
Synopsis of material from EGA Chapter I, §3

3. Product of preschemes

3.1. Disjoint union of preschemes.
(3.1.1). The disjoint union of ringed spaces X =

∐
αXα is defined in an obvious way,

with each Xα open and closed in X. If each Xα is a prescheme, then so is X. To give a
morphism X → Y it is equivalent to give morphisms Xα → Y for each α. In particular, if
each Xα is an S-prescheme, then so is X. If X = Spec(A), Y = Spec(B) are affine, then
X

∐
Y = Spec(A×B) is affine [this does not hold for infinite disjoint unions].

3.2. Product of preschemes.

Definition (3.2.1). — [Liu, 3.1.1] Given S-preschemes X, Y , we say that an S-prescheme
Z, together with S-morphisms p1 : Z → X, p2 : Z → Y , is their product, if for every S-
prescheme T , the correspondence f 7→ (p1 ◦ f, p2 ◦ f) is a bijection

HomS(T, Z) ∼= HomS(T,X)× HomS(T, Y ).

In other words, Z is the product of X and Y in the category of S-preschemes. In particular,
the product is unique up to a canonical isomorphism. We usually denote it by X ×S Y ,
suppressing the morphisms p1, p2 (called the canonical projections) from the notation. Given
S-morphisms g : T → X and h : T → Y , we write (g, h) for the corresponding morphism
f : T → X×SY . Given u : X → X ′ and v : Y → Y ′, we write u×v for the induced morphism
X ×S Y → X ′ ×S Y ′.

When S = Spec(A), we often write A in place of S in the notation.

Proposition (3.2.2). — Spec(B)×Spec(A) Spec(C) = Spec(B ⊗A C).
This follows from (2.2.4) and the universal property of the tensor product [Liu, 2.3.23 and

1.1.14].

Corollary (3.2.3). — In the setting of (3.2.2), if T = Spec(D) and g : T → Spec(B),
h : T → Spec(C) correspond to A-algebra homomorphisms ρ : B → D, σ : C → D, then
(g, h) : T → Spec(B)×Spec(A)Spec(C) corresponds to the A-algebra homormorphism τ : B⊗A
C → D such that τ(b⊗ c) = ρ(b)σ(c).

Proposition (3.2.4). — If f : S ′ → S is a monomorphism, and X, Y are S ′-schemes,
viewed as S-schemes via f , then a product X ×S Y in the category of S-schemes is also the
product X ×S′ Y in the category of S ′-schemes, and conversely.

[Recall that an arrow f : S ′ → S in any category is a monomorphism if the induced map
Hom(T, S ′)→ Hom(T, S) is injective for every object T .]

Corollary (3.2.5). — If S ′ ⊆ S is open, and f : X → S, g : Y → S have images contained
in S ′, then a product of X and Y as S-schemes is a product as S ′-schemes, and conversely.

Theorem (3.2.6). — [Liu, 1.1.2] The product of S-schemes X ×S Y always exists.
If all three schemes are affine, the result follows from (3.2.2). The strategy of the proof is

to use gluing to reduce the general case to the affine case.
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Corollary (3.2.7). — If Z = X ×S Y , S ′ ⊆ S is open, and U ⊆ X, V ⊆ Y are open
subsets lying over S ′, then the open subscheme p−11 (U)∩ p−12 (V ) of Z is the product U ×S′ V .
If f : T → X, g : T → Y have images contained in U , V respectively, then (f, g) has image
contained in U ×S′ V , and (f, g)S′ is (f, g) considered as a map T → U ×S′ V .

(3.2.8). The product of two disjoint unions X =
⊔
Xα, Y =

⊔
β Yβ of S-schemes is the

disjoint union of the products Xα ×S Yβ.

3.3. Formal properties of the product; change of base.
(3.3.1). Everything in this section except (3.3.13) and (3.3.15) is valid in any category in

which products of objects X, Y over an object S exist.
(3.3.2). X ×S Y is a covariant bifunctor of X and Y [Liu, 1.1.4 (c)].

Proposition (3.3.3). — The projection p1 (resp. p2) is a functorial isomorphism of X×S S
(resp. S ×S X) on X, with inverse (1X , φ), where φ : X → S is the structure morphism. In
other words,

X ×S S = S ×S X = X

up to canonical isomorphism.

Corollary (3.3.4). — Under the identifications X = X ×S S, Y = S×S Y , the projections
X ×S Y → X, X ×S Y → Y are identified with (1X , φY ), (φX , 1Y ).

(3.3.5). One can define the product of n S-preschemes in the obvious way; it exists and is
associative, e.g., X1×X2×X3 = (X1×X2)×X3 = X1× (X2×X3), up to canonical natural
isomorphisms.

(3.3.6–8). Suppose given φ : S ′ → S, making S ′ an S-prescheme. For any S-prescheme X,
the product X×S S ′ is an S ′-prescheme with structure morphism the second projection. We
denote X ×S S ′, regarded as a scheme over S ′, by X(S′), or by X(φ). One says that X(S′) is
obtained by base change from S to S ′ [Liu, 3.1.7].

Given an S-morphism f : X → Y , we write f(S′) : X(S′) → Y(S′) for f ×S 1S′ . Then base
change is a covariant functor from S-preschemes to S ′-preschemes.

Base change is right adjoint to the “forgetful” functor which regards every S ′-prescheme
as an S-prescheme via φ. That is, S ′-morphisms T → X(S′) are in natural bijection with
S-morphisms T → X when T is regarded as an S-scheme.

Proposition (3.3.9). — (‘Transitivity of base change’) Given S ′′ → S ′ → S, we have a
canonical natural isomorphism X(S′′) = (X(S′))(S′′).

Corollary (3.3.10). — There is a canonical natural isomorphism

(X ×S Y )(S′) = X(S′) ×S′ Y(S′).

Corollary (3.3.11). — If Y is an S-prescheme and f : X → Y is a morphism making X
a Y -prescheme, and hence an S-prescheme, then there is a canonical natural isomorphism
X(S′) = X ×Y Y(S′), and f(S′) is identified with the projection X ×Y Y(S′) → Y(S′).
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(3.3.12). If f and g are monomorphisms, so is f ×S g. In particular, so is f(S′) for any base
change.

(3.3.13). If S = Spec(A), S ′ = Spec(A′) are affine, with S ′ → S given by a ring homomor-
phism A→ A′, making A′ an A algebra, then given an S-prescheme X, we also write X(A′)

or X ⊗A A′ for X(S′), since when X = Spec(B), we have X(S′) = Spec(B ⊗A A′), the affine
scheme associated to the A′ algebra obtained from B by extension of scalars.

(3.3.14). With the notation of (3.3.6), for every S-morphism f : S ′ → X, f ′ = (f, 1S′)S is
an S ′-morphism from S ′ to X(S′), that is, a section of X(S′) over S ′. Conversely, given any
such section, its composite with the projection X(S′) → X is an S-morphism S ′ → X. Thus
we have a canonical bijection

HomS(S ′, X ′) ∼= HomS′(S ′, X(S′)).

The morphism f ′ is called the graph morphism of f and denoted Γf .
(3.3.15). As every prescheme X is uniquely a prescheme over Z, (3.3.14) implies that the

X-sections of X ⊗Z Z[t] correspond bijectively to morphisms X → Spec(Z[t]), thus to ring
homomorphisms Z[t]→ OX(X), and thus to global sections of OX .

3.4. Points of a prescheme with values in a prescheme; geometric points.
(3.4.1). Denote by X(T ) the set Hom(T,X) of morphisms T → X of preschemes. Its

elements are called points of X with values in T . For fixed X, T → X(T ) is a contravariant
functor in T , from preschemes to sets. A morphism g : X → Y induces a natural transfor-
mation of functors X(T )→ Y (T ).

(3.4.2). Given sets and maps φ : P → R, ψ : Q → R, the subset {(p, q) ∈ P × Q : φ(p) =
ψ(q)} is called the fiber product of P and Q over R (relative to the given maps). We can
interpret the definition (3.2.1) of the product of S-preschemes as the identity

(3.4.2.1) (X ×S Y )(T ) = X(T )×S(T ) Y (T ).

(3.4.3). If we fix S and consider only S-morphisms of S-preschemes, we write X(T )S for
HomS(T,X), suppressing the S from the notation when it will not cause confusion. Its
elements are the points (or S-points) of the S-prescheme X with value in the S-prescheme T .
In particular, the S-sections of X are just the points of X with value in S. Then (3.4.2.1)
may also be written

(3.4.3.1) (X ×S Y )(T )S = X(T )S × Y (T )S.

More generally if Z is an S-prescheme and X, Y , T are Z-preschemes (hence ipso facto
S-preschemes), we have

(3.4.3.2) (X ×Z Y )(T )S = X(T )S ×Z(T )S Y (T )S.

To show that an S-prescheme W with S-morphisms p1 : W → X, p2 : W → Y is a product
of X and Y over an S-prescheme Z, it suffices to show that for every S-prescheme T , the
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diagram

W (T )S −−−→ X(T )Sy y
Y (T )S −−−→ Z(T )S

is a fiber product of sets.
(3.4.4). In the preceding, when T = Spec(B) or S = Spec(A), we often replace T and/or

S by B, A in the notation, and refer to the elements of X(B), X(B)A as points of X with
values in B, or points of the A-prescheme X with values in the A-algebra B. Note that
X(B), X(B)A are covariant functors from rings (resp. A-algebras) to sets.

(3.4.5). As a special case, if T = Spec(A) where A is a local ring, then the points in
X(A) correspond bijectively to pairs consisting of a point x ∈ X and a ring homomorphism
OX,x → A; see (2.4.4). The point x is called the location of the corresponding point in X(A).

Still more specially, points of X with values in a field K are called geometric points. A
geometric point corresponds to a point x ∈ X and a field extension k(x) ↪→ K. One speaks
of a geometric point located at x, with value field K. There is a map X(K)→ X sending a
geometric point to its location.

If Spec(K) is an S-prescheme, that is, K is an extension of k(s) for some s ∈ S, and X
is an S-prescheme, elements of X(K)S are geometric points of X lying over s with values
in K. Such a point is given by its location x ∈ X, which must lie over s ∈ S, and a k(s)-
homomorphism k(x) → K; note that the structure morphism of X as an S-scheme makes
k(x) an extension of k(s).

In particular, if S = Spec(K) = {ξ}, then X(K)K is identified with the set of points of x
such that k(x) = K, called K-rational points of the K-prescheme X. If K ′ is an extension of
K, then X(K ′)K corresponds bijectively with the set of K ′-rational points of X(K′) (3.3.14).

Lemma (3.4.6). — Let X1, . . . , Xn be S-preschemes, s ∈ S, xi ∈ Xi lying over s. There
exists an extension K of k(s) and a geometric point of the product Y = X1 ×S · · · ×S Xn

with values in K, whose projection on each Xi is located at xi.

Proposition (3.4.7). — Given S-preschemes X1, . . . , Xn and points xi ∈ X, there exists a
point y of the product Y = X1 ×S · · · ×S Xn whose projection on each Xi is xi, if and only
if all the points xi lie over the same point s ∈ S.

Denoting the underlying set of X by (X), the proposition says that (X ×S Y ) maps
surjectively on (X) ×(S) (Y ). This map is not injective in general—more than one point of
X ×S Y can have the same projections x ∈ X and y ∈ Y . Example: let X, Y , S be the
spectra of fields K, K ′, k. The algebra K⊗kK ′ need not be a field, and can have more than
one prime ideal—see (3.4.9).

Corollary (3.4.8). — Let f(S′) : X(S′) → Y(S′) be obtained from a morphism f : X → Y of
S-preschemes by base change. Let p : X(S′) → X, q : Y(S′) → Y be the canonical projections.
Then for every subset M ⊆ X, we have q−1(f(M)) = f(S′)(p

−1(M)).
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Proposition (3.4.9). — Let X, Y be S-preschemes, x ∈ X, y ∈ Y lying over the same
point s ∈ S. The points in X ×S Y which project on x and y correspond bijectively to
isomorphism classes of extensions of k(s) generated by k(x) and k(y), or equivalently, to the
points of Spec(k(x)⊗k(s) k(y)).

3.5. Surjections and injections.

(3.5.1). Consider the following assertions about a property P of morphisms of preschemes:
(i) If f , g are S-morphisms with property P, then f ×S g has property P.
(ii) If f is an S-morphism with property P, then every base change f(S′) has property P.
If the identity morphism 1X on every scheme X has property P, then (i) implies (ii). If the

composite of two morphisms with property P has property P, then (ii) implies (i). [When
(ii) holds, P is called stable under base change—see Liu, 3.1.23.]

Proposition (3.5.2). — (i) If f : X → X ′ and g : Y → Y ′ are surjective S-morphisms,
then f ×S g is surjective.

(ii) If f : X → Y is a surjective S-morphism, then so is any base change f(S′) [Liu, Ex.
3.1.8].

In fact, (3.4.8) with M = X gives (ii), and then (3.5.1) gives (i).

Proposition (3.5.3). — A morphism f : X → Y is surjective if and only if, for every
field K and morphism Spec(K) → Y , there exists an extension K ′ of K and a morphism
Spec(K ′)→ X making the diagram

Spec(K ′) −−−→ Xy f

y
Spec(K) −−−→ Y

commute. In other words, f is surjective iff every geometric point of Y with values in K is
the image of a geometric point of X with values in some extension of K.

Definition (3.5.4). — A morphism f : X → Y is universally injective (or radicial) if
X(K)→ Y (K) is injective for every field K.

In particular, a monomorphism of preschemes is universally injective.

(3.5.5). For f to be universally injective, it suffices that the condition hold for all alge-
braically closed K.

Proposition (3.5.6). — (i) The composite of two universally injective morphisms is uni-
verally injective.

(ii) If g ◦ f is universally injective, then so is f .

Proposition (3.5.7). — (i) If f , g are universally injective S-morphisms, then so is f×S g.
(ii) If f is universally injective, then so is any base change f(S′).
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Proposition (3.5.8). — f : X → Y is universally injective if and only if f is injective, and
for every x ∈ X, the homomorphism fx : k(f(x)) → k(x) makes k(x) a purely inseparable
algebraic extension of k(f(x)).

[An algebraic extension of fields K ⊆ L is purely inseparable if every element of L \ K
is inseparable over K. This is equivalent to L having a unique embedding (over K) into
the algebraic closure of K. In characteristic zero, only trivial extensions K = L are purely
inseparable.]

Corollary (3.5.9). — The canonical morphism Spec(S−1A) → Spec(A) is universally
injective.

In fact, it is a monomorphism (1.6.2).

Corollary (3.5.10). — Let f : X → Y be universally injective, g : Y ′ → Y any morphism,
and put X ′ = X(Y ′) = X ×Y Y ′. Then the universally injective morphism f(Y ′) is a bijection
of the underlying set of X ′ onto g−1(f(X)). Moreover, for any field K, X ′(K) is identified
with the subset of Y ′(K) which is the preimage of X(K) ⊆ Y (K) via the map Y ′(K)→ Y (K)
induced by g.

(3.5.11). A morphism f = (ψ, φ) : X → Y is said to be injective if ψ is injective. Then
f is universally injective if and only if every base change f(Y ′) : X(Y ′) → Y ′ is injective; this
explains the terminology.

3.6. Fibers.

Proposition (3.6.1). — [Liu, 3.1.16] Suppose given a morphism f : X → Y , a point y ∈ Y ,
and an ideal ay in Oy which contains a power of the maximal ideal my. Then the projection
p : X ×Y Spec(Oy/a) → X is a homeomorphism onto the fiber f−1(y), considered as a
subspace of X.

(3.6.2). In the rest of the text, when we consider a fiber f−1(y) to be a prescheme, we are
referring to the prescheme over k(y) obtained by transporting the prescheme structure on
X ×Y Spec(k(y)) onto f−1(y) via the homeomorphism given by the projection to X [Liu,
3.1.17].

We also write the above product as X ⊗Y k(y) or X ⊗Oy k(y). More generally, if B is an
Oy-algebra, we denote X ×Y Spec(B) by X ⊗Y B or X ⊗Oy B.

With these conventions, it follows from (3.5.10) that the points of X with values in an
extension K of k(y) are identified with the points of f−1(y) with values in K.

(3.6.3). Given f : X → Y , g : Y → Z, h = g ◦ f , the fiber h−1(z) is isomorphic to

X ×Z Spec(k(z)) = X ×Y g−1(z).

In particular, if U ⊆ X is open, then U ∩ f−1(y), considered as an open sub-prescheme of
f−1(y), is isomorphic to the fiber (fU)−1(y), where fU is the restriction of f to U .

Proposition (3.6.4). — (‘Transitivity of fibers’) Given f : X → Y , g : Y ′ → Y , let
X ′ = X(Y ′) and f ′ = f(Y ′). For every y′ ∈ Y , setting y = g(y′), the prescheme f ′−1(y′)
is isomorphic to f−1(y)×k(y) k(y′).
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In particular, if V is an open neighborhood of y and fV denotes the restriction of f to
f−1(V ), then the preschemes f−1(y) and f−1V (y) are canonically isomorphic.

Proposition (3.6.5). — Let f : X → Y be a morphism, y a point of Y , Z = Spec(OY,y),
p : X ×Y Z → X the projection. Then p is a homeomorphism of X ×Y Z onto the subspace
f−1(Z) of X, where Z is identified with a subspace of Y as in (2.4.2), and for every t ∈
X ×Y Z, setting x = p(t), the induced homomorphism p]t : Ox → Ot is an isomorphism.

3.7. Application: reduction of a prescheme mod I.
[A footnote in EGA explains that this section depends on some results from later in

Chapter I and Chapter II, is meant for readers familiar with classical algebraic geometry
(before schemes), and will not be used elsewhere in EGA.]

(3.7.1). If X is an A-prescheme, and I ⊆ A is an ideal, then X0 = X ⊗A (A/I) is an
(A/I)-prescheme, said to be obtained from X by reduction mod I.

(3.7.2). This terminology is used chiefly when A is local, I is maximal, and X0 is therefore
a prescheme over the residue field k = A/I.

If A is an integral domain with fraction field K, we also have the K-prescheme X ′ =
X ⊗A K. By an abuse of language which we shall avoid, X0 was traditionally said to be
obtained also from X ′ by reduction mod I. In the traditional situation, A was typically a
discrete valation ring [for example, the ring of p-adic integers Z(p), so that X ′ is a prescheme
over Q, while X0 is a prescheme over the finite field Z/pZ], and X ′ was assumed to be a
closed subscheme of an ambient prescheme P ′ such as projective space P n

K , itself a base
extension of a prescheme P over A, here P = P n

A.
In this case, Y = Spec(A) has two points, the closed point y = I, and the generic point

(0), which is the unique point of an open set U = Spec(K) of Y . Then X ′ is just the open
prescheme ψ−1(U) ⊆ X for the structure morphism ψ : X → Y . In particular, a closed
subscheme X ′ ⊆ P ′ is a locally closed subscheme of P . Assuming P Noetherian, there is a
smallest closed subscheme X = X ′ ⊆ P containing X ′, and X ∩ U = X ′. This allows us to
regard X ′ as canonically of the form X⊗AK. Then the reduction X0 = X⊗Ak of X modulo
I is the fiber ψ−1(y) over the closed point y ∈ Y , regarded as a prescheme. Before schemes,
the prescheme X was not considered explicitly, for lack of suitable terminology. However,
classical results about X0 are best understood as consequences of stronger results abour X.

(3.7.3). One particular fact which has tended to inhibit the conceptual clarification of this
situation is that if A is a discrete valuation ring and X is proper over A (for instance if X
is projective (II, 5.5.4)), then the points of X with values in A and the points of X ′ with
values in K are in canonical bijection (II, 7.3.8). This sometimes leads results to be stated
for X ′, which are really results about X, and which if stated in the latter form would be
valid without the assumption that the local ring A is of dimension 1.


