SYNOPSIS OF MATERIAL FROM EGA CHAPTER I, §5

5. REDUCED PRESCHEMES; THE SEPARATION AXIOM
5.1. Reduced preschemes.

Proposition (5.1.1). — Let B be a quasi-coherent sheaf of Ox-algebras on a prescheme X .
There is a unique quasi-coherent sheaf of ideals ./y C B such that N, is the nilradical of B,
for all z € X. If X = Spec A is affine, so B = B for an A-algebra B, then N' = N, where
N is the nilradical of B.

The sheaf N is called the nilradical of B. We write Ny for the nilradical of B = Ox.

Corollary (5.1.2). — The closed sub-prescheme of X defined by the ideal sheaf Nx is the
unique sub-prescheme which is reduced (0, 4.1.4) and has underlying space is equal to X ; it
15 the smallest close sub-prescheme with underlying space X .

Definition (5.1.3). — The closed sub-prescheme in (5.1.2) is called the associated reduced
prescheme of X, and denoted X,q.
Thus X is reduced iff X = X,q4.

Proposition (5.1.4). — Spec(A) is reduced (resp. integral) (2.1.7) iff A is a reduced ring
(resp. an integral domain).

(5.1.5). A morphism f: X — Y induces a unique morphism fieq: Xieq — Yiea such that
the diagram

fred
Xred E— Y;ed

Lo

x 15 v

commutes, where the vertical arrows are the canonical inclusions of closed sub-preschemes.
This makes X — X,.q a functor from preschemes to reduced preschemes. If X is reduced,

then every morphism f: X — Y factors uniquely as X — Yoq = Y.
red

[This implies that X — Xeq is right adjoint to the inclusion of the category of reduced
preschemes in the category of preschemes.]

Proposition (5.1.6). — If f is surjective (resp. universally injective, an immersion, a
closed immersion, an open immersion, a local immersion, a local isomorphism), then so is
frea- Conversely, if frea is surjective (resp. universally injective), then so is f.

Proposition (5.1.7). — Let X, Y be S-preschemes. Then Xieq Xs,.y Yied = Xred X5 Yred,
and it is identified canonically with a sub-prescheme of X XgY whose underlying space is
X Xg Y.

COTO”GTy (518) — (X Xg Y)red = (Xred Xsred Y;ed)red-
Note that even if X and Y are reduced, X xXg Y need not be.
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Proposition (5.1.9). — Let X be a pre-scheme andZ C Ox a quasi-coherent sheaf of ideals
such that I" = 0 for some n. Let Xq = (X,Ox/I) be the closed sub-prescheme defined by
Z. Then X is affine if and only if X is.

The proof is an application of the vanishing of higher cohomology for quasi-coherent
sheaves on an affine scheme.

Corollary (5.1.10). — If Nx is nilpotent, then X is affine if and only if X,eq 1.

5.2. Existence of a sub-prescheme with a given underlying space.

Proposition (5.2.1). — For every locally closed subset Y C X there exists a unique reduced
sub-prescheme of X with underlying space Y .

Proposition (5.2.2). — Let X be reduced, f: X — Y a morphism, Z CY a closed sub-
prescheme such that f(X) C Z. Then f factors through the inclusion Z — Y.

Corollary (5.2.3). — Let X be a reduced sub-prescheme of Y, and let Z be the reduced
closed sub-prescheme of Y with underlying space X. Then X is an open sub-prescheme of
Z.

Corollary (5.2.4). — Let f: X — Y be a morphism, and let X' (resp. Y') be a closed
sub-prescheme of X (resp. Y) defined by an ideal sheaf T (resp. J). If X' is reduced, and
f(X') CY', then f*(J)Ox CT.

5.3. Diagonal; graph of a morphism.

(5.3.1). Let X be an S-prescheme. The morphism Axis = (Ix,1x): X = X xg X is
called the diagonal morphism. We also write Ax or just A when S and/or X are understood
from the context. For any two S-morphisms f,g: T — X, note that (f,g) = (f Xsg) o Ax.

The definition makes sense and everything in (5.3.1) through (5.3.8) holds in any category
where the relevant products exist.

Proposition (5.3.2). — Under the identification (X xY)x (X xY) = (X x X) x (Y xY),
we have Axxy = Ax X Ay.

[The numbering in EGA skips (5.3.3).]
Corollary (5.3.4). — For any base extension S" — S, we have Ay, = (Ax)(s).

Proposition (5.3.5). — Let S be a T-prescheme, and let X, Y be S-preschemes (hence
also T-preschemes). The diagram

X XgY — X xqpY

(5.3.5.1) | |

Agir
S — Sxr S

in which all but the bottom arrow are induced by the structure morphisms identifies X xXgY
with (X X Y) X(Sx18) S.
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Corollary (5.3.6). — The canonical morphism X XgY — X X1 Y can be identified with
(1X><TY) Xp As, where P =8 X S.
Corollary (5.3.7). — If f: X — Y s an S-morphism, the diagram

X — X xgY

l l

Y 2 VxgY

identifies X with (X XgY) Xyxgv) Y.
Proposition (5.3.8). — For f: X — Y to be a monomorphism it is necessary and sufficient

that Ax|y is an isomorphism of X with X xy X.

Proposition (5.3.9). — The diagonal morphism Ax is an immersion of X into X xg X.
The image of the diagonal morphism, regarded as a sub-prescheme of X xg¢ X, is called
the diagonal in X xg X.

Corollary (5.3.10). — The top arrow in (5.3.5.1) is an immersion, called the canonical
immersion of X xrY into X xgY.
Corollary (5.3.11). — Let f: X — Y be an S-morphism. The graph morphism I'; =

(1x, f) of f (3.3.14) is an immersion of X into X xg Y. Its image, regarded as a sub-
prescheme of X XgY, is called the graph of f.

A sub-prescheme Z of X XgY is the graph of a morphism iff the projection p; restricts
to an isomorphism g: Z — X; then Z is the graph of p, o g7 1.

In particular, taking X = S, any S-section S — Y is equal to its graph morphism, and
we also refer to its graph (a subscheme of V') as an S-section of Y.

Corollary (5.3.12). — Keep the notation of (5.3.11), let g: S’ — S be a morphism, and
let [' = fs) be the base change of f by g. Then 'y = (I'y) ().

Corollary (5.3.13). — Given morphisms f: X =Y, g: Y — Z, if go f is an immersion
(resp. local immersion), then so is f.

Corollary (5.3.14). — Letj: X =Y, g: X — Z be S-morphisms. If j is an immersion
(resp. local immersion) then so is (j,g): X =Y xg Z.

Proposition (5.3.15). — Given an S-morphism f: X — Y, we have a commutative dia-
gram

X 255 X xg X
(5.3.15.1) fl fofl

Y 200 YV xgY.



Corollary (5.3.16). — If X is a sub-prescheme of Y, the diagonal Ax(X) is a sub-
prescheme of Ay (Y'), with underlying space

Ay (Y)nprH(X) = Ay (Y) N py ' (X),
where p1, po are the projections ¥ xgY — Y.

Corollary (5.3.17). — Let f1, fo: Y — X be S-morphisms, and y € Y a point such that
fily) = fo(y) = z, and the associated homorphisms k(x) — k(y) are equal. Then, setting
f = (f1, f2), the point f(y) belongs to the diagonal Ax(X).

5.4. Separated morphisms and preschemes.

Definition (5.4.1). — [Liu, 3.3.2] A morphism f: X — Y is separated if the diagonal
morphism A: X — X xy X is a closed immersion. A prescheme X separated over Y is
called a Y'-scheme. A prescheme X is separated if it is separated over Spec(Z). A separated
prescheme is called a scheme.

By (5.3.9), f is separated if the diagonal Ax(X) is a closed subspace of X Xy X [Liu,
3.3.5].

Proposition (5.4.2). — If S — T is separated, and X, Y are S-preschemes, the canonical
immersion X xgY — X xrY (5.3.10) is closed.

Corollary (5.4.3). — [Liu, Ex. 3.3.10] If Y is an S-scheme (i.e., a separated S-prescheme)
and f: X =Y an S-morphism, the graph morphism I'y of f is a closed immersion.

Corollary (5.4.4). — If go f is a closed immersion, and g is separated, then f is a closed
1mmersion.

Corollary (5.4.5). — Given j: X =Y, g: X = Z, if Z is an S-scheme, and j is a closed
immersion, then so is (j,g): X =Y Xg Z.

Corollary (5.4.6). — If X is an S-scheme, then every S-section of X is a closed immer-
S10M.

Corollary (5.4.7). — [Liu, 8.3.11] Let S be an integral prescheme with generic point s.
Let X be an S-scheme. If S-sections f, g satisfy f(s) = g(s), then f =g.

Remark (5.4.8). — If the conclusion of (5.4.3) holds for f = 1y, or if (5.4.4) holds for
f = Ay|s, g = p1, which since g o f = 1y just means that p;: Y XgY — Y is separated, or
if (5.4.6) holds for the section Ay of Y xgY — Y [Liu, Ex. 3.3.7], it follows conversely that
Y — S is separated.

5.5. Criteria for separation.

Proposition (5.5.1). — [Liu, 3.3.9]: (i) Every monomorphism of preschemes (in particular,
every immersion) is separated.

(ii) The composite of separated morphisms is separated.

(111) If f and g are separated S-morphisms, then so is f Xg g.

(iv) If f is a separated S-morphism, then so is every base change f(s:.



(v) If g o f is separated, then so is f.
(vi) f is separated if and only if frea (5.1.5) is separated.

Corollary (5.5.2). — If f: X — Y is separated, so is its restriction to any subscheme of
X.

Corollary (5.5.3). — If X andY are S-preschemes and Y is separated over S, then X xgY
18 separated over X.

Proposition (5.5.4). — Let X be a prescheme whose underlying space is a finite union of
closed subsets Xy. Let f: X — Y be a morphism and for each k let Y}, be a closed subset
of Y containing f(Xy). Regard the Xy, Yy as subschemes of X, Y with the unique reduced
pre-scheme structure (5.2.1), so f| Xy factors through a morphism fi: Xy — Yi for each k
(5.2.2). Then f is separated if and only if each f is.

In particular, if the X} are the irreducible components of X, we can assume that each Y}
is an irreducible component of Y (0, 2.1.5). The proposition then reduces the question of
whether a morphism is separated to the case of integral preschemes (2.1.7).

Proposition (5.5.5). — LetY =, U, be an open covering. Then f: X — Y is separated
if and only if all its restrictions f~1(U,) — U, are separated.
This reduces the question of whether f is separated to the case that Y is affine.

Proposition (5.5.6). — [Liu, 3.3.6] Let Y be an affine scheme, X = |J, U, an open
affine covering. A morphism f: X —'Y is separated if and only if for all a, B (i) Uy N Ug
is affine, and (i) the images of the restriction maps I'(Uy, Ox) — I'(U, N Up, Ox) and
I'(Us, Ox) = I'(Uy N U, Ox) generate the ring I'(U, N Us, Ox).

Corollary (5.5.7). — [Liu, 3.5.4] Every affine scheme is separated.
Hence the definition of scheme (5.4.1) is consistent with the terminology ‘affine scheme.’

Corollary (5.5.8). — [Liu, Fz. 3.8.2] Let Y be an affine scheme. Then a morphism
f: X =Y is separated if and only if X is separated (i.e., X is a scheme).

Corollary (5.5.9). — [Liu, Ez. 8.3.8] A morphism f: X —'Y is separated if and only if
for every separated open sub-prescheme U C 'Y, the sub-prescheme f~1(U) C is separated.
It suffices that this hold for open affines U C Y.

Proposition (5.5.10). — LetY be a scheme, f: X — Y a morphism. For all open affines
UCX,VCY,Un f~YV) is affine.

Ezamples (5.5.11). — The projective line over a field K (2.3.2) is separated by (5.5.6),
since K[z, '] is generated by its subrings K[z] and K[z~!]. The gluing of two copies of
Al = Spec(K|z]) along the identity map on the open set U = D(x) is not separated, since in
this case, both subrings in (5.5.6) (ii) are equal to K[z], and they do not generate K[z, z~!].

Remark (5.5.12). — Given a property P of morphisms of preschemes, consider the fol-

lowing assertions:
(i) Every closed immersion satifies P.



(ii) The composite of two morphisms satisfying P satisfies P.

(iii) If f, g are S-morphisms satisfying P, then f xg g satisfies P.

(iv) If f satisfies P, then so does every base extension f(s.

(v) If g o f satifies P, and g is separated, then f satisfies P.

(vi) If f satisfies P, then so does fieq.
If (i) and (ii) hold, then (iii) and (iv) are equivalent, and (i)—(iii) imply (v) and (vi). [These
implications are used in the proof of (5.5.1) and again later, e.g., in (6.3.4), (6.6.4), (6.6.6).]
Consider also:

(") Every immersion satisfies P.

(V') If g o f satisfies P, then so does f.
Then (1), (ii), and (iii) imply (v').

(5.5.13). One also finds that (v) and (vi) follow from (i), (iii) and

(i") If 7 is a closed immersion and ¢ satisfies P, then g o j satisfies P.
Likewise, (V') follows from ('), (iii) and

(i) If j is an immersion and g satisfies P, then g o j satisfies P.



