
Synopsis of material from EGA Chapter I, §5

5. Reduced preschemes; the separation axiom

5.1. Reduced preschemes.

Proposition (5.1.1). — Let B be a quasi-coherent sheaf of OX-algebras on a prescheme X.
There is a unique quasi-coherent sheaf of ideals N ⊆ B such that Nx is the nilradical of Bx
for all x ∈ X. If X = SpecA is affine, so B = B̃ for an A-algebra B, then N = Ñ, where
N is the nilradical of B.

The sheaf N is called the nilradical of B. We write NX for the nilradical of B = OX .

Corollary (5.1.2). — The closed sub-prescheme of X defined by the ideal sheaf NX is the
unique sub-prescheme which is reduced (0, 4.1.4) and has underlying space is equal to X; it
is the smallest close sub-prescheme with underlying space X.

Definition (5.1.3). — The closed sub-prescheme in (5.1.2) is called the associated reduced
prescheme of X, and denoted Xred.

Thus X is reduced iff X = Xred.

Proposition (5.1.4). — Spec(A) is reduced (resp. integral) (2.1.7) iff A is a reduced ring
(resp. an integral domain).

(5.1.5). A morphism f : X → Y induces a unique morphism fred : Xred → Yred such that
the diagram

Xred
fred−−−→ Yredy y

X
f−−−→ Y

commutes, where the vertical arrows are the canonical inclusions of closed sub-preschemes.
This makes X 7→ Xred a functor from preschemes to reduced preschemes. If X is reduced,
then every morphism f : X → Y factors uniquely as X →

fred
Yred → Y .

[This implies that X 7→ Xred is right adjoint to the inclusion of the category of reduced
preschemes in the category of preschemes.]

Proposition (5.1.6). — If f is surjective (resp. universally injective, an immersion, a
closed immersion, an open immersion, a local immersion, a local isomorphism), then so is
fred. Conversely, if fred is surjective (resp. universally injective), then so is f .

Proposition (5.1.7). — Let X, Y be S-preschemes. Then Xred ×Sred
Yred = Xred ×S Yred,

and it is identified canonically with a sub-prescheme of X ×S Y whose underlying space is
X ×S Y .

Corollary (5.1.8). — (X ×S Y )red = (Xred ×Sred
Yred)red.

Note that even if X and Y are reduced, X ×S Y need not be.
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Proposition (5.1.9). — Let X be a pre-scheme and I ⊆ OX a quasi-coherent sheaf of ideals
such that In = 0 for some n. Let X0 = (X,OX/I) be the closed sub-prescheme defined by
I. Then X is affine if and only if X0 is.

The proof is an application of the vanishing of higher cohomology for quasi-coherent
sheaves on an affine scheme.

Corollary (5.1.10). — If NX is nilpotent, then X is affine if and only if Xred is.

5.2. Existence of a sub-prescheme with a given underlying space.

Proposition (5.2.1). — For every locally closed subset Y ⊆ X there exists a unique reduced
sub-prescheme of X with underlying space Y .

Proposition (5.2.2). — Let X be reduced, f : X → Y a morphism, Z ⊆ Y a closed sub-
prescheme such that f(X) ⊆ Z. Then f factors through the inclusion Z → Y .

Corollary (5.2.3). — Let X be a reduced sub-prescheme of Y , and let Z be the reduced
closed sub-prescheme of Y with underlying space X. Then X is an open sub-prescheme of
Z.

Corollary (5.2.4). — Let f : X → Y be a morphism, and let X ′ (resp. Y ′) be a closed
sub-prescheme of X (resp. Y) defined by an ideal sheaf I (resp. J ). If X ′ is reduced, and
f(X ′) ⊆ Y ′, then f ∗(J )OX ⊆ I.

5.3. Diagonal; graph of a morphism.

(5.3.1). Let X be an S-prescheme. The morphism ∆X|S = (1X , 1X) : X → X ×S X is
called the diagonal morphism. We also write ∆X or just ∆ when S and/or X are understood
from the context. For any two S-morphisms f, g : T → X, note that (f, g) = (f ×S g) ◦∆X .

The definition makes sense and everything in (5.3.1) through (5.3.8) holds in any category
where the relevant products exist.

Proposition (5.3.2). — Under the identification (X×Y )× (X×Y ) = (X×X)× (Y ×Y ),
we have ∆X×Y = ∆X ×∆Y .

[The numbering in EGA skips (5.3.3).]

Corollary (5.3.4). — For any base extension S ′ → S, we have ∆X(S′)
= (∆X)(S′).

Proposition (5.3.5). — Let S be a T -prescheme, and let X, Y be S-preschemes (hence
also T -preschemes). The diagram

(5.3.5.1)

X ×S Y −−−→ X ×T Yy y
S

∆S|T−−−→ S ×T S
in which all but the bottom arrow are induced by the structure morphisms identifies X ×S Y
with (X ×T Y )×(S×TS) S.
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Corollary (5.3.6). — The canonical morphism X ×S Y → X ×T Y can be identified with
(1X×TY )×P ∆S, where P = S ×T S.

Corollary (5.3.7). — If f : X → Y is an S-morphism, the diagram

X −−−→ X ×S Yy y
Y

∆Y−−−→ Y ×S Y

identifies X with (X ×S Y )×(Y×SY ) Y .

Proposition (5.3.8). — For f : X → Y to be a monomorphism it is necessary and sufficient
that ∆X|Y is an isomorphism of X with X ×Y X.

Proposition (5.3.9). — The diagonal morphism ∆X is an immersion of X into X ×S X.
The image of the diagonal morphism, regarded as a sub-prescheme of X ×S X, is called

the diagonal in X ×S X.

Corollary (5.3.10). — The top arrow in (5.3.5.1) is an immersion, called the canonical
immersion of X ×T Y into X ×S Y .

Corollary (5.3.11). — Let f : X → Y be an S-morphism. The graph morphism Γf =
(1X , f) of f (3.3.14) is an immersion of X into X ×S Y . Its image, regarded as a sub-
prescheme of X ×S Y , is called the graph of f .

A sub-prescheme Z of X ×S Y is the graph of a morphism iff the projection p1 restricts
to an isomorphism g : Z → X; then Z is the graph of p2 ◦ g−1.

In particular, taking X = S, any S-section S → Y is equal to its graph morphism, and
we also refer to its graph (a subscheme of Y ) as an S-section of Y .

Corollary (5.3.12). — Keep the notation of (5.3.11), let g : S ′ → S be a morphism, and
let f ′ = f(S′) be the base change of f by g. Then Γf ′ = (Γf )(S′).

Corollary (5.3.13). — Given morphisms f : X → Y , g : Y → Z, if g ◦ f is an immersion
(resp. local immersion), then so is f .

Corollary (5.3.14). — Let j : X → Y , g : X → Z be S-morphisms. If j is an immersion
(resp. local immersion) then so is (j, g) : X → Y ×S Z.

Proposition (5.3.15). — Given an S-morphism f : X → Y , we have a commutative dia-
gram

(5.3.15.1)

X
∆X−−−→ X ×S X

f

y f×Sf

y
Y

∆Y−−−→ Y ×S Y.
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Corollary (5.3.16). — If X is a sub-prescheme of Y , the diagonal ∆X(X) is a sub-
prescheme of ∆Y (Y ), with underlying space

∆Y (Y ) ∩ p−1
1 (X) = ∆Y (Y ) ∩ p−1

2 (X),

where p1, p2 are the projections Y ×S Y → Y .

Corollary (5.3.17). — Let f1, f2 : Y → X be S-morphisms, and y ∈ Y a point such that
f1(y) = f2(y) = x, and the associated homorphisms k(x) → k(y) are equal. Then, setting
f = (f1, f2), the point f(y) belongs to the diagonal ∆X(X).

5.4. Separated morphisms and preschemes.

Definition (5.4.1). — [Liu, 3.3.2] A morphism f : X → Y is separated if the diagonal
morphism ∆: X → X ×Y X is a closed immersion. A prescheme X separated over Y is
called a Y -scheme. A prescheme X is separated if it is separated over Spec(Z). A separated
prescheme is called a scheme.

By (5.3.9), f is separated if the diagonal ∆X(X) is a closed subspace of X ×Y X [Liu,
3.3.5].

Proposition (5.4.2). — If S → T is separated, and X, Y are S-preschemes, the canonical
immersion X ×S Y → X ×T Y (5.3.10) is closed.

Corollary (5.4.3). — [Liu, Ex. 3.3.10] If Y is an S-scheme (i.e., a separated S-prescheme)
and f : X → Y an S-morphism, the graph morphism Γf of f is a closed immersion.

Corollary (5.4.4). — If g ◦ f is a closed immersion, and g is separated, then f is a closed
immersion.

Corollary (5.4.5). — Given j : X → Y , g : X → Z, if Z is an S-scheme, and j is a closed
immersion, then so is (j, g) : X → Y ×S Z.

Corollary (5.4.6). — If X is an S-scheme, then every S-section of X is a closed immer-
sion.

Corollary (5.4.7). — [Liu, 3.3.11] Let S be an integral prescheme with generic point s.
Let X be an S-scheme. If S-sections f , g satisfy f(s) = g(s), then f = g.

Remark (5.4.8). — If the conclusion of (5.4.3) holds for f = 1Y , or if (5.4.4) holds for
f = ∆Y |S, g = p1, which since g ◦ f = 1Y just means that p1 : Y ×S Y → Y is separated, or
if (5.4.6) holds for the section ∆Y of Y ×S Y → Y [Liu, Ex. 3.3.7], it follows conversely that
Y → S is separated.

5.5. Criteria for separation.

Proposition (5.5.1). — [Liu, 3.3.9]: (i) Every monomorphism of preschemes (in particular,
every immersion) is separated.

(ii) The composite of separated morphisms is separated.
(iii) If f and g are separated S-morphisms, then so is f ×S g.
(iv) If f is a separated S-morphism, then so is every base change f(S′).
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(v) If g ◦ f is separated, then so is f .
(vi) f is separated if and only if fred (5.1.5) is separated.

Corollary (5.5.2). — If f : X → Y is separated, so is its restriction to any subscheme of
X.

Corollary (5.5.3). — If X and Y are S-preschemes and Y is separated over S, then X×SY
is separated over X.

Proposition (5.5.4). — Let X be a prescheme whose underlying space is a finite union of
closed subsets Xk. Let f : X → Y be a morphism and for each k let Yk be a closed subset
of Y containing f(Xk). Regard the Xk, Yk as subschemes of X, Y with the unique reduced
pre-scheme structure (5.2.1), so f |Xk factors through a morphism fk : Xk → Yk for each k
(5.2.2). Then f is separated if and only if each fk is.

In particular, if the Xk are the irreducible components of X, we can assume that each Yk
is an irreducible component of Y (0, 2.1.5). The proposition then reduces the question of
whether a morphism is separated to the case of integral preschemes (2.1.7).

Proposition (5.5.5). — Let Y =
⋃
α Uα be an open covering. Then f : X → Y is separated

if and only if all its restrictions f−1(Uα)→ Uα are separated.
This reduces the question of whether f is separated to the case that Y is affine.

Proposition (5.5.6). — [Liu, 3.3.6] Let Y be an affine scheme, X =
⋃
α Uα an open

affine covering. A morphism f : X → Y is separated if and only if for all α, β (i) Uα ∩ Uβ
is affine, and (ii) the images of the restriction maps Γ(Uα,OX) → Γ(Uα ∩ Uβ,OX) and
Γ(Uβ,OX)→ Γ(Uα ∩ Uβ,OX) generate the ring Γ(Uα ∩ Uβ,OX).

Corollary (5.5.7). — [Liu, 3.3.4] Every affine scheme is separated.
Hence the definition of scheme (5.4.1) is consistent with the terminology ‘affine scheme.’

Corollary (5.5.8). — [Liu, Ex. 3.3.2] Let Y be an affine scheme. Then a morphism
f : X → Y is separated if and only if X is separated (i.e., X is a scheme).

Corollary (5.5.9). — [Liu, Ex. 3.3.8] A morphism f : X → Y is separated if and only if
for every separated open sub-prescheme U ⊆ Y , the sub-prescheme f−1(U) ⊆ is separated.
It suffices that this hold for open affines U ⊆ Y .

Proposition (5.5.10). — Let Y be a scheme, f : X → Y a morphism. For all open affines
U ⊆ X, V ⊆ Y , U ∩ f−1(V ) is affine.

Examples (5.5.11). — The projective line over a field K (2.3.2) is separated by (5.5.6),
since K[x, x−1] is generated by its subrings K[x] and K[x−1]. The gluing of two copies of
A1
K = Spec(K[x]) along the identity map on the open set U = D(x) is not separated, since in

this case, both subrings in (5.5.6) (ii) are equal to K[x], and they do not generate K[x, x−1].

Remark (5.5.12). — Given a property P of morphisms of preschemes, consider the fol-
lowing assertions:

(i) Every closed immersion satifies P.
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(ii) The composite of two morphisms satisfying P satisfies P.
(iii) If f , g are S-morphisms satisfying P, then f ×S g satisfies P.
(iv) If f satisfies P, then so does every base extension f(S′).
(v) If g ◦ f satifies P, and g is separated, then f satisfies P.
(vi) If f satisfies P, then so does fred.

If (i) and (ii) hold, then (iii) and (iv) are equivalent, and (i)–(iii) imply (v) and (vi). [These
implications are used in the proof of (5.5.1) and again later, e.g., in (6.3.4), (6.6.4), (6.6.6).]
Consider also:

(i′) Every immersion satisfies P.
(v′) If g ◦ f satisfies P, then so does f .

Then (i′), (ii), and (iii) imply (v′).

(5.5.13). One also finds that (v) and (vi) follow from (i), (iii) and
(ii′) If j is a closed immersion and g satisfies P, then g ◦ j satisfies P.

Likewise, (v′) follows from (i′), (iii) and
(ii′′) If j is an immersion and g satisfies P, then g ◦ j satisfies P.


