SYNOPSIS OF MATERIAL FROM EGA CHAPTER I, §9

9. SUPPLEMENT ON QUASI-COHERENT SHEAVES

9.1. Tensor product of quasi-coherent sheaves.

Proposition (9.1.1). — If F and G are quasi-coherent (resp. coherent) sheaves on a
prescheme (resp. locallly Noetherian prescheme) X, then so is F ® G, and it is of finite
type if F and G are. If F is finitely presented and G is quasi-coherent (resp. coherent) then
Homo, (F,G) is quasi-coherent (resp. coherent).

Definition (9.1.2). — Given S-preschemes X, Y and sheaves F, G of Ox (resp. Oy)
modules, we denote the tensor product pj(F) ®oy, . P3(9) on X XgY by F ®o4 G or
F ®sG.

Similar notation applies for products of more than two preschemes.

In the case X =Y = 5, F ®g G reduces to the tensor product of Og module sheaves.
We have pi(F) & F ®g Oy canonically, and likewise for p,. In particular, if Y = S and
f: X — Y is the structure morphism of X as a scheme over Y, then Ox ®y G = f*(G).
Thus the tensor product of sheaves on X and the inverse image f* are both special cases of
the general construction F ®g G.

The tensor product F ®g G is a right exact covariant functor in each variable.

Proposition (9.1.3). — If S = Spec(A), X = Spec(B), Y = Spec(C), F = M, G =N,
then F xg G is the sheaf associated to the B ® 4 C-module M ®4 N.

Proposition (9.1.4). — Given S-morphisms f: T — X, g: T — Y, we have (f, g)*(F ®s
G) = f*(F) ®@or 9°(9)-

Corollary (9.1.5). — Given S-morphisms f: X — X', g: Y = Y’, we have (f Xs9)*(F' ®s
g') = "(F) ©@s g7(G").

Corollary (9.1.6). — The canonical isomorphism X xgY xXsZ = (X XgY') X g Z identifies
F ®sG ®sH with (F®sG) @s H.

Corollary (9.1.7). — The canonical isomorphism X xg S = X identifies F ®@g Og with
F.

(9.1.8). Given a quasi-coherent sheaf of Ox modules on an S prescheme X and a morphism

¢: S" — S we denote by F(4) or F(s the sheaf F®sOS" on X5y = X xg5'; thus Fg = p*F,
where p: X(g/y — X is the projection.

Proposition (9.1.9). — Given S” ;) S’ ;) S, we have (Fg)) () = Flgos)-
Proposition (9.1.10). — Let f: X — Y be an S-morphism, G an Oy-module, and S" — S
an S-prescheme. Then fsn"(Gsy) = ([*(G)) sy
Corollary (9.1.11). — Given S-preschemes X, Y and S’, the canonical isomorphism
X(S/) X g )/(S’) = (X Xg Y)(S/) identifies ]:(S’) Rgr g(S,) with (./—" Rg g)(sl).
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Proposition (9.1.12). — With the notation of (9.1.2), let z be a point of X XY, © = p1(z2),
y = pa(2). The stalk (F ®g G). is isomorphic to (F, ®o, O.) Qo, (G ®o, O.) = F; Qo,
O, R0, gy.

Corollary (9.1.13). — If F, G are of finite type, then Supp(F ®s G) = p; ' (Supp(F)) N
py ' (Supp(9)).

9.2. Direct image of a quasi-coherent sheaf.

Proposition (9.2.1). — Let f: X — Y be a morphism of preschemes. Suppose Y has an
open affine covering (Yy) such that each f=(Y,) admits a finite affine covering (X,,), and
each Xo;N X, admits a finite affine covering. If F is a quasi-coherent sheaf of Ox-modules,
then f.Ox 1is quasi-coherent.

Corollary (9.2.2). — The conclusion of (9.2.1) holds under any of the conditions
(a) f is separated and quasi-compact,

(b) [ is separated and of finite type,

(c¢) [ is quasi-compact and the underlying space of X is locally Noetherian.

[The hypothesis in (9.2.1) is equivalent to f being quasi-compact and quasi-separated (IV,
1.7.4)]

9.3. Extending sections of quasi-coherent sheaves.

Theorem (9.3.1). — Let X be a prescheme. Assume either that the underlying space of
X 1s Noetherian or that X 1is quasi-compact and separated. Let L be an invertible sheaf of
Ox modules (0, 5.4.1), f € L(X) a global section, X the open set {x € X | f(x) # 0} (0,
5.5.1), and F a quasi-coherent sheaf.

(1) If s € (X, F) has s| Xy =0, then s® " =0 for some n > 0.

(11) For every s € I'(X¢, F) there is an n > 0 such that s ® f" exstends to a global section
of F @ LO™,

[Remark: either of the hypotheses on X implies that X is quasi-compact and quasi-
separated. The theorem actually holds under this more general hypothesis (IV, 1.7.5).]

Corollary (9.3.2). — In the situation of (9.5.1), consider the graded ring A. = T'.(L) and
graded A, module M, = T'.(L,F) (0,5.4.6). For any integer n and f € A,, I'(Xy, F) is
canonically isomorphic to the degree zero component ((M,)s)o of (My)s, as a module over

Ao = T(X;,0).

Corollary (9.3.3). — In the situation of (9.3.1), suppose L = Ox. Setting A =T'(X,Ox)
and M = F(X), the Ay module F(Xy) is canonically isomorphic to M;.

Proposition (9.3.4). — Let X be a Noetherian prescheme, F a coherent sheaf of Ox
modules on X, and J C Ox a coherent ideal sheaf. If Supp(F) C Supp(Ox/T), there is
an n > 0 such that J"F = 0.

9.4. Extending quasi-coherent sheaves.
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(9.4.1). Let X be a topological space and j: U — X the inclusion of an open subset. Let
F be a sheaf (of sets, groups, rings...) on X and G a subsheaf of F|U = j~'F. Then 5.§ is
a subsheaf of j,j771F, and the canonical homomorphism p: F — j,j LF gives us a subsheaf
G = p'(G) C F. For any open V C X, G(V) is the set of sections s € F(V) such that
s|(V N U) belongs to G(V NU). In other words, G is the largest subsheaf of F such that
G|U = G. The subsheaf G is called the canonical extension of the subsheaf G C F|U to a
subsheaf of F.

Proposition (9.4.2). — Let X be a prescheme and U C X an open subset such that the
incluston j: U — X is a quasi-compact morphism.

(i) For every quasi-coherent sheaf G of Ox|U modules, j.G is quasi-coherent and G =
7715:(G) = 3. (9)IU.

(i1) For every quasi-coherent sheaf F of Ox modules and quasi-coherent submodule sheaf
G C F|U, the canonical extension G C Fis quasi-coherent.

The hypothesis that j: U — X is quasi-compact holds automatically either if the under-
lying space of X is locally Noetheian (6.6.4 (i)), or if U is quasi-compact and X is separated,
by (5.5.6) [this can be weakened to U quasi-compact and X quasi-separated by (IV, 1.2.7)].

Corollary (9.4.3). — Let X be a prescheme and U a quasi-compact open subset such that
j: U — X is quasi-compact [for instance, if X is quasi-separated]. Suppose further that
every quasi-coherent sheaf of Ox modules is a direct limit of subsheaves of Ox modules of
finite type (for instance, if X is affine). Let F be a quasi-coherent sheaf of Ox modules and
G C F|U a quasi-coherent submodule sheaf of finite type. Then there exists a quasi-coherent
submodule sheaf G' C F of Ox modules of finite type such that G'|\U = G.

Remark (9.4.4). — Suppose X has the property that the inclusion U — X is quasi-
compact for every open U C X. Then the hypothesis in (9.4.3) that every quasi-coherent
sheaf of Ox modules is a direct limit of subsheaves of Ox modules of finite type is valid if
the conclusion of (9.4.3) holds for every affine open U C X, quasi-coherent sheaf F of Ox
modules; and quasi-coherent submodule sheaf G C F|U of finite type.

Corollary (9.4.5). — Under the hypotheses of (9.4.3), every quasi-coherent sheaf G of
Ox|U modules of finite type is the restriction G = G'|\U of a quasi-coherent sheaf of Ox
modules of finite type.

Lemma (9.4.6). — Let X be a prescheme, (V\)aer an open affine covering of X indezxed
by a well-ordered set L, and U C X an open subset. For each A € L, put W, = Uu</\ V..
Suppose that (i) for each X € L, VxNW), is quasi-compact and (ii) the immersion morphism
U — X is quasi-compact. Then for every quasi-coherent sheaf F of Ox modules and quasi-
coherent submodule sheaf G C F|U of finite type, there exists a quasi-coherent submodule

sheaf G' C F of finite type such that G = G'|U.

Theorem (9.4.7). — Let U be an open subset of a prescheme X. Suppose that either of
the following conditions holds:
(a) the underlying space of X is locally Noetherian, or



(b) X is separated and quasi-compact and U is quasi-compact.

Then for every quasi-coherent sheaf F of Ox modules and quasi-coherent submodule sheaf
G C F|U of finite type, there exists a quasi-coherent submodule sheaf G' C F of finite type
such that G = G'|U.

Corollary (9.4.8). — Under the hypotheses of (9.4.7), every quasi-coherent sheaf G of
Ox|U modules of finite type is the restriction G = G'|\U of a quasi-coherent sheaf G of Ox
modules of finite type.

Corollary (9.4.9). — If the underlying space of X is locally Noetherian, or if X is sepa-
rated and quasi-compact, then every quasi-coherent sheaf of Ox modules is a direct limit of
submodule sheaves of finite type.

Corollary (9.4.10). — Under the hypotheses of (9.4.9), if F is a quasi-coherent sheaf of
Ox modules such that every quasi-coherent submodule sheaf of finite type of F is generated
by global sections, then F is generated by global sections.

[In (9.4.7 (b)) and the subsequent corollaries one can weaken ‘separated’ to ‘quasi-separated’
(IV, 1.7.7).]

9.5. Closed image of a prescheme; closure of a sub-prescheme.

Proposition (9.5.1). — Let f: X — Y be a morphism of preschemes such that f.Ox is
quasi-coherent (which holds if f is quasi-compact, and either f is separated or the under-
lying space of X 1is locally Noetherian [or more generally if f is quasi-compact and quasi-
separated]). Then there is a smallest closed sub-preschemeY' C'Y such that f factors through
the inclusion j: Y' — Y, or equivalently (4.4.1), such that the sub-prescheme f~1(Y') C X
15 equal to X.

Corollary (9.5.2). — More precisely, the kernel T of f°: Oy — f.Ox is quasi-coherent
and the closed sub-prescheme Y’ defined by T has the property in (9.5.1).

Definition (9.5.3). — Y with the property in (9.5.1) is called the closed image of X under
the morphism f.

[Remark: the closed image Y actually exists for every morphism f. Since a sum of quasi-
coherent ideal sheaves is quasi-coherent (4.1.1), every ideal sheaf Z C Oy contains a unique
largest quasi-coherent ideal sheaf Z'. If we take Z = ker(f”), then the closed subscheme Y’
defined by Z’ has the property in (9.5.1), even if Z is not quasi-coherent. Moreover, for Z to
be quasi-coherent it is not necessary that f.Ox be quasi-coherent. For instance, it suffices
that f be quasi-compact.]

Proposition (9.5.4). — If f.Ox is quasi-coherent, then the underlying space of Y' is the
closure of f(X) in X.

[The weaker condition that ker(f”) be quasi-coherent suffices.]
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Proposition (9.5.5). — (transitivity of closed image) Given X 7> Y = Z, let Y’ be the
g

closed image of X under f. Then the closed image of X under g o f is equal to the closed
image of Y under the restriction ¢': Y’ — Z of g.

Corollary (9.5.6). — Let f: X =Y be an S-morphism such that the closed image of X
under f is equal to Y. Let Z be a separated prescheme over S. If g1, go are morphisms
Y — Z such that gy o f = go0 f, then g1 = ga.

Remark (9.5.7). — If we also suppose X, Y separated, the conclusion of (9.5.6) says that
f is an epimorphism in the category of separated preschemes over S.

Proposition (9.5.8). — Under the hypotheses of (9.5.1), if V- CY is open, then VNY is
the closed image of f~(V) under f|f~*(V).

[Again the weaker condition that ker(f”) be quasi-coherent suffices.]

Proposition (9.5.9). — Let Y’ be the closed image of X under f: X — Y.
(i) If X is reduced, then so is Y.
(i) If f.Ox is quasi-coherent and X is irreducible (resp. integral), then so is Y'.

[In (i), the weaker condition that ker(f”) be quasi-coherent suffices.|

Proposition (9.5.10). — LetY be a sub-prescheme of X such that the inclusioni: Y — X
is quasi-compact. Then there is a smallest closed subscheme Y majorizing Y , its underlying
space is the closure of Y, Y is open in its closure, and Y is equal to the restriction of Y to
this open subset.

Corollary (9.5.11). — Under the hypotheses of (9.5.10), if the restriction of a section
s€ Oy(V) to VNY is zero, then s = 0.

9.6. Quasi-coherent sheaves of algebras; change of stucture sheaf.

Proposition (9.6.1). — Let X be a prescheme, B a quasi-coherent sheaf of Ox-algebras
(0, 5.1.3). A B-module sheaf F is quasi-coherent as a sheaf of modules on the ringed space
(X, B) if and only if F is quasi-coherent as a sheaf of Ox modules.

[This result, which is proved by reduction to affines, is specific to preschemes and does
not hold on a general ringed space.]

(9.6.2). A quasi-coherent sheaf of Oy algebras B is of finite type if every z € X has an
affine neighborhood U = Spec(A) such that B = B(U) is a finitely-generated A-algebra.
Then the same thing holds on Uy = Spec(Ay) for f € A. It follows that if B is of finite type,
then B|V is of finite type for every open V C X.

Proposition (9.6.3). — If X is locally Noetherian, then every Ox-algebra B of finite type
is a coherent sheaf of rings (0, 5.5.7).

Corollary (9.6.4). — Under the hypotheses of (9.6.3) a sheaf of B modules F is coherent
if and only iof F is of finite type as a sheaf of B modules and quasi-coherent as a sheaf of Ox
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modules. In this case, if G is a submodule sheaf or quotient sheaf of F, then G is a coherent
sheaf of B modules if and only if G is quasi-coherent as a sheaf of Ox modules.

Proposition (9.6.5). — Let X be a quasi-compact scheme, or a prescheme whose underlying
space is Noetherian. Then every quasi-coherent Ox-algebra B of finite type contains an Ox-
submodule of finite type which generates B as an Ox-algebra.

[The proposition holds if X is quasi-compact and quasi-separated (IV, 1.7.9), a condition
weaker than each of the two specified hypotheses.|

Proposition (9.6.6). — Let X be a quasi-compact scheme, or a prescheme whose underlying
space s locally Noetherian. Then every quasi-coherent sheaf of Ox algebras B is the inductive
limit of its quasi-coherent subalgebra sheaves of finite type.

[One can weaken ‘quasi-compact scheme’ to ‘quasi-compact and quasi-separated prescheme’
(IV, 1.7.9).]



