
Synopsis of material from EGA Chapter I, §9

9. Supplement on quasi-coherent sheaves

9.1. Tensor product of quasi-coherent sheaves.

Proposition (9.1.1). — If F and G are quasi-coherent (resp. coherent) sheaves on a
prescheme (resp. locallly Noetherian prescheme) X, then so is F ⊗ G, and it is of finite
type if F and G are. If F is finitely presented and G is quasi-coherent (resp. coherent) then
HomOX

(F ,G) is quasi-coherent (resp. coherent).

Definition (9.1.2). — Given S-preschemes X, Y and sheaves F , G of OX (resp. OY )
modules, we denote the tensor product p∗1(F) ⊗OX×SY

p∗2(G) on X ×S Y by F ⊗OS
G or

F ⊗S G.
Similar notation applies for products of more than two preschemes.
In the case X = Y = S, F ⊗S G reduces to the tensor product of OS module sheaves.

We have p∗1(F) ∼= F ⊗S OY canonically, and likewise for p2. In particular, if Y = S and
f : X → Y is the structure morphism of X as a scheme over Y , then OX ⊗Y G = f ∗(G).
Thus the tensor product of sheaves on X and the inverse image f ∗ are both special cases of
the general construction F ⊗S G.

The tensor product F ⊗S G is a right exact covariant functor in each variable.

Proposition (9.1.3). — If S = Spec(A), X = Spec(B), Y = Spec(C), F = M̃ , G = Ñ ,
then F ×S G is the sheaf associated to the B ⊗A C-module M ⊗A N .

Proposition (9.1.4). — Given S-morphisms f : T → X, g : T → Y , we have (f, g)∗(F ⊗S
G) = f ∗(F)⊗OT

g∗(G).

Corollary (9.1.5). — Given S-morphisms f : X → X ′, g : Y → Y ′, we have (f×Sg)∗(F ′⊗S
G ′) = f ∗(F ′)⊗S g∗(G ′).

Corollary (9.1.6). — The canonical isomorphism X×S Y ×SZ ∼= (X×S Y )×SZ identifies
F ⊗S G ⊗S H with (F ⊗S G)⊗S H.

Corollary (9.1.7). — The canonical isomorphism X ×S S ∼= X identifies F ⊗S OS with
F .

(9.1.8). Given a quasi-coherent sheaf of OX modules on an S prescheme X and a morphism
φ : S ′ → S we denote by F(φ) or F(S′) the sheaf F⊗SOS ′ on X(S′) = X×SS ′; thus FS′ = p∗F ,
where p : X(S′) → X is the projection.

Proposition (9.1.9). — Given S ′′ →
φ′
S ′ →

φ
S, we have (F(φ))(φ′) = F(φ◦φ′).

Proposition (9.1.10). — Let f : X → Y be an S-morphism, G an OY -module, and S ′ → S
an S-prescheme. Then f(S′)

∗(G(S′)) = (f ∗(G))(S′).

Corollary (9.1.11). — Given S-preschemes X, Y and S ′, the canonical isomorphism
X(S′) ×S′ Y(S′) ∼= (X ×S Y )(S′) identifies F(S′) ⊗S′ G(S′) with (F ⊗S G)(S′).
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Proposition (9.1.12). — With the notation of (9.1.2), let z be a point of X×SY , x = p1(z),
y = p2(z). The stalk (F ⊗S G)z is isomorphic to (Fx ⊗Ox Oz) ⊗Oz (Gy ⊗Oy Oz) = Fx ⊗Ox

Oz ⊗Oy Gy.
Corollary (9.1.13). — If F , G are of finite type, then Supp(F ⊗S G) = p−11 (Supp(F)) ∩

p−12 (Supp(G)).

9.2. Direct image of a quasi-coherent sheaf.

Proposition (9.2.1). — Let f : X → Y be a morphism of preschemes. Suppose Y has an
open affine covering (Yα) such that each f−1(Yα) admits a finite affine covering (Xαi

), and
each Xαi∩Xαj admits a finite affine covering. If F is a quasi-coherent sheaf of OX-modules,
then f∗OX is quasi-coherent.

Corollary (9.2.2). — The conclusion of (9.2.1) holds under any of the conditions
(a) f is separated and quasi-compact,
(b) f is separated and of finite type,
(c) f is quasi-compact and the underlying space of X is locally Noetherian.

[The hypothesis in (9.2.1) is equivalent to f being quasi-compact and quasi-separated (IV,
1.7.4).]

9.3. Extending sections of quasi-coherent sheaves.

Theorem (9.3.1). — Let X be a prescheme. Assume either that the underlying space of
X is Noetherian or that X is quasi-compact and separated. Let L be an invertible sheaf of
OX modules (0, 5.4.1), f ∈ L(X) a global section, Xf the open set {x ∈ X | f(x) 6= 0} (0,
5.5.1), and F a quasi-coherent sheaf.

(i) If s ∈ Γ(X,F) has s|Xf = 0, then s⊗ fn = 0 for some n > 0.
(ii) For every s ∈ Γ(Xf ,F) there is an n > 0 such that s⊗ fn extends to a global section

of F ⊗ L⊗n.

[Remark: either of the hypotheses on X implies that X is quasi-compact and quasi-
separated. The theorem actually holds under this more general hypothesis (IV, 1.7.5).]

Corollary (9.3.2). — In the situation of (9.3.1), consider the graded ring A∗ = Γ∗(L) and
graded A∗ module M∗ = Γ∗(L,F) (0,5.4.6). For any integer n and f ∈ An, Γ(Xf ,F) is
canonically isomorphic to the degree zero component ((M∗)f )0 of (M∗)f , as a module over
A0
∼= Γ(Xf ,O).

Corollary (9.3.3). — In the situation of (9.3.1), suppose L = OX . Setting A = Γ(X,OX)
and M = F(X), the Af module F(Xf ) is canonically isomorphic to Mf .

Proposition (9.3.4). — Let X be a Noetherian prescheme, F a coherent sheaf of OX
modules on X, and J ⊆ OX a coherent ideal sheaf. If Supp(F) ⊆ Supp(OX/J ), there is
an n > 0 such that J nF = 0.

9.4. Extending quasi-coherent sheaves.
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(9.4.1). Let X be a topological space and j : U → X the inclusion of an open subset. Let
F be a sheaf (of sets, groups, rings. . . ) on X and G a subsheaf of F|U = j−1F . Then j∗G is
a subsheaf of j∗j

−1F , and the canonical homomorphism ρ : F → j∗j
−1F gives us a subsheaf

G = ρ−1(G) ⊆ F . For any open V ⊆ X, G(V ) is the set of sections s ∈ F(V ) such that
s|(V ∩ U) belongs to G(V ∩ U). In other words, G is the largest subsheaf of F such that
G|U = G. The subsheaf G is called the canonical extension of the subsheaf G ⊆ F|U to a
subsheaf of F .

Proposition (9.4.2). — Let X be a prescheme and U ⊆ X an open subset such that the
inclusion j : U → X is a quasi-compact morphism.

(i) For every quasi-coherent sheaf G of OX |U modules, j∗G is quasi-coherent and G =
j−1j∗(G) = j∗(G)|U .

(ii) For every quasi-coherent sheaf F of OX modules and quasi-coherent submodule sheaf
G ⊆ F|U , the canonical extension G ⊆ F is quasi-coherent.

The hypothesis that j : U → X is quasi-compact holds automatically either if the under-
lying space of X is locally Noetheian (6.6.4 (i)), or if U is quasi-compact and X is separated,
by (5.5.6) [this can be weakened to U quasi-compact and X quasi-separated by (IV, 1.2.7)].

Corollary (9.4.3). — Let X be a prescheme and U a quasi-compact open subset such that
j : U → X is quasi-compact [for instance, if X is quasi-separated]. Suppose further that
every quasi-coherent sheaf of OX modules is a direct limit of subsheaves of OX modules of
finite type (for instance, if X is affine). Let F be a quasi-coherent sheaf of OX modules and
G ⊆ F|U a quasi-coherent submodule sheaf of finite type. Then there exists a quasi-coherent
submodule sheaf G ′ ⊆ F of OX modules of finite type such that G ′|U = G.

Remark (9.4.4). — Suppose X has the property that the inclusion U → X is quasi-
compact for every open U ⊆ X. Then the hypothesis in (9.4.3) that every quasi-coherent
sheaf of OX modules is a direct limit of subsheaves of OX modules of finite type is valid if
the conclusion of (9.4.3) holds for every affine open U ⊆ X, quasi-coherent sheaf F of OX
modules, and quasi-coherent submodule sheaf G ⊆ F|U of finite type.

Corollary (9.4.5). — Under the hypotheses of (9.4.3), every quasi-coherent sheaf G of
OX |U modules of finite type is the restriction G = G ′|U of a quasi-coherent sheaf of OX
modules of finite type.

Lemma (9.4.6). — Let X be a prescheme, (Vλ)λ∈L an open affine covering of X indexed
by a well-ordered set L, and U ⊆ X an open subset. For each λ ∈ L, put Wλ =

⋃
µ<λ Vµ.

Suppose that (i) for each λ ∈ L, Vλ ∩Wλ is quasi-compact and (ii) the immersion morphism
U → X is quasi-compact. Then for every quasi-coherent sheaf F of OX modules and quasi-
coherent submodule sheaf G ⊆ F|U of finite type, there exists a quasi-coherent submodule
sheaf G ′ ⊆ F of finite type such that G = G ′|U .

Theorem (9.4.7). — Let U be an open subset of a prescheme X. Suppose that either of
the following conditions holds:

(a) the underlying space of X is locally Noetherian, or
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(b) X is separated and quasi-compact and U is quasi-compact.
Then for every quasi-coherent sheaf F of OX modules and quasi-coherent submodule sheaf
G ⊆ F|U of finite type, there exists a quasi-coherent submodule sheaf G ′ ⊆ F of finite type
such that G = G ′|U .

Corollary (9.4.8). — Under the hypotheses of (9.4.7), every quasi-coherent sheaf G of
OX |U modules of finite type is the restriction G = G ′|U of a quasi-coherent sheaf G of OX
modules of finite type.

Corollary (9.4.9). — If the underlying space of X is locally Noetherian, or if X is sepa-
rated and quasi-compact, then every quasi-coherent sheaf of OX modules is a direct limit of
submodule sheaves of finite type.

Corollary (9.4.10). — Under the hypotheses of (9.4.9), if F is a quasi-coherent sheaf of
OX modules such that every quasi-coherent submodule sheaf of finite type of F is generated
by global sections, then F is generated by global sections.

[In (9.4.7 (b)) and the subsequent corollaries one can weaken ‘separated’ to ‘quasi-separated’
(IV, 1.7.7).]

9.5. Closed image of a prescheme; closure of a sub-prescheme.

Proposition (9.5.1). — Let f : X → Y be a morphism of preschemes such that f∗OX is
quasi-coherent (which holds if f is quasi-compact, and either f is separated or the under-
lying space of X is locally Noetherian [or more generally if f is quasi-compact and quasi-
separated]). Then there is a smallest closed sub-prescheme Y ′ ⊆ Y such that f factors through
the inclusion j : Y ′ → Y , or equivalently (4.4.1), such that the sub-prescheme f−1(Y ′) ⊆ X
is equal to X.

Corollary (9.5.2). — More precisely, the kernel I of f [ : OY → f∗OX is quasi-coherent
and the closed sub-prescheme Y ′ defined by I has the property in (9.5.1).

Definition (9.5.3). — Y ′ with the property in (9.5.1) is called the closed image of X under
the morphism f .

[Remark: the closed image Y ′ actually exists for every morphism f . Since a sum of quasi-
coherent ideal sheaves is quasi-coherent (4.1.1), every ideal sheaf I ⊆ OY contains a unique
largest quasi-coherent ideal sheaf I ′. If we take I = ker(f [), then the closed subscheme Y ′

defined by I ′ has the property in (9.5.1), even if I is not quasi-coherent. Moreover, for I to
be quasi-coherent it is not necessary that f∗OX be quasi-coherent. For instance, it suffices
that f be quasi-compact.]

Proposition (9.5.4). — If f∗OX is quasi-coherent, then the underlying space of Y ′ is the
closure of f(X) in X.

[The weaker condition that ker(f [) be quasi-coherent suffices.]
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Proposition (9.5.5). — (transitivity of closed image) Given X →
f
Y →

g
Z, let Y ′ be the

closed image of X under f . Then the closed image of X under g ◦ f is equal to the closed
image of Y ′ under the restriction g′ : Y ′ → Z of g.

Corollary (9.5.6). — Let f : X → Y be an S-morphism such that the closed image of X
under f is equal to Y . Let Z be a separated prescheme over S. If g1, g2 are morphisms
Y → Z such that g1 ◦ f = g2 ◦ f , then g1 = g2.

Remark (9.5.7). — If we also suppose X, Y separated, the conclusion of (9.5.6) says that
f is an epimorphism in the category of separated preschemes over S.

Proposition (9.5.8). — Under the hypotheses of (9.5.1), if V ⊆ Y is open, then V ∩ Y ′ is
the closed image of f−1(V ) under f |f−1(V ).

[Again the weaker condition that ker(f [) be quasi-coherent suffices.]

Proposition (9.5.9). — Let Y ′ be the closed image of X under f : X → Y .
(i) If X is reduced, then so is Y ′.
(ii) If f∗OX is quasi-coherent and X is irreducible (resp. integral), then so is Y ′.

[In (ii), the weaker condition that ker(f [) be quasi-coherent suffices.]

Proposition (9.5.10). — Let Y be a sub-prescheme of X such that the inclusion i : Y → X
is quasi-compact. Then there is a smallest closed subscheme Y majorizing Y , its underlying
space is the closure of Y , Y is open in its closure, and Y is equal to the restriction of Y to
this open subset.

Corollary (9.5.11). — Under the hypotheses of (9.5.10), if the restriction of a section
s ∈ OY (V ) to V ∩ Y is zero, then s = 0.

9.6. Quasi-coherent sheaves of algebras; change of stucture sheaf.

Proposition (9.6.1). — Let X be a prescheme, B a quasi-coherent sheaf of OX-algebras
(0, 5.1.3). A B-module sheaf F is quasi-coherent as a sheaf of modules on the ringed space
(X,B) if and only if F is quasi-coherent as a sheaf of OX modules.

[This result, which is proved by reduction to affines, is specific to preschemes and does
not hold on a general ringed space.]

(9.6.2). A quasi-coherent sheaf of OX algebras B is of finite type if every x ∈ X has an
affine neighborhood U = Spec(A) such that B = B(U) is a finitely-generated A-algebra.
Then the same thing holds on Uf = Spec(Af ) for f ∈ A. It follows that if B is of finite type,
then B|V is of finite type for every open V ⊆ X.

Proposition (9.6.3). — If X is locally Noetherian, then every OX-algebra B of finite type
is a coherent sheaf of rings (0, 5.3.7).

Corollary (9.6.4). — Under the hypotheses of (9.6.3) a sheaf of B modules F is coherent
if and only if F is of finite type as a sheaf of B modules and quasi-coherent as a sheaf of OX
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modules. In this case, if G is a submodule sheaf or quotient sheaf of F , then G is a coherent
sheaf of B modules if and only if G is quasi-coherent as a sheaf of OX modules.

Proposition (9.6.5). — Let X be a quasi-compact scheme, or a prescheme whose underlying
space is Noetherian. Then every quasi-coherent OX-algebra B of finite type contains an OX-
submodule of finite type which generates B as an OX-algebra.

[The proposition holds if X is quasi-compact and quasi-separated (IV, 1.7.9), a condition
weaker than each of the two specified hypotheses.]

Proposition (9.6.6). — Let X be a quasi-compact scheme, or a prescheme whose underlying
space is locally Noetherian. Then every quasi-coherent sheaf of OX algebras B is the inductive
limit of its quasi-coherent subalgebra sheaves of finite type.

[One can weaken ‘quasi-compact scheme’ to ‘quasi-compact and quasi-separated prescheme’
(IV, 1.7.9).]


