4. Sub-preschemes and immersion morphisms

4.1. Sub-preschemes.

(4.1.1). On a prescheme X, a sheaf of \mathcal{O}_X -modules \mathcal{F} is quasi-coherent iff for all open affines $U \subseteq X, \mathcal{F}|U$ is isomorphic to the sheaf associated to a $\Gamma(U, \mathcal{O}_X)$ -module. In particular, \mathcal{O}_X itself is quasi-coherent, and quasi-coherence is preserved by kernels, cokernels and images of homomorphisms, as well as inductive limits and direct sums (1.3.7, 1.3.9).

Proposition (4.1.2). — Let X be a prescheme, $\mathcal{I} \subseteq \mathcal{O}_X$ a quasi-coherent sheaf of ideals. The support Y of $\mathcal{O}_X/\mathcal{I}$ is closed, and if \mathcal{O}_Y denotes the restriction of $\mathcal{O}_X/\mathcal{I}$ to Y, then (Y, \mathcal{O}_Y) is a prescheme.

We say that (Y, \mathcal{O}_Y) as above is the sub-prescheme of (X, \mathcal{O}_X) defined by the sheaf of ideals \mathcal{I} .

Definition (4.1.3). — (Y, \mathcal{O}_Y) is a sub-prescheme of a prescheme (X, \mathcal{O}_X) if:

(1) Y is a locally closed subspace of X;

(2) If U is the largest open set containing Y and in which Y is closed, then (Y, \mathcal{O}_Y) is the sub-prescheme of $(U, \mathcal{O}_X | U)$ defined by a quasi-coherent sheaf of ideals in $\mathcal{O}_X | U$.

If Y is closed (*i.e.*, U = X), Y is a *closed sub-prescheme*. Closed sub-preschemes are in one-to-one correspondence with quasi-coherent sheaves of ideals. If $Y = (U, \mathcal{O}_X | U)$, Y is an *open sub-prescheme*.

(4.1.4). With Y, U as above, if $V \subseteq U$ is an open subset, then $(Y \cap V, \mathcal{O}_Y | (Y \cap V))$ is again a subscheme of X. Conversely:

Proposition (4.1.5). — Let (Y, \mathcal{O}_Y) be a ringed space with Y a subspace of X. If there is a covering of Y by open subsets V_{α} of X such that each $(Y \cap V_{\alpha}, \mathcal{O}_Y | (Y \cap V_{\alpha}))$ is a closed sub-prescheme of V_{α} , then Y is a sub-prescheme of X.

Proposition (4.1.6). — A sub-prescheme of a sub-prescheme is (canonically identified with) a sub-prescheme. Likewise for closed sub-preschemes.

(4.1.7). Let Y be a sub-prescheme of X, $j: Y \hookrightarrow X$ the inclusion of Y as a subspace, so $j^{-1}(\mathcal{O}_X)$ is the restriction of \mathcal{O}_X to Y. We have a canonical surjective sheaf homomorphism $\phi^{\sharp}: j^{-1}(\mathcal{O}_X) \to \mathcal{O}_Y$, and thus a monomorphism $(j, \phi): Y \hookrightarrow X$ of preschemes, called the *canonical injection*.

Given any morphism $f: X \to Z$, we call $f \circ j: Y \to Z$ the *restriction* of f to Y.

(4.1.8). A morphism $f: Z \to X$ is said to be *majorized* by the inclusion $j: Y \to X$ of a sub-prescheme if f factors as $Z \to Y \to X$. Here g is unique, because j is a monomorphism.

Proposition (4.1.9). — For $f: Z \to X$ to be majorized by $j: Y \to X$ it is necessary and sufficient that $f(Z) \subseteq Y$, and that for every $z \in Z$, setting y = f(z), the kernel of the homomorphism $\mathcal{O}_{X,y} \to \mathcal{O}_{Z,z}$ given by f contains the kernel of $\mathcal{O}_{X,y} \to \mathcal{O}_{Y,y}$. Corollary (4.1.10). — The inclusion of a sub-prescheme $Z \hookrightarrow X$ is majorized by the inclusion of another sub-prescheme $Y \hookrightarrow X$ if and only if Z is a sub-prescheme of Y. In this case we write $Z \leq Y$.

In this case we write $Z \leq I$.

4.2. Immersion morphisms.

Definition (4.2.1). — An immersion is a morphism $f: Y \to X$ which factors as $Y \to Z \to X$, where g is an isomorphism, and $j: Z \to X$ is the inclusion of a sub-prescheme. An immersion is closed (resp. open) if Z is a closed (resp. open) sub-prescheme.

The factorization is unique, and an immersion is a monomorphism, hence universally injective (3.5.4).

Proposition (4.2.2). — (a) $(f, \phi): Y \to X$ is an open immersion iff f is a homeomorphism onto an open subset of X, and for every $y \in Y$, $\phi_y^{\sharp}: \mathcal{O}_{X,f(y)} \to \mathcal{O}_{Y,y}$ is an isomorphism.

(b) $(f, \phi): Y \to X$ is an immersion (resp. closed immersion) iff f is a homeomorphism onto a locally closed (resp. closed) subset of X, and for every $y \in Y$, $\phi_y^{\sharp}: \mathcal{O}_{X,f(y)} \to \mathcal{O}_{Y,y}$ is surjective.

Corollary (4.2.3). — Let X be an affine scheme. Then $f: Y \to X$ is a closed immersion iff Y is affine and $\Gamma(\mathcal{O}_X) \to \Gamma(\mathcal{O}_Y)$ is surjective.

Corollary (4.2.4). — (a) Let $f: Y \to X$ be a morphism and let (V_{α}) be a covering of f(Y) by open subsets of X. Then f is an (open) immersion iff every $f^{-1}(V_{\alpha}) \to V_{\alpha}$ is an (open) immersion.

(b) Assume that (V_{α}) is a covering of X. Then f is a closed immersion iff every $f^{-1}(V_{\alpha}) \rightarrow V_{\alpha}$ is a closed immersion.

Proposition (4.2.5). — The composite of two immersions is an immersion; likewise for open or closed immersions.

4.3. Products of immersions.

Proposition (4.3.1). — If S-morphisms $\alpha: X' \to X, \beta: Y' \to Y$ are immersions, then so is $\alpha \times_S \beta$. Moreover, identifying X', Y' with sub-preschemes of X, Y, the underlying space of $X' \times_S Y'$ is identified with the subspace $p^{-1}(X') \cap q^{-1}(Y') \subseteq X \times_S Y$, where p, q are the projections. Likewise for open or closed immersions.

Corollary (4.3.2). — If $f: X \to Y$ is an immersion, then so is any base change $f_{(S')}$. Likewise for open or closed immersions.

4.4. Preimage of a sub-prescheme.

Proposition (4.4.1). — Let $f: X \to Y$ be a morphism, $j: Y' \to Y$ the inclusion of a sub-prescheme. Then the projection $p: X \times_Y Y' \to X$ is an immersion, whose image is a sub-prescheme with underlying space $f^{-1}(Y')$. Moreover, letting j' denote the inclusion of this sub-prescheme, a morphism $h: Z \to X$ is majorized by j' if and only if $f \circ h: Z \to Y$ is majorized by j. Likewise for open or closed sub-preschemes and immersions.

From now on, we regard $f^{-1}(Y')$ as endowed with the structure of sub-prescheme of X provided by the proposition.

We have $f^{-1}(Y') = X$ (as a sub-prescheme) if and only if f is majorized by $j: Y' \to Y$.

If $y \in Y$ is a closed point, and $Y' = \operatorname{Spec} k(y)$, then $f^{-1}(Y')$ is the fiber $f^{-1}(y)$, with the prescheme structure defined in (3.6.2).

Corollary (4.4.2). — Given $f: X \to Y$, $g: Y \to Z$, set $h = g \circ f$. For any sub-prescheme $Z' \subseteq Z$, we have $f^{-1}(g^{-1}(Z')) = h^{-1}(Z')$ as sub-preschemes of X.

Corollary (4.4.3). — Let $j': X' \to X$, $j'': X'' \to X$ be inclusions of sub-preschemes. Then $j'^{-1}(X'') \cong j''^{-1}(X') \cong X' \times_X X''$ is the greatest lower bound $\inf(X', X'')$ in the ordering \leq on sub-preschemes of X.

[These days it is usual to write $X' \cap X''$ for $\inf(X', X'')$, and refer to it as the schemetheoretic intersection of the two subschemes.]

Corollary (4.4.4). — Given $f: X \to Y$ and two sub-preschemes $Y', Y'' \subseteq Y$, we have $f^{-1}(\inf(Y', Y'')) = \inf(f^{-1}(Y'), f^{-1}(Y''))$.

Corollary (4.4.5). — Given $f: X \to Y$ and a closed sub-prescheme $Y' \subseteq Y$ defined by a quasi-coherent ideal sheaf $\mathcal{I} \subseteq \mathcal{O}_Y$, the sub-prescheme $f^{-1}(Y')$ is defined by the ideal sheaf $f^{-1}(\mathcal{I})\mathcal{O}_X \subseteq \mathcal{O}_X$.

Corollary (4.4.6). — Let $j: X' \to X$ be a closed sub-prescheme defined by a quasi-coherent ideal sheaf $\mathcal{J} \subseteq \mathcal{O}_X$. Then the restriction of $f: X \to Y$ to X' is majorized by $j': Y' \to Y$ if and only if $f^{-1}(\mathcal{I})\mathcal{O}_X \subseteq \mathcal{J}$.

4.5. Local immersions and local isomorphisms.

Definition (4.5.1). — $f: X \to Y$ is a local immersion at $x \in X$ if there are open neighborhoods U of x and V of f(x) such that the restriction of f to U is a closed immersion $U \hookrightarrow V$. We say that f is a local immersion if it is a local immersion at every point.

Definition (4.5.2). — $f: X \to Y$ is a local isomorphism at $x \in X$ if there is an open neighborhood U of x such that the restriction of f to U is an open immersion into Y. We say that f is a local isomorphism if it is a local isomorphism at every point.

(4.5.3). A (closed) immersion can then be characterized as a local immersion $f: X \to Y$ such that f is a homeomorphism of X onto a (closed) subspace of Y; an open immersion can be characterized as an injective local isomorphism.

Proposition (4.5.4). — Let X be irreducible, and $f: X \to Y$ a dominant, injective morphism. If f is a local immersion, then f is an immersion and f(X) is open in Y.

Proposition (4.5.5). — (i) A composite of local immersions (resp. local isomorphisms) is a local immersion (resp. local isomorphism).

(ii) If S-morphisms f, g are local immersions (resp. local isomorphisms), then so is $f \times_S g$. (iii) Any base change $f_{(S')}$ of a local immersion (resp. local isomorphism) is a local immersion (resp. local isomorphism).