1. Affine schemes

1.1. Prime spectrum of a ring. [cf. Liu, 2.1-2.3, Mumford II.1, Eisenbud-Harris I.1] (1.1.1). Notation: $X = \text{Spec}(A) = \{\text{prime ideals of } A\}$. We write j_x for $x \in X$ to emphasize its role as an ideal of A. We have $\text{Spec}(A) = \emptyset$ iff A = 0.

$$A_x = A_x = \text{local ring.}$$

$$\mathfrak{m}_x = \mathfrak{j}_x A_x = \text{maximal ideal of } A_x.$$

$$k(x) = A_x/\mathfrak{m}_x = \text{residue field of } A_x, \text{ equal to the field of fractions of } A/\mathfrak{j}_x.$$

$$f(x) = \text{image in } k(x) \text{ of } f \in A, \text{ so } f(x) = 0 \text{ iff } f \in \mathfrak{j}(x).$$

$$M_x = M \otimes_A A_x = \text{localization of an } A \text{ module } M.$$

$$\sqrt{(E)} = \text{radical of the ideal generated by } E \subseteq A.$$

$$V(E) = \{x \in X : E \subseteq \mathfrak{j}_x\} = \{x \in X : f(x) = 0 \text{ for all } f \in E\}.$$
 Then [cf. Liu, 2.1.6]

(1.1.1.1)
$$\sqrt{(E)} = \bigcap_{x \in V(E)} \mathfrak{j}_x$$

$$V(f) = V(\lbrace f \rbrace) \text{ for } f \in A.$$

$$D(f) = X \setminus V(f) = \lbrace x \in X : f(x) \neq 0 \rbrace.$$

Proposition (1.1.2). —
(i) $V(0) = X, V(1) = \emptyset.$
(ii) $E \subseteq E' \Rightarrow V(E) \supseteq V(E').$
(iii) For any collection $(E_{\lambda}), V(\bigcup_{\lambda} E_{\lambda}) = \bigcap_{\lambda} V(E_{\lambda})$
(iv) $V(EE') = V(E) \cup V(E').$
(v) $V(E) = V(\sqrt{(E)}).$

The sets V(E) are the closed subsets of a topology, the Zariski topology on X. We understand X = Spec(A) to have this topology from now on.

(1.1.3). Given $Y \subseteq X$, let $\mathfrak{j}(Y) = \{f \in A : f(x) = 0 \text{ for all } x \in Y\} = \bigcap_{x \in Y} \mathfrak{j}_x$. Then $Y \subseteq Y' \Rightarrow \mathfrak{j}(Y) \supseteq \mathfrak{j}(Y')$ and we have

(1.1.3.1)
(1.1.3.2)

$$j(\bigcup_{\lambda} Y_{\lambda}) = \bigcap_{\lambda} j(Y_{\lambda})$$

$$j(\{x\}) = j_{x}.$$

Proposition (1.1.4). —

(i) For any $E \subseteq A$, $\mathfrak{j}(V(E)) = \sqrt{(E)}$.

(ii) For any $Y \subseteq X$, $V(\mathfrak{j}(Y)) = \overline{Y}$ is the closure of Y.

Corollary (1.1.5). — Closed subsets $Y \subseteq X$ and radical ideals $\mathfrak{a} \subseteq A$ correspond bijectively via $Y \mapsto \mathfrak{j}(Y)$, $\mathfrak{a} \mapsto V(\mathfrak{a})$; the union $Y_1 \cup Y_2$ corresponding to $\mathfrak{j}(Y_1) \cap \mathfrak{j}(Y_2)$ and an arbitrary intersection $\bigcap_{\lambda} Y_{\lambda}$ corresponding to $\sqrt{\sum_{\lambda} \mathfrak{j}(Y_{\lambda})}$. Corollary (1.1.6). — If A is a Noetherian ring, then Spec(A) is a Noetherian space [the converse does not hold].

Corollary (1.1.7). — The closure of $\{x\}$ is the set of $y \in X$ such that $\mathfrak{j}_x \subseteq \mathfrak{j}_y$. Thus $\{x\}$ is closed iff \mathfrak{j}_x is maximal.

Corollary (1.1.8). — Spec(A) is a T_0 space.

(1.1.9). For $f, g \in A$ we have

(1.1.9.1)

 $D(fg) = D(f) \cap D(g).$

We also note that D(f) = D(g) iff $\sqrt{(f)} = \sqrt{(g)}$. In particular this holds if f = ug where $u \in A$ is a unit.

Proposition (1.1.10). — (i) The sets D(f) for $f \in A$ form a base of open sets on X. (ii) D(f) is quasi-compact, and in particular, so is X = D(1).

Proposition (1.1.11). — Spec(A/\mathfrak{a}) is canonically identified with the closed subset $V(\mathfrak{a}) \subseteq$ Spec(A).

Corollary (1.1.12). — Spec(A) and Spec($A/\sqrt{(0)}$) are canonically homeomorphic.

Proposition (1.1.13). — Spec(A) is an irreducible space iff $A/\sqrt{0}$ is a domain, i.e., $\sqrt{0}$ is prime.

Corollary (1.1.14). — (i) In the correspondence between closed subsets of X and radical ideals of A, the irreducible closed subsets correspond to the prime ideals. In particular, the irreducible components of X correspond to the minimal primes.

(ii) $x \mapsto \{x\}$ is a bijection from points of X to irreducible closed subsets of X, i.e., each irreducible closed subset has a unique generic point.

Proposition (1.1.15). — If \mathcal{I} is an ideal contained in the Jacobson radical $\mathfrak{R}(A)$, the whole space X is the unique open neighborhood of $V(\mathcal{I})$.

1.2. Functorial properties of the prime spectrum of a ring.

(1.2.1). A ring homomorphism $\phi: A' \to A$ induces a map

$${}^{a}\phi \colon X = \operatorname{Spec}(A) \to X' = \operatorname{Spec}(A')$$

by ${}^{a}\phi(x) = \phi^{-1}(\mathbf{j}_{x})$. We denote by ϕ^{x} the injective homomorphism of integral domains $A'/\phi^{-1}(\mathbf{j}_{x}) \to A/\mathbf{j}_{x}$ or its extension to their fraction fields $\phi^{x} \colon k({}^{a}\phi(x)) \to k(x)$. For any $f' \in A'$, we then have

(1.2.1.1)
$$\phi^x(f'({}^a\phi(x))) = (\phi(f'))(x).$$

Proposition (1.2.2). — (i) For any $E' \subseteq A'$, we have (1.2.2.1) ${}^{a}\phi^{-1}(V(E')) = V(\phi(E')),$

and in particular, for any $f' \in A$,

(1.2.2.2)
$${}^{a}\phi^{-1}(D(f')) = D(\phi(f')).$$

(ii) For any ideal $\mathfrak{a} \subseteq A$, we have

(1.2.2.3)
$$\overline{{}^a\phi(V(\mathfrak{a}))} = V(\phi^{-1}(\mathfrak{a})).$$

Corollary (1.2.3). $- {}^{a}\phi$ is continuous.

In fact, Spec is a contravariant functor from commutative rings to topological spaces.

Corollary (1.2.4). — [cf. Liu, 2.1.7 (b)] Suppose that ϕ is surjective, or more generally, that every $f \in A$ has the form $f = h\phi(f')$ for some $f' \in A'$ and invertible $h \in A$. Then ${}^{a}\phi$ is a homeomorphism from X onto ${}^{a}\phi(X)$.

(1.2.5). In particular, when ϕ is the canonical homomorphism $A \to A/\mathfrak{a}$, then ${}^{a}\phi$ is the inclusion of $\operatorname{Spec}(A/\mathfrak{a})$, identified with $V(\mathfrak{a})$, into $\operatorname{Spec}(A)$.

Corollary (1.2.6). — [cf. Liu, 2.1.7 (c)] For any multiplicative set $S \subseteq A$, Spec $(S^{-1}A)$ is canonically homeomorphic to the subspace $\{x \in X : \mathfrak{j}_x \cap S = \emptyset\}$ of X = Spec(A).

Corollary (1.2.7). — ${}^{a}\phi(X)$ is dense in X' iff ker(ϕ) consists of nilpotent elements.

1.3. Sheaf associated to a module. [cf. Liu, Section 5.1.2]

(1.3.1). Let M be an A module, $f \in A$, $S_f = \{1, f, f^2, \ldots\}$, $A_f = S_f^{-1}A$, $M_f = S_f^{-1}M$. Let $S'_f = \{g \in A : g \text{ divides } f^n \text{ for some } n\}$ be the saturation of S_f , so $S'_f^{-1}A = S_f^{-1}A$, $S'_f^{-1}M = S_f^{-1}M$ canonically (0, 1.4.3).

Lemma (1.3.2). — The following are equivalent: (a) $g \in S'_f$, (b) $S'_g \subseteq S'_f$, (c) $f \in \sqrt{(g)}$, (d) $\sqrt{(f)} \subseteq \sqrt{(g)}$, (e) $V(g) \subseteq V(f)$, (f) $D(f) \subseteq D(g)$.

(1.3.3). If D(f) = D(g) it follows that $M_f = M_g$, and for $D(f) \supseteq D(g)$ there is a canonical homomorphism, functorial in M,

$$\rho_{g,f} \colon M_f \to M_g,$$

satisfying

$$(1.3.3.1) \qquad \qquad \rho_{h,g} \circ \rho_{g,f}$$

for $D(f) \supseteq D(g) \supseteq D(h)$. Given $x \in \text{Spec}(A)$, the localization M_x is the direct limit $\varinjlim M_f$ of the system formed by the modules M_f and homomorphisms $\rho_{g,f}$, as f varies over $\overrightarrow{A} \setminus \mathfrak{j}_f$. Write

$$\rho_x^f \colon M_f \to M_x$$

for the canonical homomorphism, for $f \in A \setminus j_x$ (*i.e.*, for $x \in D(f)$).

Definition (1.3.4). — The structure sheaf of X = Spec(A) (resp. sheaf associated to an A module M), denoted \widetilde{A} or \mathcal{O}_X (resp. \widetilde{M}) is the sheaf of rings (resp. sheaf of \mathcal{O}_X modules) associated to the presheaf $D(f) \mapsto A_f$ (resp. $D(f) \mapsto M_f$) on the base \mathcal{B} of open sets of the form D(f) (see (1.1.10) and (0, 3.2.1 and 3.5.6)).

By (0, 3.2.1), the stalks \widetilde{A}_x (resp. \widetilde{M}_x) are just A_x (resp. M_x), and we have canonical homomorphisms $\theta_f \colon A_f \to \Gamma(D(f), \widetilde{A})$ and similarly for M, such that

(1.3.4.1)
$$(\theta_f(m))_x = \rho_x^f(m)$$

for all $m \in M_f$.

Proposition (1.3.5). — [cf. Liu, 5.1.5 (b)] $M \mapsto \widetilde{M}$ is an exact, contravariant functor from A modules to sheaves of \widetilde{A} modules.

Proposition (1.3.6). — [cf. Liu, 2.3.7] For every $f \in A$, the open set D(f) is canonically homeomorphic to $\text{Spec}(A_f)$, and the sheaf \widetilde{M}_f associated to the A_f module M_f coincides under this identification with $\widetilde{M}|D(f)$.

Theorem (1.3.7). — [cf. Liu, 2.3.1 (a)] The canonical homomorphism $\theta_f \colon M_f \to \Gamma(D(f), \widetilde{M})$ is an isomorphism. In particular, $M \cong \Gamma(X, \widetilde{M})$.

Corollary (1.3.8). — Given two A modules M, N, the functorial map $\operatorname{Hom}_A(M, N) \to \operatorname{Hom}_{\widetilde{A}}(\widetilde{M}, \widetilde{N})$ is bijective, i.e., the functor $M \mapsto \widetilde{M}$ is fully faithful. In particular $\widetilde{M} = 0$ iff M = 0.

Corollary (1.3.9). — (i) Given $u: M \to N$, the sheaves associated to ker u, im u, coker u are ker \tilde{u} , im \tilde{u} , coker \tilde{u} . Thus \tilde{u} is injective (resp. surjective, bijective) iff u is.

(ii) The functor $M \to M$ commutes with all inductive limits, in particular with all direct sums [Liu, 5.1.5 (a)].

Note that the sheaves associated to A modules form an Abelian category, by (1.3.8). If M is finitely generated, then there is a surjection $\widetilde{A}^n \to \widetilde{M}$, so \widetilde{M} is generated by a finite family of global sections.

(1.3.10). If $N \subseteq M$ is a submodule, then the inclusion induces an injective homomorphism $\widetilde{N} \hookrightarrow \widetilde{M}$. Hence we can and will identify \widetilde{N} with a subsheaf of \widetilde{M} . With this identification, (1.3.9) implies that the functor $M \to \widetilde{M}$ preserves sums and finite intersections of submodules.

Corollary (1.3.11). — On the category of sheaves associated to A modules, the global section functor Γ is exact.

Corollary (1.3.12). — (i) $M \mapsto \widetilde{M}$ commutes with tensor products [Liu, 5.1.5 (d)]. (ii) For finitely presented M, the sheaf associated to $\operatorname{Hom}_A(M, N)$ is canonically identified with $\operatorname{Hom}_{\widetilde{A}}(\widetilde{M}, \widetilde{N})$.

(1.3.13). If B is an A algebra, then \widetilde{B} is a sheaf of \widetilde{A} algebras, and if M is a B module, then \widetilde{M} is a sheaf of \widetilde{B} modules, of finite type iff M is a finitely generated B module. The results in (1.3.8–1.3.12) apply in this setting as well. If B (resp. M) is graded, then so is \widetilde{B} (resp. \widetilde{M}) [see (0, 4.1.4)].

(1.3.14). If B is an A algebra, $M \subseteq B$ an A submodule, and $C \subseteq B$ the subalgebra generated by M, then \widetilde{C} is the \widetilde{A} subalgebra of \widetilde{B} generated by \widetilde{M} [cf. (0, 4.1.3)].