal{O}_S -module homomorphisms $\mathcal{E} \to \mathcal{A}(X)$ [that is, the S-prescheme $\mathbf{V}(\mathcal{E})$ represents the functor $X \to \operatorname{Hom}_{\mathcal{O}_S}(\mathcal{E}, \mathcal{A}(X))$ from S-preschemes to sets].

(1.7.9). Taking X above to be an open subscheme $U \subseteq S$, we see that the sheaf $U \mapsto \operatorname{Hom}_S(U, \mathbf{V}(\mathcal{E}))$ of sections of the S-scheme $\mathbf{V}(\mathcal{E})$ is canonically identified with the dual $\mathcal{E}^{\vee} = \mathcal{H}om(\mathcal{E}, \mathcal{O}_S)$ of \mathcal{E} . In particular, there is a canonical global S-section $S \to \mathbf{V}(\mathcal{E})$, the zero section.

(1.7.10). Now let K be a field and take $X = \operatorname{Spec}(K) = \{\xi\}$, with $f: X \to S$ corresponding to a field extension $k(s) \to K$ for $s \in S$, so the S-morphisms $\{\xi\} \to \mathbf{V}(\mathcal{E})$ are the geometric points of $\mathbf{V}(\mathcal{E})$ with values in the extension K of k(s). They are identified with \mathcal{O}_S -module homomorphisms $\mathcal{E} \to f_*(\mathcal{O}_X)$, or equivalently with \mathcal{O}_X -module (*i.e.*, K-vector space) homomorphisms $f^*(\mathcal{E}) \to K$ (0, 4.4.3). By definition, $f^*(\mathcal{E}) = \mathcal{E}_s \otimes_{\mathcal{O}_s} K = \mathcal{E}^s \otimes_{k(s)} K$, where we put $\mathcal{E}^s = \mathcal{E}_s/\mathfrak{m}_s \mathcal{E}_s$. So the geometric fiber of $\mathbf{V}(\mathcal{E})$ rational over K at the point s is identified with the dual to the K-vector space $\mathcal{E}^s \otimes_{k(s)} K$, or equivalently with $(\mathcal{E}^s)^{\vee} \otimes_{k(s)} K$, where (\mathcal{E}^s) is the dual of the k(s)-vector space \mathcal{E}^s .

Proposition (1.7.11). — (i) $\mathbf{V}(-)$ is a contravariant functor from quasi-coherent sheaves of \mathcal{O}_S modules to affine S-schemes.

(ii) If \mathcal{E} is of finite type, then $\mathbf{V}(\mathcal{E})$ is a scheme of finite type over S.

(*iii*) $\mathbf{V}(\mathcal{E} \oplus \mathcal{F}) = \mathbf{V}(\mathcal{E}) \times_S \mathbf{V}(\mathcal{F}).$

(iv) For any $g: S' \to S$, $\mathbf{V}(g^*(\mathcal{E})) \cong \mathbf{V}(\mathcal{E})_{(S')} = \mathbf{V}(\mathcal{E}) \times_S S'$.

(v) If $\mathcal{E} \to \mathcal{F}$ is surjective, then $\mathbf{V}(\mathcal{F}) \to \mathbf{V}(\mathcal{E})$ is a closed immersion.

(1.7.12). Taking $\mathcal{E} = \mathcal{O}_S$, we have $\mathbf{S}(\mathcal{E}) = \mathcal{O}_S[t]$, and $\mathbf{V}(\mathcal{E}) = S \times_{\mathbb{Z}} \operatorname{Spec}(\mathbb{Z}[t])$. We denote it S[t] [or, more standardly these days, \mathbb{A}_S^1]. The sheaf of S-sections of S[t] is identified with \mathcal{O}_S , by (1.7.9).

(1.7.13). For any S-prescheme X, we have $\operatorname{Hom}_S(X, S[t]) \cong \Gamma(S, \mathcal{A}(X))$, which is a ring. So the functor S[t] from S-preschemes to sets factors through commutative rings. Similarly, $\operatorname{Hom}_S(X, \mathbf{V}(\mathcal{E}))$ is a module over S[t](X). This can be interpreted as saying that S[t] is a *commutative ring scheme* over S, and $\mathbf{V}(\mathcal{E})$ is an S[t]-module scheme over S.

(1.7.14). From the structure of S[t]-module scheme on $\mathbf{V}(\mathcal{E})$, we can recover \mathcal{E} , up to canonical isomorphism. First, we recover $\mathbf{S}(\mathcal{E}) = \mathcal{A}(\mathbf{V}(\mathcal{E}))$. For any S-prescheme X, the S[t]-module scheme structure on $\mathbf{V}(\mathcal{E})$ identifies the the set of \mathcal{O}_S algebra homomorphisms $\operatorname{Hom}_{\mathcal{O}_S-\operatorname{Alg}}(\mathbf{S}(\mathcal{E}), \mathcal{A}(X))$ with \mathcal{O}_S module homomorphisms $\operatorname{Hom}_{\mathcal{O}_S}(\mathcal{E}, \mathcal{A}(X))$. In particular,

this set is naturally an $\mathcal{A}(X)$ -module. Now \mathcal{E} is canonically identified with the sub- \mathcal{O}_{S} module of $\mathbf{S}(\mathcal{E})$ whose sections z on an open set U have the following property: for every S-prescheme X, the evaluation map $h \to h(z)$ from $\operatorname{Hom}_{(\mathcal{O}_S|U)-\operatorname{Alg}}(\mathbf{S}(\mathcal{E})|U,\mathcal{A}(X)|U)$ to $\Gamma(U,\mathcal{A}(X))$ is a homomorphism of $\Gamma(U,\mathcal{A}(X))$ -modules.

Proposition (1.7.15). — Let Y be a quasi-compact scheme, or a prescheme whose underlying space is Noetherian. Every prescheme X affine and of finite type over Y is Y-isomorphic to a closed sub-Y-scheme of a Y-scheme of the form $\mathbf{V}(\mathcal{E})$, where \mathcal{E} is a quasi-coherent \mathcal{O}_{Y} module of finite type.