2. PRESCHEMES AND MORPHISMS OF PRESCHEMES

[Note on terminology: today the term scheme is usually used for what EGA calls a prescheme. What EGA calls a scheme is now called a separated scheme. Liu, in particular, uses the current terminology.]

2.1. Definition of preschemes.

(2.1.1). An open subset V of a ringed space X is called affine open if $(V, \mathcal{O}_X|_V)$ is an affine scheme (1.7.1).

Definition (2.1.2). — [Liu, 2.3.8] A prescheme is a ringed space (X, \mathcal{O}_X) such that every point has an open affine neighborhood.

Proposition (2.1.3). — The open affine subsets of a prescheme form a base of its topology.

Proposition (2.1.4). — The underlying space of a prescheme is T_0.

Proposition (2.1.5). — Every irreducible closed subset of a prescheme X has a unique generic point; thus $x \to \{x\}$ is a bijection from X to its set of irreducible closed subsets [Liu, 2.4.12 is a special case].

(2.1.6). If y is the generic point of an irreducible closed subset $Y \subseteq X$, we sometimes write $\mathcal{O}_{X/Y}$ for $\mathcal{O}_{X,y}$ and call it the local ring of X along Y, or the local ring of Y in X.

If X is itself irreducible, with generic point x, then $\mathcal{O}_{X,x}$ is called the ring of rational functions on X.

Proposition (2.1.7). — [Liu, 2.3.9] If X is a prescheme and $U \subseteq X$ is open, then $(U, \mathcal{O}_X|_U)$ is a prescheme.

This follows from (2.1.3).

(2.1.8). A prescheme X is irreducible, or connected, if its underlying space is. X is integral if it is irreducible and reduced (cf. (5.1.4)) [Liu, 2.4.16]. X is locally integral if every $x \in X$ has an open neighborhood which is integral.

2.2. Morphisms of preschemes.

Definition (2.2.1). — [Liu, 2.3.13] A morphism of preschemes is a morphism of ringed spaces $(f, \phi): (X, \mathcal{O}_X) \to (Y, \mathcal{O}_Y)$ such that $\phi^*_x: \mathcal{O}_{Y, f(x)} \to \mathcal{O}_{X,x}$ is a local homomorphism of local rings for all $x \in X$.

In particular, ϕ^*_x induces a homomorphism $\phi^x: k(f(x)) \to k(x)$, making the field $k(x)$ an extension of $k(f(x))$.

[In other words, a morphism of preschemes $f: X \to Y$ is by definition a local morphism between the locally ringed spaces X, Y.]

(2.2.2). Morphism are closed under composition, making preschemes into a category.
Example (2.2.3). — If $U \subseteq X$ is open, the inclusion of $(U, \mathcal{O}_X|U)$ as an open sub-prescheme of X is a morphism from U to X. By (0, 4.1.1) this is a monomorphism in the category of ringed spaces and hence also in the category of preschemes.

Proposition (2.2.4). — [Liu, 2.3.25] Let (X, \mathcal{O}_X) be a prescheme and $(S, \mathcal{O}_S) = \text{Spec}(A)$ an affine scheme. Then there is a canonical bijection between morphisms $X \to S$ and ring homomorphisms $A \to \mathcal{O}_X(X)$.

This holds more generally for any locally ringed space (X, \mathcal{O}_X). See §1.8.

Proposition (2.2.5). — Let $f : X \to S$ correspond to $\phi : A \to \mathcal{O}_X(X)$ as in (2.2.4). Let \mathcal{G} (resp. \mathcal{F}) be a quasi-coherent sheaf of \mathcal{O}_X-modules (resp. \mathcal{O}_Y-modules), and let $M = \mathcal{F}(S)$ [so $\mathcal{F} = \mathcal{M}$]. Then f-morphisms $\mathcal{F} \to \mathcal{G}$ (0, 4.4.1) are in natural bijection with A-module homomorphisms $M \to \mathcal{G}(X)$.

(2.2.6). A morphism $(f, \phi) : (X, \mathcal{O}_X) \to (Y, \mathcal{O}_Y)$ is said to be open if $f(U)$ is open for every open $U \subseteq X$, closed if $f(Z)$ is closed for every closed $Z \subseteq X$, dominant if $f(X)$ is dense in Y, surjective if f is surjective. These conditions are properties of f alone.

Proposition (2.2.7). — Let $X \to Y \to Z$ be morphisms of preschemes.

(i) If f and g are open (resp. closed, dominant, surjective), then so is $g \circ f$.

(ii) If f is surjective and $g \circ f$ is closed, then g is closed.

(iii) If $g \circ f$ is surjective, then g is surjective.

Proposition (2.2.8). — Given a morphism $f : X \to Y$ and an open covering $Y = \bigcup_{\alpha} U_{\alpha}$, let $f_{\alpha} : f^{-1}(U_{\alpha}) \to U_{\alpha}$ be the restriction of f. Then f is open (resp. closed, dominant, surjective) if and only if every f_{α} satisfies the same condition.

In other words, the conditions that f is open, etc., are local on Y.

(2.2.9). Suppose X and Y have the same, finite, number of irreducible components X_i, Y_i, $1 \leq i \leq n$. Let ξ_i (resp. η_i) be the generic point of X_i (resp. Y_i). A morphism $(f, \phi) : X \to Y$ is called birational if $f^{-1}(\{\eta_i\}) = \{\xi_i\}$ and $\phi_{\xi_i}^f : \mathcal{O}_{\eta_i} \to \mathcal{O}_{\xi_i}$ is an isomorphism, for each i.

A birational morphism is dominant, hence surjective if it is closed.

(2.2.10). We often write just f for a morphism (f, ϕ) and U for an open subscheme $(U, \mathcal{O}_X|U)$.

2.3. Gluing preschemes.

(2.3.1). [Liu, 2.3.33] A ringed space constructed by gluing preschemes (0, 4.1.7) is again a prescheme. Every prescheme is a gluing of affine schemes.

Example (2.3.2). — [Liu, 2.3.34] Let K be a field, $B = K[s]$, $C = K[t]$, $X_1 = \text{Spec}(B)$, $X_2 = \text{Spec}(C)$. Let $U_{12} = D(s) \subset X_1$, $U_{21} = D(t) \subset X_2$, so $U_{12} = \text{Spec}(K[s, s^{-1}])$, $U_{21} = \text{Spec}(K[t, t^{-1}])$. Let $u_{12} : U_{21} \to U_{12}$ correspond to the isomorphism $K[t, t^{-1}] \to K[s, s^{-1}]$ given by $t \mapsto 1/s$. Gluing X_1 and X_2 along u_{12} gives the projective line $X = \mathbb{P}^1(K)$, a special case of a more general construction (II, 2.4.3). One proves that $\Gamma(X, \mathcal{O}_X) = K$, hence X is not an affine scheme, as it would then be reduced to a point.
2.4. Local schemes.

(2.4.1) A local scheme is an affine scheme $X = \text{Spec}(A)$ where A is a local ring. Then X has a unique closed point a, and $a \in \{ b \}$ for all $b \in X$.

For any point y of a prescheme Y, $\text{Spec}(\mathcal{O}_y)$ is called the local scheme of Y at y. For any affine neighborhood $V = \text{Spec}(B)$ of y, we have $\mathcal{O}_y \cong B_y$, and $B \to B_y$ induces a morphism $\text{Spec}(\mathcal{O}_y) \to V$. Composing this with the inclusion $V \hookrightarrow Y$ gives a canonical morphism $\text{Spec}(\mathcal{O}_y) \to Y$ independent of the choice of V [Liu, 2.3.16].

Proposition (2.4.2). Let $(f, \phi) : (\text{Spec}(\mathcal{O}_y), \mathcal{O}_y) \to (Y, \mathcal{O}_Y)$ be the canonical morphism. Then f is a homeomorphism of $\text{Spec}(\mathcal{O}_y)$ onto the subspace $S_y \subseteq Y$ consisting of points z such that $y \in \overline{\{ z \}}$, and if $z = f(p)$, then $\phi_z^\# : \mathcal{O}_z \to (\mathcal{O}_y)_p$ is an isomorphism. Hence (f, ϕ) is a monomorphism of ringed spaces.

In particular, $\text{Spec}(\mathcal{O}_y)$ is in bijection with the set of irreducible closed subsets of Y that contain y.

Corollary (2.4.3). A point $y \in Y$ is the generic point of an irreducible component of Y if and only if the maximal ideal of \mathcal{O}_y is its unique prime ideal (in other words, \mathcal{O}_y has Krull dimension zero).

Proposition (2.4.4). Let $X = \text{Spec}(A)$ be a local scheme, a its unique closed point, Y a prescheme. Every morphism $f : X \to Y$ factors uniquely as $X \to \text{Spec}(\mathcal{O}_{f(a)}) \to Y$. This gives a bijective correspondence between morphisms $X \to Y$, and pairs consisting of a point $y \in Y$ and a local homomorphism of local rings $\mathcal{O}_y \to A$.

(2.4.5) If K is a field, $\text{Spec}(K)$ has only one point. If A is local with maximal ideal m, then every local homomorphism $A \to K$ factors as $A \to A/m \to K$. Hence morphisms $\text{Spec}(A) \to \text{Spec}(K)$ are in bijection with homomorphisms of fields $A/m \to K$.

Given a prescheme Y, a point $y \in Y$, and an ideal $a_y \subseteq \mathcal{O}_y$, composing the canonical morphisms $\text{Spec}(\mathcal{O}_y/a_y) \to \text{Spec}(\mathcal{O}_y) \to Y$ gives a canonical morphism $\text{Spec}(\mathcal{O}_y/a_y) \to Y$. In particular, for $a_y = m_y$, we get $\text{Spec}(k(y)) \to Y$.

Corollary (2.4.6). Let $X = \text{Spec}(K) = \{ \xi \}$, where K is a field. Every morphism $u : X \to Y$ factors uniquely as $X \to \text{Spec}(k(u(\xi))) \to Y$. This gives a bijective correspondence between morphisms $X \to Y$, and pairs consisting of a point $y \in Y$ and a field extension $k(y) \hookrightarrow K$.

Corollary (2.4.7). The canonical morphism $\text{Spec}(\mathcal{O}_y/a_y) \to Y$ is a monomorphism of ringed spaces.

Remark (2.4.8). Let X be a local scheme, with closed point a. The only affine open subset of X containing a is X itself. Hence an invertible sheaf (0, 5.4.1) of \mathcal{O}_X-modules is necessarily trivial, i.e., isomorphic to \mathcal{O}_X. This property does not hold for a general affine scheme $\text{Spec}(A)$. If A is a normal domain, it is equivalent to A having unique factorization.

2.5. Preschemes over a prescheme.
Definition (2.5.1). — [Liu, 2.3.21] Fix a prescheme \(S \). A \textit{prescheme over} \(S \), or \(S \)-prescheme, is a prescheme \(X \) together with a morphism \(\phi: X \to S \). One says that \(S \) is the \textit{base prescheme}, and \(\phi \) is the \textit{structure morphism}. If \(S = \text{Spec}(A) \) one also calls \(X \) a \textit{prescheme over} \(A \), or an \(A \)-prescheme.

By (2.2.4), to give an \(A \)-prescheme it is equivalent to give a prescheme \(X \) whose structure sheaf \(\mathcal{O}_X \) is a sheaf of \(A \)-algebras [Liu, 2.3.26]. In particular, every prescheme is a \(\mathbb{Z} \)-prescheme in a unique way [Liu, 2.3.27].

If \(\phi(x) = s \), we say that the point \(x \in X \) \textit{lies over} \(s \in S \). If \(\phi \) is dominant (2.2.6), we say that \(X \) \textit{dominates} \(S \).

(2.5.2). Given \(S \)-preschemes \(X \) and \(Y \), a morphism \(u: X \to Y \) is a \textit{morphism of} \(S \)-\textit{preschemes}, or \(S \)-\textit{morphism}, if \(\phi' \circ u = \phi \), where \(\phi, \phi' \) are the structure morphisms of \(X \) and \(Y \). In particular, \(u \) maps points of \(X \) lying over \(s \in S \) to points of \(Y \) also lying over \(s \). \(S \)-preschemes and \(S \)-morphisms form a category. We write \(\text{Hom}_S(X,Y) \) for the set of \(S \)-morphisms \(X \to Y \). If \(S = \text{Spec}(A) \), we also use the term \(A \)-\textit{morphism}.

(2.5.3). If \(X \) is an \(S \)-prescheme and \(v: X' \to X \) is any morphism, the composite \(X' \to X \to S \) makes \(X' \) an \(S \)-prescheme. In particular, open subschemes of an \(S \)-prescheme are naturally \(S \)-preschemes.

If \(u: X \to Y \) is an \(S \)-morphism, then so is the restriction of \(u \) to any open \(U \subseteq X \). Conversely, given an open covering \(X = \bigcup \alpha U_\alpha \), and \(S \)-morphisms \(u_\alpha: U_\alpha \to Y \) which agree on every \(U_\alpha \cap U_\beta \), there is a unique \(S \)-morphism \(u: X \to Y \) such that every \(u_\alpha \) is the restriction of \(u \).

If \(U \) is an open subscheme of \(X \), and \(V \) is an open subscheme of \(Y \) containing \(u(U) \), then \(u: U \to V \) is an \(S \)-morphism.

(2.5.4). Given a morphism \(S' \to S \), the composite \(X \to S' \to S \) makes any \(S' \)-prescheme an \(S \)-prescheme. Conversely, if \(S' \) is an open subscheme of \(S \), and \(X \) is an \(S \)-prescheme such that the image of its structure morphism is contained in \(S' \), then \(X \) is also an \(S' \)-prescheme, and if \(Y \) is another \(S \)-prescheme with the same property, then any \(S \)-morphism \(X \to Y \) is also an \(S' \)-morphism.

(2.5.5). An \textit{S-section} of an \(S \)-prescheme \(X \) is an \(S \)-morphism \(S \to X \) [Liu, 2.3.28]. We denote the set of \(S \)-sections of \(X \) by \(\Gamma(X/S) \) [or by \(X(S) \), as in Liu].