Synopsis of material from EGA Chapter I, §5

5. Reduced preschemes; the separation axiom

5.1. Reduced preschemes.

Proposition (5.1.1). — Let \mathcal{B} be a quasi-coherent sheaf of \mathcal{O}_X -algebras on a prescheme X. There is a unique quasi-coherent sheaf of ideals $\mathcal{N} \subseteq \mathcal{B}$ such that \mathcal{N}_x is the nilradical of \mathcal{B}_x for all $x \in X$. If X = Spec A is affine, so $\mathcal{B} = \widetilde{B}$ for an A-algebra B, then $\mathcal{N} = \widetilde{\mathfrak{N}}$, where \mathfrak{N} is the nilradical of B.

The sheaf \mathcal{N} is called the *nilradical* of \mathcal{B} . We write \mathcal{N}_X for the nilradical of $\mathcal{B} = \mathcal{O}_X$.

Corollary (5.1.2). — The closed sub-prescheme of X defined by the ideal sheaf \mathcal{N}_X is the unique sub-prescheme which is reduced (0, 4.1.4) and has underlying space is equal to X; it is the smallest close sub-prescheme with underlying space X.

Definition (5.1.3). — The closed sub-prescheme in (5.1.2) is called the *associated reduced* prescheme of X, and denoted X_{red} .

Thus X is reduced iff $X = X_{red}$.

Proposition (5.1.4). — Spec(A) is reduced (resp. integral) (2.1.7) iff A is a reduced ring (resp. an integral domain).

(5.1.5). A morphism $f: X \to Y$ induces a unique morphism $f_{\text{red}}: X_{\text{red}} \to Y_{\text{red}}$ such that the diagram

$$\begin{array}{cccc} X_{\text{red}} & \xrightarrow{f_{\text{red}}} & Y_{\text{red}} \\ & & & \downarrow \\ & & & \downarrow \\ X & \xrightarrow{f} & Y \end{array}$$

commutes, where the vertical arrows are the canonical inclusions of closed sub-preschemes. This makes $X \mapsto X_{\text{red}}$ a functor from preschemes to reduced preschemes. If X is reduced, then every morphism $f: X \to Y$ factors uniquely as $X \xrightarrow[f_{\text{red}}]{} Y_{\text{red}} \to Y$.

[This implies that $X \mapsto X_{\text{red}}$ is right adjoint to the inclusion of the category of reduced preschemes in the category of preschemes.]

Proposition (5.1.6). — If f is surjective (resp. universally injective, an immersion, a closed immersion, an open immersion, a local immersion, a local isomorphism), then so is f_{red} . Conversely, if f_{red} is surjective (resp. universally injective), then so is f.

Proposition (5.1.7). — Let X, Y be S-preschemes. Then $X_{\text{red}} \times_{S_{\text{red}}} Y_{\text{red}} = X_{\text{red}} \times_{S} Y_{\text{red}}$, and it is identified canonically with a sub-prescheme of $X \times_{S} Y$ whose underlying space is $X \times_{S} Y$.

Corollary (5.1.8). — $(X \times_S Y)_{\text{red}} = (X_{\text{red}} \times_{S_{\text{red}}} Y_{\text{red}})_{\text{red}}$. Note that even if X and Y are reduced, $X \times_S Y$ need not be. Proposition (5.1.9). — Let X be a pre-scheme and $\mathcal{I} \subseteq \mathcal{O}_X$ a quasi-coherent sheaf of ideals such that $\mathcal{I}^n = 0$ for some n. Let $X_0 = (X, \mathcal{O}_X/\mathcal{I})$ be the closed sub-prescheme defined by \mathcal{I} . Then X is affine if and only if X_0 is.

The proof is an application of the vanishing of higher cohomology for quasi-coherent sheaves on an affine scheme.

Corollary (5.1.10). — If \mathcal{N}_X is nilpotent, then X is affine if and only if X_{red} is.

5.2. Existence of a sub-prescheme with a given underlying space.

Proposition (5.2.1). — For every locally closed subset $Y \subseteq X$ there exists a unique reduced sub-prescheme of X with underlying space Y.

Proposition (5.2.2). — Let X be reduced, $f: X \to Y$ a morphism, $Z \subseteq Y$ a closed subprescheme such that $f(X) \subseteq Z$. Then f factors through the inclusion $Z \to Y$.

Corollary (5.2.3). — Let X be a reduced sub-prescheme of Y, and let Z be the reduced closed sub-prescheme of Y with underlying space \overline{X} . Then X is an open sub-prescheme of Z.

Corollary (5.2.4). — Let $f: X \to Y$ be a morphism, and let X' (resp. Y') be a closed sub-prescheme of X (resp. Y) defined by an ideal sheaf \mathcal{I} (resp. \mathcal{J}). If X' is reduced, and $f(X') \subseteq Y'$, then $f^*(\mathcal{J})\mathcal{O}_X \subseteq \mathcal{I}$.

5.3. Diagonal; graph of a morphism.

(5.3.1). Let X be an S-prescheme. The morphism $\Delta_{X|S} = (1_X, 1_X): X \to X \times_S X$ is called the *diagonal morphism*. We also write Δ_X or just Δ when S and/or X are understood from the context. For any two S-morphisms $f, g: T \to X$, note that $(f, g) = (f \times_S g) \circ \Delta_X$.

The definition makes sense and everything in (5.3.1) through (5.3.8) holds in any category where the relevant products exist.

Proposition (5.3.2). — Under the identification $(X \times Y) \times (X \times Y) = (X \times X) \times (Y \times Y)$, we have $\Delta_{X \times Y} = \Delta_X \times \Delta_Y$.

[The numbering in EGA skips (5.3.3).]

Corollary (5.3.4). — For any base extension $S' \to S$, we have $\Delta_{X_{(S')}} = (\Delta_X)_{(S')}$.

Proposition (5.3.5). — Let S be a T-prescheme, and let X, Y be S-preschemes (hence also T-preschemes). The diagram

in which all but the bottom arrow are induced by the structure morphisms identifies $X \times_S Y$ with $(X \times_T Y) \times_{(S \times_T S)} S$. Corollary (5.3.6). — The canonical morphism $X \times_S Y \to X \times_T Y$ can be identified with $(1_{X \times_T Y}) \times_P \Delta_S$, where $P = S \times_T S$.

Corollary (5.3.7). — If $f: X \to Y$ is an S-morphism, the diagram

$$\begin{array}{cccc} X & \longrightarrow & X \times_S Y \\ \downarrow & & \downarrow \\ Y & \stackrel{\Delta_Y}{\longrightarrow} & Y \times_S Y \end{array}$$

identifies X with $(X \times_S Y) \times_{(Y \times_S Y)} Y$.

Proposition (5.3.8). — For $f: X \to Y$ to be a monomorphism it is necessary and sufficient that $\Delta_{X|Y}$ is an isomorphism of X with $X \times_Y X$.

Proposition (5.3.9). — The diagonal morphism Δ_X is an immersion of X into $X \times_S X$.

The image of the diagonal morphism, regarded as a sub-prescheme of $X \times_S X$, is called *the diagonal* in $X \times_S X$.

Corollary (5.3.10). — The top arrow in (5.3.5.1) is an immersion, called the canonical immersion of $X \times_T Y$ into $X \times_S Y$.

Corollary (5.3.11). — Let $f: X \to Y$ be an S-morphism. The graph morphism $\Gamma_f = (1_X, f)$ of f (3.3.14) is an immersion of X into $X \times_S Y$. Its image, regarded as a subprescheme of $X \times_S Y$, is called the graph of f.

A sub-prescheme Z of $X \times_S Y$ is the graph of a morphism iff the projection p_1 restricts to an isomorphism $g: Z \to X$; then Z is the graph of $p_2 \circ g^{-1}$.

In particular, taking X = S, any S-section $S \to Y$ is equal to its graph morphism, and we also refer to its graph (a subscheme of Y) as an S-section of Y.

Corollary (5.3.12). — Keep the notation of (5.3.11), let $g: S' \to S$ be a morphism, and let $f' = f_{(S')}$ be the base change of f by g. Then $\Gamma_{f'} = (\Gamma_f)_{(S')}$.

Corollary (5.3.13). — Given morphisms $f: X \to Y$, $g: Y \to Z$, if $g \circ f$ is an immersion (resp. local immersion), then so is f.

Corollary (5.3.14). — Let $j: X \to Y$, $g: X \to Z$ be S-morphisms. If j is an immersion (resp. local immersion) then so is $(j,g): X \to Y \times_S Z$.

Proposition (5.3.15). — Given an S-morphism $f: X \to Y$, we have a commutative diagram

$$\begin{array}{cccc} X & \stackrel{\Delta_X}{\longrightarrow} & X \times_S X \\ f & & & f \times_S f \\ & & & & & Y \times_S Y. \end{array}$$

Corollary (5.3.16). — If X is a sub-prescheme of Y, the diagonal $\Delta_X(X)$ is a subprescheme of $\Delta_Y(Y)$, with underlying space

$$\Delta_Y(Y) \cap p_1^{-1}(X) = \Delta_Y(Y) \cap p_2^{-1}(X),$$

where p_1, p_2 are the projections $Y \times_S Y \to Y$.

Corollary (5.3.17). — Let $f_1, f_2: Y \to X$ be S-morphisms, and $y \in Y$ a point such that $f_1(y) = f_2(y) = x$, and the associated homorphisms $k(x) \to k(y)$ are equal. Then, setting $f = (f_1, f_2)$, the point f(y) belongs to the diagonal $\Delta_X(X)$.

5.4. Separated morphisms and preschemes.

Definition (5.4.1). — [Liu, 3.3.2] A morphism $f: X \to Y$ is separated if the diagonal morphism $\Delta: X \to X \times_Y X$ is a closed immersion. A prescheme X separated over Y is called a Y-scheme. A prescheme X is separated if it is separated over Spec(\mathbb{Z}). A separated prescheme is called a scheme.

By (5.3.9), f is separated if the diagonal $\Delta_X(X)$ is a closed subspace of $X \times_Y X$ [Liu, 3.3.5].

Proposition (5.4.2). — If $S \to T$ is separated, and X, Y are S-preschemes, the canonical immersion $X \times_S Y \to X \times_T Y$ (5.3.10) is closed.

Corollary (5.4.3). — [Liu, Ex. 3.3.10] If Y is an S-scheme (i.e., a separated S-prescheme) and $f: X \to Y$ an S-morphism, the graph morphism Γ_f of f is a closed immersion.

Corollary (5.4.4). — If $g \circ f$ is a closed immersion, and g is separated, then f is a closed immersion.

Corollary (5.4.5). — Given $j: X \to Y$, $g: X \to Z$, if Z is an S-scheme, and j is a closed immersion, then so is $(j,g): X \to Y \times_S Z$.

Corollary (5.4.6). — If X is an S-scheme, then every S-section of X is a closed immersion.

Corollary (5.4.7). — [Liu, 3.3.11] Let S be an integral prescheme with generic point s. Let X be an S-scheme. If S-sections f, g satisfy f(s) = g(s), then f = g.

Remark (5.4.8). — If the conclusion of (5.4.3) holds for $f = 1_Y$, or if (5.4.4) holds for $f = \Delta_{Y|S}$, $g = p_1$, which since $g \circ f = 1_Y$ just means that $p_1: Y \times_S Y \to Y$ is separated, or if (5.4.6) holds for the section Δ_Y of $Y \times_S Y \to Y$ [Liu, Ex. 3.3.7], it follows conversely that $Y \to S$ is separated.

5.5. Criteria for separation.

Proposition (5.5.1). — [Liu, 3.3.9]: (i) Every monomorphism of preschemes (in particular, every immersion) is separated.

- (ii) The composite of separated morphisms is separated.
- (iii) If f and g are separated S-morphisms, then so is $f \times_S g$.
- (iv) If f is a separated S-morphism, then so is every base change $f_{(S')}$.

(v) If $g \circ f$ is separated, then so is f.

(vi) f is separated if and only if $f_{\rm red}$ (5.1.5) is separated.

Corollary (5.5.2). — If $f: X \to Y$ is separated, so is its restriction to any subscheme of X.

Corollary (5.5.3). — If X and Y are S-preschemes and Y is separated over S, then $X \times_S Y$ is separated over X.

Proposition (5.5.4). — Let X be a prescheme whose underlying space is a finite union of closed subsets X_k . Let $f: X \to Y$ be a morphism and for each k let Y_k be a closed subset of Y containing $f(X_k)$. Regard the X_k , Y_k as subschemes of X, Y with the unique reduced pre-scheme structure (5.2.1), so $f|X_k$ factors through a morphism $f_k: X_k \to Y_k$ for each k (5.2.2). Then f is separated if and only if each f_k is.

In particular, if the X_k are the irreducible components of X, we can assume that each Y_k is an irreducible component of Y (0, 2.1.5). The proposition then reduces the question of whether a morphism is separated to the case of integral preschemes (2.1.7).

Proposition (5.5.5). — Let $Y = \bigcup_{\alpha} U_{\alpha}$ be an open covering. Then $f: X \to Y$ is separated if and only if all its restrictions $f^{-1}(U_{\alpha}) \to U_{\alpha}$ are separated.

This reduces the question of whether f is separated to the case that Y is affine.

Proposition (5.5.6). — [Liu, 3.3.6] Let Y be an affine scheme, $X = \bigcup_{\alpha} U_{\alpha}$ an open affine covering. A morphism $f: X \to Y$ is separated if and only if for all α, β (i) $U_{\alpha} \cap U_{\beta}$ is affine, and (ii) the images of the restriction maps $\Gamma(U_{\alpha}, \mathcal{O}_X) \to \Gamma(U_{\alpha} \cap U_{\beta}, \mathcal{O}_X)$ and $\Gamma(U_{\beta}, \mathcal{O}_X) \to \Gamma(U_{\alpha} \cap U_{\beta}, \mathcal{O}_X)$ generate the ring $\Gamma(U_{\alpha} \cap U_{\beta}, \mathcal{O}_X)$.

Corollary (5.5.7). — [Liu, 3.3.4] Every affine scheme is separated.

Hence the definition of scheme (5.4.1) is consistent with the terminology 'affine scheme.'

Corollary (5.5.8). — [Liu, Ex. 3.3.2] Let Y be an affine scheme. Then a morphism $f: X \to Y$ is separated if and only if X is separated (i.e., X is a scheme).

Corollary (5.5.9). — [Liu, Ex. 3.3.8] A morphism $f: X \to Y$ is separated if and only if for every separated open sub-prescheme $U \subseteq Y$, the sub-prescheme $f^{-1}(U) \subseteq$ is separated. It suffices that this hold for open affines $U \subseteq Y$.

Proposition (5.5.10). — Let Y be a scheme, $f: X \to Y$ a morphism. For all open affines $U \subseteq X, V \subseteq Y, U \cap f^{-1}(V)$ is affine.

Examples (5.5.11). — The projective line over a field K (2.3.2) is separated by (5.5.6), since $K[x, x^{-1}]$ is generated by its subrings K[x] and $K[x^{-1}]$. The gluing of two copies of $\mathbb{A}_{K}^{1} = \operatorname{Spec}(K[x])$ along the identity map on the open set U = D(x) is not separated, since in this case, both subrings in (5.5.6) (ii) are equal to K[x], and they do not generate $K[x, x^{-1}]$.

Remark (5.5.12). — Given a property **P** of morphisms of preschemes, consider the following assertions:

(i) Every closed immersion satifies **P**.

 $\mathbf{6}$

(ii) The composite of two morphisms satisfying **P** satisfies **P**.

(iii) If f, g are S-morphisms satisfying **P**, then $f \times_S g$ satisfies **P**.

(iv) If f satisfies **P**, then so does every base extension $f_{(S')}$.

(v) If $g \circ f$ satisfies **P**, and g is separated, then f satisfies **P**.

(vi) If f satisfies **P**, then so does f_{red} .

If (i) and (ii) hold, then (iii) and (iv) are equivalent, and (i)–(iii) imply (v) and (vi). [These implications are used in the proof of (5.5.1) and again later, *e.g.*, in (6.3.4), (6.6.4), (6.6.6).] Consider also:

(i') Every immersion satisfies **P**.

(v') If $g \circ f$ satisfies **P**, then so does f.

Then (i'), (ii), and (iii) imply (v').

(5.5.13). One also finds that (v) and (vi) follow from (i), (iii) and

(ii') If j is a closed immersion and g satisfies \mathbf{P} , then $g \circ j$ satisfies \mathbf{P} . Likewise, (v') follows from (i'), (iii) and

(ii'') If j is an immersion and g satisfies \mathbf{P} , then $g \circ j$ satisfies \mathbf{P} .