
Synopsis of material from EGA Chapter II, §1

1. Affine morphisms

1.1. S-preschemes and OS-algebras.
(1.1.1). Given an S-prescheme f : X → S, A(X) denotes the sheaf of OS algebras f∗OX .

Given a sheaf of OX modules (or OX algebras) F , A(F) denotes the sheaf of A(X)-modules
(or A(X) algebras) f∗(F).

(1.1.2–3). X 7→ A(X) is a contravariant functor from S-preschemes to sheaves of OS
algebras. More generally, there is a contravariant functor (X,F) 7→ (A(X),A(F)) from
pairs consisting of an S-prescheme X and sheaf of OX modules F to pairs consisting of a
sheaf of OS algebras and a sheaf of modules over it.

1.2. Preschemes affine over a prescheme.

Definition (1.2.1). — An S-prescheme f : X → S is affine over S if S has an affine open
covering (Sα) such that each f−1(Sα) is affine.

Example (1.2.2). — By (I, 4.2.3-4) any closed sub-prescheme of S is affine over S.

Remark (1.2.3). — A prescheme affine over S need not be affine, e.g., X = S. An affine
scheme X that is a prescheme over S need not be affine over S (see (1.3.3)), but if S is
a scheme [i.e., a separated presecheme] then any S-prescheme which is an affine scheme is
affine over S (I, 5.5.10).

Proposition (1.2.4). — Every prescheme affine over S is separated over S, i.e., it is a
scheme over S.

Proposition (1.2.5). — If f : X → S is affine, then for every open U ⊆ S, f−1(U) is
affine over U .

Proposition (1.2.6). — If f : X → S is affine, then for every quasi-coherent sheaf of OX
modules F , f∗(F) is quasi coherent.

In particular, A(X) is a quasi-coherent sheaf of OS algebras.

Proposition (1.2.7). — Let X be affine over S. For every S-prescheme Y , the canonical
map HomS(Y,X)→ HomOS-Alg(A(X),A(Y )) is bijective.

Corollary (1.2.8). — If X and Y are affine over S, then an S-morphism h : X → Y is
an isomorphism iff it induces an isomorphism A(X) ∼= A(Y ).

1.3. Prescheme affine over S associated to an OS algebra.

Proposition (1.3.1). — Given any quasi-coherent sheaf of OS algebra B, there exists a
prescheme X affine over S, unique up to canonical isomorphism, such that A(X) = B.

The prescheme X in the proposition is denoted Spec(B).

Corollary (1.3.2). — Let f : X → S be affine. For every affine U ⊆ S, f−1(U) is an
affine scheme Spec(Γ(U,A(X))).
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Example (1.3.3). — Let K be a field, S the affine plane with the origin doubled, so
S = Y1 ∪ Y2, where each Yi ∼= A2

K . Let f be the open immersion Y1 ↪→ S. Then f−1(Y2) is
not affine, so Y1 is not affine over S, even though Y1 is an affine scheme.

Corollary (1.3.4). — Let S be an affine scheme. Then an S-prescheme X is affine over
S iff X is an affine scheme.

Corollary (1.3.5). — Let X be affine over S and let Y be an X-prescheme. Then Y is
affine over X iff Y is affine over S.

(1.3.6). Let X be affine over S. To give an S-prescheme Y affine over X, it is equivalent
to give a quasi-coherent sheaf of OS algebras B and a homomorphism A(X) → B; that is,
to give a quasi-coherent sheaf of A(X) algebra on S.

Corollary (1.3.7). — Let X be affine over S. Then X is of finite type over S iff A(X) is
of finite type as a sheaf of OS algebras (I, 9.6.2).

Corollary (1.3.8). — A prescheme X affine over S is reduced iff A(X) is reduced (0,
4.1.4).

1.4. Quasi-coherent sheaves on a prescheme affine over S.

Proposition (1.4.1). — Let X be affine over S, Y any S-prescheme, F , G quasi-coherent
sheaves of OX , OY modules. The functorial correspondence from morphisms (h, u) : (Y,G)→
(X,F) to di-homomorphisms (A(h),A(u)) : (A(X),A(F))→ (A(Y ),A(G)) is bijective.

Corollary (1.4.2). — In (1.4.1), suppose Y is also affine over S. Then (h, u) is an
isomorphism iff (A(h),A(u)) is an isomorphism.

Proposition (1.4.3). — Given quasi-coherent sheaves of OX algebras B and B modules
M, there exists a prescheme X affine over S and a quasi-coherent sheaf F of OX modules,
unique up to canonical isomorphism, such that (A(X),A(F)) ∼= (B,M).

The sheaf F in the proposition is denoted M̃.

Corollary (1.4.4). — M 7→ M̃ is a covariant exact functor, which commutes with direct
limits and direct sums.

Corollary (1.4.5). — Under the hypotheses of (1.4.3), M̃ is an OX module of finite type
iff M is a B module of finite type.

Proposition (1.4.6). — Let Y be affine over S and X, X ′ affine over Y (hence over S
(1.3.5)). Then X ×Y X ′ = Spec(A(X)⊗A(Y ) A(X ′)) is affine over Y (and over S).

Corollary (1.4.7). — If F , F ′ are quasi-coherent sheaves of OX , OX′ modules, then
A(F ⊗Y F ′) ∼= A(F)⊗A(Y ) A(F ′).

(1.4.8). In particular, taking X = X ′ = Y affine over S, if F , G are quasi-coherent sheaves
of OX modules, then

(1.4.8.1) A(F ⊗OX
G) = A(F)⊗A(X) A(G).
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If F is finitely presented, then (I, 1.6.3 and 1.3.12) imply

(1.4.8.2) A(Hom(F ,G)) = HomA(X)(A(F),A(G)),

up to canonical isomorphism.

Remark (1.4.9). — If X, X ′ are affine over S, then so is X
∐
X ′.

Proposition (1.4.10). — Let B be a quasi-coherent sheaf of OS algebras, X = Spec(B). If

I ⊆ B is a quasi-coherent sheaf of ideals, then Ĩ is a quasi-coherent sheaf of ideals in OX ,
and the closed subscheme Y ⊆ X which it defines is canonically isomorphic to Spec(B/I).

Put another way, if h : B → B′ is a surjective homomorphism of quasi-coherent sheaves of
OS algebras, then the induced morphism Spec(B′)→ Spec(B) is a closed immersion.

Proposition (1.4.11). — Let B be a quasi-coherent sheaf of OS algebras, X = Spec(B),
f : X → S the structure morphism. If J ⊆ OS is a quasi-coherent sheaf of ideals, then
f ∗(J )OX ∼= (JB) ,̃ canonically.

1.5. Change of base prescheme.

Proposition (1.5.1). — If X is affine over S, then any base change X(S′) is affine over S ′.

Corollary (1.5.2). — Let f : X → S be affine, g : S ′ → S any S-prescheme, X ′ = X(S′),
f ′ : X ′ → S ′, g′ : X ′ → X the projections (note g ◦ f ′ = f ◦ g′). For every quasi-coherent
OX-module, there is a canonical isomorphism

(1.5.2.1) u : g∗(f∗(F)) ∼= f ′∗(g
′∗(F)).

In particular, A(X ′) ∼= g∗(A(X)).

Remark (1.5.3). — Although (1.5.2) fails if X is not affine over S, a weaker version is
valid for coherent sheaves on X when f is proper and S is Noetherian (III, 4.2.4).

Corollary (1.5.4). — For f : X → S affine and s ∈ S, the fiber f−1(s) is an affine scheme.

Corollary (1.5.5). — If X is an S-prescheme via f : X → S, and S ′ is affine over S,
then X ′ = X(S′) is affine over X. Moreover A(X ′) ∼= f ∗(A(S ′)) and for every quasi-coherent

A(S ′)-module M, f ∗(M) ∼= A(f ′∗(M̃)), where f ′ = f(S′).

(1.5.6). Let q : S ′ → S be a morphism, B, B′ quasi-coherent sheaves of OS, OS′ algebras,
u : B → B′ a q-morphism (i.e. an OS algebra homomorphism B → q∗(B′)). Then u induces
a morphism

v = Spec(u) : X ′ = Spec(B′)→ Spec(B) = X,

such that the following diagram commutes

(1.5.6.1)

X ′
v−−−→ Xy y

S ′
q−−−→ S

.
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(1.5.7). Moreover, if M is a quasi-coherent B-module, then

(1.5.7.1) v∗(M̃) ∼= (q∗(M)⊗q∗(B) B′) .̃

1.6. Affine morphisms.

(1.6.1). A morphism f : X → Y is affine if it makes X affine over Y .

Proposition (1.6.2). — (i) A closed immersion is affine.
(ii) The composite of affine morphisms is affine.
(iii) If f is affine, so is any base change f(S′).
(iv) If f , g are affine, so is f ×S g.
(v) If g ◦ f is affine and g is separated, then f is affine.
(vi) If f is affine, then fred is affine.

Corollary (1.6.3). — If X is an affine scheme and Y is a [separated] scheme, then any
morphism X → Y is affine.

Proposition (1.6.4). — Let Y be locally Noetherian and f : X → Y a morphism of finite
type. Then f is affine iff fred is affine.

1.7. Vector bundle associated to a sheaf of modules.

(1.7.1). The symmetric algebra S(E) of an A-module E is the quotient of the tensor algebra
T(E) by the relations x⊗y−y⊗x for x, y ∈ E. It has the universal property that any A-linear
map E → B, where B is a commutative A-algebra, factors uniquely as E → S(E) → B.
S(−) is a functor from A-modules to commutative A-algebras; it commutes with direct limits
and has S(E ⊕ F ) = S(E)⊗A S(F ). S(E) is graded, with Sn(E) [the n-th symmetric power
of E] the A-linear span of products of n elements of E. We have S(Am) ∼= A[t1, . . . , tm].

(1.7.2). Let φ : A→ B be a ring homomorphism, F a B-module. F[φ] denotes F regarded
as an A-module. The inclusion F[φ] → S(F )[φ] and the universal property induce a canonical
A-algebra homomorphism S(F[φ]) → S(F )[φ]. Any A-module homomorphism E → F[φ]

induces S(E)→ S(F )[φ]. We also have S(E ⊗A B) = S(E)⊗A B.
(1.7.3). Let R ⊆ A be a multiplicative set, and B = R−1A. Then S(R−1E) = R−1S(E),

and if R ⊆ R′, then R−1E → R′−1E commutes with S(R−1E)→ S(R′−1E).
(1.7.4). Given a ringed space (S,A) and an A-module E , we have a presheaf of A-algebras

U 7→ S(E(U)). Its associated sheaf is the symmetric algebra of E , denoted S(E) or SA(E). It
is functorial and has the corresponding universal property as for the symmetric algebra of a
module.

We have S(E)s = S(Es) (because S commutes with direct limits) and S(E ⊕F) = S(E)⊗A
S(F). S(E) is graded, and S(A) = A[t] = A⊗Z Z[t] (regarding Z, Z[t] as constant sheaves
on S).

(1.7.5). Given a morphism of ringed spaces f : (S,A) → (T,B) and a B-module F , we
have S(f ∗F) ∼= f ∗S(F), canonically.

Proposition (1.7.6). — Let S = Spec(A), E = M̃ . Then S(E) = S(M) .̃
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Corollary (1.7.7). — If E is a quasi-coherent sheaf of OS modules on a prescheme S, then
S(E) is a quasi-coherent sheaf of OS algebras. If E is of finite type, then each Sn(E) is of
finite type.

Definition (1.7.8). — V(E) = Spec(S(E)) is the vector bundle over S associated to the
quasi-coherent sheaf E .

[It is more conventional to use the term ‘vector bundle’ only in the special case when E is
locally free of finite rank.]

Note that S-morphisms X → V(E) correspond bijectively to OS-algebra homomorphisms
S(E) → A(X), and in turn to OS-module homomorphisms E → A(X) [that is, the S-
prescheme V(E) represents the functor X → HomOS

(E ,A(X)) from S-preschemes to sets].

(1.7.9). Taking X above to be an open subscheme U ⊆ S, we see that the sheaf U 7→
HomS(U,V(E)) of sections of the S-scheme V(E) is canonically identified with the dual
E∨ = Hom(E ,OS) of E . In particular, there is a canonical global S-section S → V(E), the
zero section.

(1.7.10). Now let K be a field and take X = Spec(K) = {ξ}, with f : X → S corre-
sponding to a field extension k(s)→ K for s ∈ S, so the S-morphisms {ξ} → V(E) are the
geometric points of V(E) with values in the extension K of k(s). They are identified with
OS-module homomorphisms E → f∗(OX), or equivalently with OX-module (i.e., K-vector
space) homomorphisms f ∗(E)→ K (0, 4.4.3). By definition, f ∗(E) = Es⊗OsK = Es⊗k(s)K,
where we put Es = Es/msEs. So the geometric fiber of V(E) rational over K at the point s is
identified with the dual to the K-vector space Es⊗k(s)K, or equivalently with (Es)∨⊗k(s)K,
where (Es) is the dual of the k(s)-vector space Es.

Proposition (1.7.11). — (i) V(−) is a contravariant functor from quasi-coherent sheaves
of OS modules to affine S-schemes.

(ii) If E is of finite type, then V(E) is a scheme of finite type over S.
(iii) V(E ⊕ F) = V(E)×S V(F).
(iv) For any g : S ′ → S, V(g∗(E)) ∼= V(E)(S′) = V(E)×S S ′.
(v) If E → F is surjective, then V(F)→ V(E) is a closed immersion.

(1.7.12). Taking E = OS, we have S(E) = OS[t], and V(E) = S ×Z Spec(Z[t]). We denote
it S[t] [or, more standardly these days, A1

S]. The sheaf of S-sections of S[t] is identified with
OS, by (1.7.9).

(1.7.13). For any S-prescheme X, we have HomS(X,S[t]) ∼= Γ(S,A(X)), which is a ring.
So the functor S[t] from S-preschemes to sets factors through commutative rings. Similarly,

HomS(X,V(E)) is a module over S[t](X). This can be interpreted as saying that S[t] is a

commutative ring scheme over S, and V(E) is an S[t]-module scheme over S.
(1.7.14). From the structure of S[t]-module scheme on V(E), we can recover E , up to

canonical isomorphism. First, we recover S(E) = A(V(E)). For any S-prescheme X, the
S[t]-module scheme structure on V(E) identifies the the set of OS algebra homomorphisms
HomOS-Alg(S(E),A(X)) with OS module homomorphisms HomOS

(E ,A(X)). In particular,
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this set is naturally an A(X)-module. Now E is canonically identified with the sub-OS-
module of S(E) whose sections z on an open set U have the following property: for ev-
ery S-prescheme X, the evaluation map h → h(z) from Hom(OS |U)-Alg(S(E)|U,A(X)|U) to
Γ(U,A(X)) is a homomorphism of Γ(U,A(X))-modules.

Proposition (1.7.15). — Let Y be a quasi-compact scheme, or a prescheme whose underly-
ing space is Noetherian. Every prescheme X affine and of finite type over Y is Y -isomorphic
to a closed sub-Y -scheme of a Y -scheme of the form V(E), where E is a quasi-coherent OY -
module of finite type.


