
Synopsis of material from EGA Chapter 0 (Vol. I) §1–4

1. Rings of fractions

1.0. Rings and algebras.
(1.0.1). All rings have a unit element 1. If we don’t specify otherwise, rings are commuta-

tive and modules over non-commutative rings are left modules.
(1.0.2). Given a homomorphism of (possibly non-commutative) rings φ : A→ B, every B

module M has naturally an A module structure. We write M[φ] instead of M if we want to
make this explicit. Given an A module homomorphism f : L→M[φ], the pair (φ, f) is called
a di-homomorphism form (A,L) to (B,M). This makes pairs (ring, module) the objects of
a category.

(1.0.3). Given a (left) ideal I ⊆ A, one writes BI for the (left) ideal Bφ(I) ⊆ B, which is
also the image of the canonical homomorphism B ⊗A I → B. Similarly for right ideals.

(1.0.4). Let A be commutative. An A algebra is a ring B with a homomorphism φ(A)→ B
whose image is in the center of B. Then for every I ⊆ A, the ideal IB = BI is a two-sided
ideal of B, and if M is a B module, IM = BIM is a submodule.

(1.0.5). An A algebra B is integral over A if each element b ∈ B is the root of a monic
polynomial over A; equivalently, b is contained in a subalgebra of B which is a finitely-
generated A module. If B is commutative, this is equivalent to every finitely-generated
subalgebra of B being a finitely-generated A module. So in this case, B is integral and of
finite-type over A iff B is a f.-g. A module.

(1.0.6). A commutative ring A is an integral domain if products of non-zero elements are
non-zero, including the empty product, i.e., 1 6= 0. Thus the zero ring is not an integral
domain. An ideal p is prime iff A/p is an integral domain. If A is not the zero ring it has at
least one prime ideal [since maximal ideals are prime].

(1.0.7). A local ring A has a unique maximal proper ideal m. Equivalently, every x 6∈ m
is a unit in A. A homomorphism φ : A→ B of local rings (A,m), (B, n) is local if φ(m) ⊆ n,
which is equivalent to φ−1(n) = m. A local homorphism induces a homomorphism of residue
fields A/m→ B/n. The composition of local homomorphisms is local.

1.1. Radical of an ideal. Nilradical and radical of a ring.
(1.1.1). The radical of an ideal a ⊆ A is the ideal

√
a = {x | ∃nxn ∈ a}. One has√√

a =
√
a,
√

(a ∩ b) =
√
a ∩
√
b, and φ−1(

√
a) ⊆

√
φ−1(a) for any ring homomorphism

φ : A′ → A.
If a =

√
a, we say that a is a radical ideal. This is true iff a is an intersection of prime

ideals, and in general
√
a is the intersection of the prime ideals p ⊇ a, or just of the minimal

ones. If A is Noetherian there are finitely many minimal primes containing a.
The ideal

√
(0) is called the nilradical of A. If

√
(0) = (0), A is reduced. In other words,

A has no non-zero nilpotent elements. A/a is reduced iff a is a radical ideal. A subring of a
reduced ring is reduced.
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(1.1.2). The (Jacobson) radical R(A) of a (possibly noncommutative) ring A is the in-
tersection of its maximal left ideals (equivalently, right ideals). The radical of A/R(A) is
zero.

1.2. Modules and rings of fractions.
(1.2.1). A subset S ⊆ A is multiplicative if 1 ∈ S and S is closed under products. Important

examples: (i) Sf = {fn | n ≥ 0}, (ii) A \ p for a prime ideal p.
(1.2.2). [cf. Liu p. 10] Given a multiplicative set S and an A module M , define S−1M to

be the quotient of M × S by the equivalence relation

(m1, s1) ≡ (m2, s2) iff there exists s ∈ S such that s(s1m2 − s2m1) = 0.

Write m/s for the equivalence class of (m, s). One has a canonical map iSM : M → S−1M ,
i(m) = m/1. In general, iSM is neither surjective not injective. Its kernel is the set of elements
m ∈M such that sm = 0 for some s ∈ S.

The usual arithmetic of fractions makes S−1A a ring, in which the elements s/1 are
invertible, and S−1M an S−1A module. The canonical map iSA is a ring homomorphism, and
the canonical map iSM is an A module homomorphism.

(1.2.3). When S = Sf , we write Af , Mf instead of S−1f A, S−1f M . The ring Af is isomorphic
to A[X]/(fX − 1). If f is a unit, then Af = A, Mf = M ; if f is nilpotent, then Af = {0},
Mf = {0}.

When S = A \ p, we write Ap, Mp. In this case, Ap is a local ring with maximal ideal m =
pAp (= S−1p), and p = (iSA)−1(m). Passing to the quotient, iSA induces a ring homomorphism
from A to the residue field Ap/m, which is identified with the field of fractions of the integral
domain A/p.

(1.2.4). Universal property: any ring homomorphism φ : A→ B such that φ(S) consists of
units in B factors uniquely through iSA : A→ S−1A. Under the same hypotheses if N is a B
module, any A module homomorphism M → N factors uniquely through iSM : M → S−1M .

(1.2.5). [cf. Liu 1.2.10] One has a canonical isomorphism S−1M ∼= S−1A⊗AM such that
m/s ↔ 1/s ⊗ m. More precisely, this gives a natural isomorphism between the functors
S−1(−) and S−1A⊗A (−) from A modules to S−1A modules—see (1.3.1).

(1.2.6). For every ideal a′ ⊆ S−1A, a = (iSA)−1(a′) is an ideal of A, and one has a′ =
aS−1A = S−1a. This gives a bijective, inclusion-preserving correspondence between the
prime ideals of S−1A and those prime ideals p ⊆ A such that p ∩ S = ∅. The local rings Ap

and (S−1A)S−1p are canonically isomorphic.
(1.2.7). If A is an integral domain, then iSA is injective provided 0 6∈ S, and S−1A is a

subring containing A of the fraction field K of A. In particular, Ap is local with maximal
ideal pAp, and pAp ∩ A = p.

(1.2.8). If A is reduced, then so is S−1A.

1.3. Functorial properties.



3

(1.3.1–2). [cf. Liu 1.2.11] M 7→ S−1M is an exact functor from A modules to S−1A mod-
ules. In particular, if N,P ⊆ M are submodules, then so are S−1N,S−1P ⊆ S−1M , and
S−1(−) commutes with ∩ and +.

(1.3.3). The functor S−1(−), like all tensor products, commutes with direct limits.
(1.3.4). There is a natural isomorphism of functors

(S−1M)⊗S−1A (S−1N) ∼= S−1(M ⊗A N)

such that (m/s)⊗ (n/t)↔ (m⊗ n)/st.
(1.3.5). There is a natural transformation between functors

S−1 Hom(M,N)→ HomS−1A(S−1M,S−1N)

sending ψ/s to the homomorphism m/t 7→ ψ(m)/st. If M is finitely presented (in particular,
if A is Noetherian and M is finitely generated), this is an isomorphism.

1.4. Change of multiplicative set.
(1.4.1–2). Given multiplicative sets S ⊆ T ⊆ A, there is a canonical homomorphism

ρS,T : S−1A→ T−1A, and for any A module M , a canonical homomorphism of S−1A modules
S−1M → T−1M (under the identification S−1M = S−1A ⊗A M , the latter is ρS,T ⊗ 1M).
More precisely, we have a natural transformation of functors S−1(−) → T−1(−), and it
commutes (in an appropriate sense) with the natural transformations in (1.3.4) and (1.3.5).

(1.4.3). If every element of T divides an element of S, then the transformation ρS,T above
is an isomorphism. Call S saturated if it contains all divisors of its elements. Then we can
replace S by its saturation T and get essentially the same functor S−1(−) ∼= T−1(−).

(1.4.4). Given three multiplicative sets S ⊆ T ⊆ U ⊆ A, we have ρS,U = ρT,U ◦ ρS,T .
(1.4.5). Given a filtered direct system of multiplicative sets Sα ⊆ A, and S their union,

there are canonical isomorphisms

lim−→S−1α A ∼= S−1A, lim−→S−1α M ∼= S−1M,

the second one giving a natural isomorphism of functors.
(1.4.6). If S1 and S2 are multiplicative, then so is S1S2, and one has a natural isomorphism

S−11 (S−12 M) ∼= (S1S2)
−1M

such that (m/s)/t↔ m/st.

1.5. Change of ring.
(1.5.1). Given a ring homomorphism φ : A′ → A and multiplicative sets S ′ ⊆ A′, S ⊆ A

such that φ(S ′) ⊆ S, one has by (1.2.4) a unique φS
′
: S ′−1A′ → S−1A making a commutative

diagram

S ′−1A′
φS
′

−−−→ S−1Ax x
A′

φ−−−→ A.
If φ(S ′) = S and φ is surjective, then φS

′
is surjective.



4

(1.5.2). In the above setting, if M is an A module, it is also an A′ module, and S−1M is
also an S ′−1A′ module. There is a canonical homomorphism of S ′−1A′ modules

σ : S ′−1M → S−1M

sending m/s′ to m/φ(s′). This gives a natural transformation of functors, and if φ(S ′) = S,
it is an isomorphism. (1.4.1) is the special case A′ = A. When M = A, S ′−1A is a ring and
σ : S ′−1A→ S−1A is a homomorphism of S ′−1A′ algebras.

(1.5.3). Composing the maps σ with those in (1.3.4) and (1.3.5) gives natural transforma-
tions

(S−1M)⊗S−1A (S−1N)← S ′−1(M ⊗A N),

S ′−1 HomA(M,N)→ HomS−1A(S−1M,S−1N)

of which the first is an isomorphism if φ(S ′) = S and the second is an isomorphism if
φ(S ′) = S and M is finitely presented.

(1.5.4–5). Consider the functor −⊗A′ A from A′ modules to A modules [called extension
of scalars, and left adjoint to the functor from A modules to A′ modules sending M to M[φ]].
Given A′ modules M ′, N ′, there are natural isomorphisms of S−1A modules

S−1(N ′ ⊗A′ A) ∼= (S ′−1N ′)⊗S′−1A S
−1A,

S−1(M ′ ⊗A′ N ′ ⊗A′ A) ∼= (S ′−1M ′)⊗S′−1A (S ′−1N ′)⊗S′−1A S
−1A.

and a natural homomorphism

S−1(HomA′(M
′, N ′)⊗A′ A)→ HomS′−1A′(S

′−1M ′, S ′−1N ′)⊗S′−1A′ S
−1A,

which is an isomorphism if M ′ is finitely presented. The last two of these follow from the
first and (1.3.4-5).

(1.5.6). In the setting of (1.5.1), suppose we also have mutliplicative sets T ′ ⊇ S ′, T ⊇ S
such that φ(T ′) ⊆ T . Then the maps in (1.5.1-3) above are compatible with the maps ρS,T

in (1.4.1-2), in the sense that the obvious diagrams commute.
(1.5.7). Given a third ring A′′ and a homomorphism φ′ : A′′ → A′, various natural com-

patibilities hold between the homomorphisms associated above with φ and those associated
with φ′ and φ ◦ φ′.

(1.5.8). If A is a subring of B, then for every minimal prime ideal p ⊆ A there exists a
minimal prime q ⊆ B such that p = A ∩ q. Proof: by (1.3.2), Ap is a subring of Bp. By
(1.2.6), p′ = pAp is the unique prime ideal of Ap. The ring Bp is non-zero, hence has at least
one prime ideal q′, and necessarily q′ ∩ Ap = p′. Let q1 be the preimage in B of q′. Then
q1 ∩ A = p, which forces q ∩ A = p for any minimal prime q of B contained in q1.

1.6. The module Mf as a direct limit.
(1.6.1–2). Given f ∈ A and an A module M , consider the directed system

M1 →
f
M2 →

f
· · · ,

where every Mn = M , and the arrows are m 7→ fm. There is a natural isomorphism

Mf
∼= lim−→Mn.
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Given another element g ∈ A, we have a homomorphism of directed systems

M1→
f
M2→

f
· · · →

f
Mn →

f
· · ·

1

y g

y gn
y

M ′
1→
fg
M ′

2→
fg
· · · →

fg
M ′

n→
fg
· · · ,

where all the modules here are equal to M , and the induced map from Mf = lim−→Mn to

Mfg = lim−→M ′
n coincides with the map ρf,fg given by (1.4.1) and (1.4.3) [note that Sf is

contained in the saturation of Sfg].

1.7. Support of a module.
(1.7.1). The support Supp(M) of an A module M is the set of prime ideals p ⊆ A such

that Mp 6= 0. If Supp(M) = ∅, then M = 0, since any prime containing the annihilator of a
non-zero element of M belongs to Supp(M).

(1.7.2). If 0 → N → M → P → 0 is an exact sequence, then Supp(M) = Supp(N) ∪
Supp(P ), by the exactness of localization (1.3.2).

(1.7.3). If M is the sum of some submodules Mλ, then Mp =
∑

λ(Mλ)p by (1.3.2–3), hence
Supp(M) =

⋃
λ Supp(Mλ).

(1.7.4). If M is finitely generated, then Supp(M) is equal to the set of primes containing
the annihilator of M , as one proves by using (1.7.3) to reduce to the case when M is generated
by one element.

(1.7.5). If M and N are finitely generated, then Supp(M⊗AN) = Supp(M)∩Supp(N). In
particular, if M is a finitely generated A module and a ⊆ A is an ideal, then Supp(M/aM)
is the set of primes containing a + ann(M).

2. Irreducible spaces and Noetherian spaces

2.1. Irreducible spaces. [cf. Liu, Section 2.4.2]
(2.1.1). A topological space X is irreducible if it is non-empty and not a union of two

distinct proper closed subsets. Equivalent formulations are X 6= ∅ along with any of (i)
every two non-empty open subsets have non-empty intersection, (ii) every non-empty open
subset is dense, (iii) every open subset is connected.

(2.1.2). A subspace Y of any space X is irreducible iff its closure Y is irreducible. In

particular the closure of a point {x} is always irreducible. If y ∈ {x} (equivalently {y} ⊆ {x})
one says that y is a specialization of x, or x is a generalization of y. A point x such that
X = {x} (if such a point exists) is a generic point. A generic point x is contained in every
open subset U ⊆ X, and is a generic point of U .

(2.1.3). A space is T0 (or ‘Kolmogorov’) if for every two distinct points x, y there is an
open subset containing one but not the other. A generic point in an irreducible T0 space is
unique.
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A space X is quasi-compact if every open cover of X has a finite sub-cover. Then every
non-empty closed subset of X contains a minimal non-empty closed subset M . If X is also
T0, then M consists of a single point (referred to as a closed point).

(2.1.4). If X is irreducible, then so is any non-empty open subset U ⊆ X, and if X has a
generic point, it is also a generic point of U .

If (Uα) is a non-empty covering of X by non-empty open subsets, then X is irreducible iff
every Uα is irreducible and every Uα ∩ Uβ is non-empty.

(2.1.5). Let X be irreducible and f : X → Y continuous. Then f(X) is irreducible, and

if x ∈ X is a generic point, then f(x) is a generic point in f(X) and also in f(X). If Y is
irreducible and has a unique generic point y, then f(X) is dense iff f(x) = y.

(2.1.6). Every irreducible subspace (and hence also every point) of any spaceX is contained
in some maximal irreducible subspace, which is necessarily closed. The maximal irreducible
subspaces of X are called its irreducible components. A generic point of an irreducible
component is not contained in any other irreducible component. If X has only finitely many
irreducible components Zi, and we define Uj = X \

⋃
j 6=i Zi, the sets Uj are open, irreducible,

pairwise disjoint, and their union is dense in X.
If U ⊆ X is open, the correspondence Z 7→ Z∩U is a bijection from irreducible components

of X which meet U , to irreducible components of U [cf. Liu, 2.4.5(b)].
(2.1.7). If X is a finite union of irreducible subspaces Yi, then the irreducible components

of X are the maximal members of the collection of the Yi’s [cf. Liu, 2.4.5(c)]. If Y ⊆ X is a
subspace which has finitely many irreducible components, then the closures of its components
are the components of Y .

(2.1.8). Let Y be irreducible with a unique generic point y. Let f : X → Y be continuous.
If Z is an irreducible component of X which meets f−1(y), then f(Z) is dense in Y , but not
conversely. However, if Z has a generic point, then the converse holds. Moreover, if every
irreducible component of X which meets f−1(y) has a generic point, then these components
Z are in bijective correspondence with the components Z ∩ f−1(y) of f−1(y), with Z and
Z ∩ f−1(y) having the same generic points.

2.2. Noetherian spaces.
(2.2.1). A space is Noetherian if A.C.C. holds for open subsets (equivalently, D.C.C. for

closed subsets). It is locally Noetherian if every point has a neighborhood which is Noetherian.
(2.2.2). Principle of Noetherian induction: if E is a poset satifying D.C.C., and P is a

property of elements of E satisfying the condition “P (x) for all x < a implies P (a),” then
P (a) holds for all a ∈ E.

(2.2.3). A subspace of a Noetherian space is Noetherian. IfX is a finite union of Noetherian
subspaces, then X is Noetherian.

(2.2.4). Every Noetherian space is quasi-compact. Conversely, if every open subset of X
is quasi-compact, then X is Noetherian.

(2.2.5). A Noetherian space has only finitely many irreducible components. This follows
easily by Noetherian induction. [cf. Liu, 2.4.9 for a special case.]
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3. Supplement on Sheaves

[EGA presupposes some familiarity with sheaves of sets, abelian groups, rings and modules,
citing as a reference R. Godement, Topologie Algébrique et Théorie des Faisceaux (Hermann,
Paris 1958, 1964). In this section it is explained how the main concepts of sheaf theory make
sense for sheaves taking values in any category K (subject in places to certain assumptions).
This can also serve as an concise introduction to sheaves from first principles. For other
introductions, see Liu 2.2, Eisenbud and Harris I.1.3, or Hartshorne II.1.]

3.1. Sheaves with values in a category.
(3.1.1–4). Suppose given a collection of objects Aα and morphisms ρi : Aαi → Aβi in

a category K. A projective limit of the system (Aα, ρi) is an object X, equipped with
morphisms ρα : X → Aα commuting with all the morphisms ρi, such that for every such
object X ′ with morphisms ρ′α : X ′ → Aα, there is a unique morphism φ : X ′ → X such that
ρ′α = ρα ◦ φ for all α. As with any object characterized by a universal property, a projective
limit X is unique up to canonical isomorphism if it exists.

The open subsets of a topological space X are the objects of a category U with a unique
morphism U → V whenever V ⊆ U . A presheaf on X with values in a category K is a
functor F : U → K. The morphisms ρUV : F(U) → F(V ) which F associates to inclusions
V ⊆ U are called restriction morphisms. F is a sheaf if it satisfies the axiom:

(F) For every open cover U =
⋃
α Uα, F(U) is the projective limit of the system

given by the objects F(Uα) and F(Uα ∩ Uβ) and the restriction morphisms
ρUαUα∩Uβ .

These definitions reduce to the usual ones [cf. Liu, 2.2.2 and 2.2.7] when K is the category
of sets, or more generally when K is a category of sets equipped with algebraic structure,
such as rings, abelian groups, etc.. In that case K admits all projective limits, which coincide
with projective limits of the underlying sets.

Suppose, however, that K is for example the category of topological rings (with continuous
ring homomorphisms). Then a sheaf F with values in K is a sheaf of rings in the usual
sense, but with the additional requirement that for every open cover U =

⋃
α Uα, the ring

F(U) carries the coarsest topology such that all the restriction maps F(U) → F(Uα) are
continuous.

(3.1.5). [cf. Liu, 2.2.5] If F is a presheaf (resp. sheaf) with values in K and U ⊆ X is an
open set, the F(V ) for open sets V ⊆ U form a presheaf (resp. sheaf) on U , denoted F|U .
The restriction F 7→ F|U is a functor.

(3.1.6). If the category K admits inductive limits (the concept dual to that of projective
limit defined above), one defines the stalk Fx of F at x ∈ X to be the inductive limit of the
F(U) for all neighborhoods x ∈ U .

If K is a category of sets with algebraic structure (rings, abelian groups, . . . ), then Fx is
the direct limit, and we use the notation sx for the germ in Fx of a section s ∈ F(U), where
x ∈ U [cf. Liu, 2.2.8]. The support of a sheaf of abelian groups, modules or rings is defined
to be the set of points where its stalk is non-zero [cf. Liu, Exercise 2.2.5].
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3.2. Presheaves on a base of open sets. [cf. Liu, 2.2.6]
[As used in EGA the term base of open sets for the topology on a space X means a

collection B of open sets such that (i) B is closed under finite intersections and (ii) every
open subset is a union of members of B.]

(3.2.1). Assume K admits all projective limits. Let B be a base of open subsets on X.
Regarding B as a category with unique morphism U → V for V ⊆ U , a presheaf on B with
values in K is a contravariant functor F : B → K. For any open set U , the objects F(V )
for V ∈ B and V ⊆ U form a projective system. Let F ′(U) = lim←−F(V ) be its projective
limit. Then F ′ is a presheaf on X with values in K, and for U ∈ B one can identify F ′(U)
with F(U). (If X is a Noetherian space, it is possible to define F ′(U) assuming only that K
admits finite projective limits.)

(3.2.2). The necessary and sufficient condition for F ′ defined above to be a sheaf is:

(F0) For every U ∈ B and open cover U =
⋃
α Uα with all Uα ∈ B, F(U) is

the projective limit of the system given by the objects F(Uα) and F(Uα ∩Uβ)
and the restriction morphisms ρUαUα∩Uβ .

A presheaf on B is said to be a sheaf on B if axiom (F0) holds.
(3.2.3). A morphism u : F → G between presheaves on B is a natural transformation of

functors, i.e., it consists of morphisms uV : F(V )→ G(V ) for each V ∈ B, commuting with
the restriction morphisms [cf. Liu, 2.2.10]. The construction of the presheaf F ′ on X from
the presheaf F on B is functorial.

(3.2.4). If K admits inductive limits, the stalk F ′x is canonically identified with the induc-
tive limit lim−→x∈V ∈BF(V ).

(3.2.5). If F is a sheaf on X and FB its restriction to B, then F ∼= F ′B canonically. To
give a morphism u : F → G it suffices to give uB : FB → GB.

(3.2.6). Given a projective system (Fλ) of sheaves with values in K, the presheaf F(U) =
lim←−Fλ(U) is a sheaf, and it is the projective limit of (Fλ) in the category of sheaves with
values in K. If K is the category of sets, and Gλ ⊆ Fλ is a system of subsheaves, then lim←−Gλ
is a subsheaf of F . For sheaves of abelian groups, the functor lim←− is left exact.

3.3. Gluing sheaves.
(3.3.1). Assume K has all projective limits. Let X be a topological space and (Uλ)λ∈L an

open covering. Suppose given for each λ a sheaf Fλ on Uλ with values in K, and for each λ, µ
an isomorphism of sheaves θλµ : Fµ|(Uλ ∩ Uµ) ∼= Fλ|(Uλ ∩ Uµ). These are said to satisfy the
gluing condition if for all λ, µ, ν the restrictions θ′λµ, θ′µν , θ

′
λν of θλµ, θµν , θλν to Uλ ∩ Uµ ∩ Uν

satisfy θ′λν = θ′λµ ◦ θ′µν . This is the necessary and sufficiient condition for there to exist a
sheaf F on X and isomorphisms F|Uλ ∼= Fλ such their restrictions to each Uλ∩Uµ commute
with the given isomorphisms θλµ.

Given any sheaf F on X and an open covering (Uλ), it is clear that F is the gluing of its
restrictions Fλ = F|Uλ along the identity maps Fλ|(Uλ ∩ Uµ) = Fµ|(Uλ ∩ Uµ).
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(3.3.2). A system of morphisms uλ : Fλ → Gλ which commute with the gluing isomo-
prhisms θλµ gives rise to a unique morphism u : F → G whose restriction to each Uλ is
uλ.

(3.3.3). The restriction F|V is the gluing of the restrictions Fλ|(V ∩ Uλ).

3.4. Direct images of presheaves.
(3.4.1–2). Given a continuous map f : X → Y and a presheaf F on X, the direct image

f∗F is the presheaf (f∗F)(U) = F(f−1(U)) [cf. Liu, p. 37]. If F is a sheaf, then so is f∗F .
The direct image f∗ is a functor from presheaves (resp. sheaves) on X with values in K to
presheaves (resp. sheaves) on Y with values in K.

(3.4.3). Given X →
f
Y →

g
Z, we have (g ◦ f)∗F = g∗f∗F . Given an open set U ⊆ Y , and

setting V = f−1(U), we have (f∗F)|U = (f |V )∗(F|V ).
(3.4.4). Assume K admits inductive limits, so stalks make sense, and let x ∈ X, y = f(x).

Then there is a canonical morphism fx : (f∗F)y → Fx, functorial in F . In general, fx is
neither injective nor surjective. Given X →

f
Y →

g
Z, let z = g(y); then (g ◦ f)z = fx ◦ gy.

(3.4.5). If f is a homeomorphism of X onto f(X), then fx is an isomorphism. In particular,
this applies to the inclusion j : X ↪→ Y of a subspace X of Y .

(3.4.6). If K is the category of groups, rings, etc., and S ⊆ X is the support of F , then the

support of f∗F is contained in the closure f(S), but not necessarily in f(S). In particular,
if j : X ↪→ Y is a closed embedding, then the restriction of j∗F to Y \X is 0, but it may be
non-zero if X is only locally closed.

3.5. Inverse images of presheaves.
[EGA uses f ∗G to denote inverse image, but it is customary nowadays to write f−1G instead

and reserve the notation f ∗ for the inverse image of a sheaf of modules by a morphism of
ringed spaces (see 4.3). I will follow current custom.]

(3.5.1). Given f : X → Y and presheaves F on X and G on Y , a morphism u : G → f∗F
is called an f -morphism from G to F . For all open subsets U ⊆ X and f(U) ⊆ V ⊆ Y ,
u induces morphisms uU,V : G(V )→ F(U), which commute with restriction to smaller open
subsets U ′, V ′. Conversely, any such family of morphisms uU,V commuting with restrictions
determines an f -morphism u : G → F .

If K admits all projective limits, and B, B′ are bases of the topologies on X and Y , it
suffices to give the morphisms uU,V for U ∈ B, V ∈ B′.

If K admits inductive limits, then for each x ∈ X and open neighborhood f(x) ∈ V ⊆ Y ,
we have a morphism G(V )→ F(f−1(V ))→ Fx; in the limit these give a morphism Gf(x) →
Fx.

(3.5.2). Given X →
f
Y →

g
Z, and f - and g-morphisms u : G → f∗F , v : H → g∗G, the

composite w : H →
v
g∗G →

g∗(u)
g∗f∗F is a (g ◦ f)-morphism. In this way, one can regard

pairs (X,F), where F is a presheaf on X with values in K, as forming a category, the
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morphisms (X,F) → (Y,G) being pairs (f, u) consisting of a continuous map f : X → Y
and an f -morphism u : G → F .

(3.5.3). Given f : X → Y and a presheaf G on Y , an inverse image by f of G is a sheaf
G ′ together with an f -morphism ρ : G → G ′ (i.e., a presheaf homomorphism G → f∗G ′) such
that for every sheaf F on X, the map

(3.5.3.1) HomX(G ′,F)→ Homf (G,F) =
def

HomY (G, f∗F)

induced by composition with ρ is bijective.
Since the pair (G ′, ρ) is characterized by a universal property, it is unique up to canonical

isomorphism if it exists. Then we denote G ′ = f−1G, ρ = ρG and call f−1G the inverse image
sheaf of G by f , equipped with the canonical homomorphism of presheaves

(3.5.3.2) ρG : G → f∗f
−1G.

By definition, for any sheaf F on X, we have a bijective correspondence between homomor-
phisms of sheaves v : f−1G → F on X and homomorphisms of presheaves u : G → f∗F on
Y , the two being related by the fact that u factors as

(3.5.3.3) u : G →
ρG
f∗f

−1G →
f∗(v)

f∗F .

(3.5.4). Suppose the category K is such that every presheaf G on Y admits an inverse image
f−1G. One can show that this holds under quite general conditions on K; in particular it is
true when K is the category of sets, abelian groups, or rings [in which case f−1G coincides
with the inverse image f−1G discussed in Liu, p. 37 and Exercises 2.2.6, 2.2.13].

Then f−1 is a functor from presheaves on Y to sheaves on X, and the bijective correspon-
dence in (3.5.3) is a functorial isomorphism

(3.5.4.1) HomX(f−1G,F) ∼= HomY (G, f∗F).

[In other words, although EGA does not use this language, (f−1, f∗) is a pair of adjoint
functors between sheaves on X and presheaves on Y .] The homomorphism correponding via
(3.5.4.1) to u : G → f∗F is denoted u] : f−1G → F ; inversely, the homomorphism correspond-
ing to v : f−1G → F is denoted v[ : G → f∗F . In particular, the canonical homomorphism
ρG in (3.5.3.2) is i[, where i is the identity on f−1G, and (3.5.3.3) says that in general,
v[ = f∗(v) ◦ ρG.

Similarly, given a sheaf F on X, there is a canonical homomorphism

σF : f−1f∗F → F
given by j] for j the identity on f∗F . Then for u ∈ HomY (G, f∗F), we have u] = σF ◦f−1(u).

[All this holds for any pair of adjoint functors. In current language, the canonical homo-
morphisms ρG and σF , which are functorial in G and F , respectively, are the unit and co-unit
of the adjunction.]

(3.5.5). Given X →
f
Y →

g
Z, suppose that all presheaves on Y and on Z with values

in K admit inverse images. Then there is a canonical natural isomorphism of functors
(g ◦ f)−1 ∼= f−1 ◦ g−1.



11

(3.5.6). In the special case f = 1X : X → X, the inverse image 1−1X F (when it exists) is
the sheaf associated to the presheaf F [cf. Liu, 2.2.14]. Then every presheaf homomorphism
from F to a sheaf F ′ factors uniquely through the canonical homomorphism F → 1−1X F .

3.6. Constant and locally constant sheaves. [cf. Liu, 2.2.4, Exercise 2.2.1]
(3.6.1). A constant presheaf is a presheaf F such that the restriction morphism F(X) →
F(U) is an isomorphism for all U . A constant sheaf is the sheaf associated to a constant
presheaf. A sheaf F is locally constant if every x ∈ X has a neighborhood U on which F|U
is constant.

(3.6.2). If X is irreducible (not a union of two proper closed subsets), then the conditions

(a) F is a constant presheaf
(b) F is a constant sheaf
(c) F is a locally constant sheaf

are equivalent.

3.7. Inverse images of presheaves of groups and rings.
(3.7.1). Keep the notation of (3.5.3). When K is the category of sets, one can construct

the inverse image G ′ = f−1G as follows. An element s′ ∈ G ′(U) is a family (s′x : x ∈ U),
where s′x ∈ Gf(x), and for every x ∈ U , the following condition holds: there is a neighborhood
V of f(x) in Y , a neighborhood W ⊆ f−1(V ) ∩ U of x, and a section s ∈ G(V ) such that
s′z is the germ sf(z) for all z ∈ W . Informally, “s′ is given locally by sections of G.” The
restriction maps are the obvious ones, and the sheaf axiom for G ′ holds automatically, by
the local nature of the construction.

One proves that G ′ as constructed above satisfies the universal property of f−1G. The
description of f−1 as a functor is immediate: given a morphism u : G1 → G2 and a section
s′ = (s′x) ∈ G ′1, define f∗(u)(s′) = (ux(s

′
x)) ∈ G ′2. When f = 1X we recover the standard

construction of the sheaf associated to a presheaf of sets [cf. Liu, 2.2.15]. The preceding also
applies verbatim to presheaves of groups and rings.

(3.7.2). In the setting of (3.7.1), if G is a sheaf, and ρ : G → f∗f
−1G is the canonical homo-

morphism, then the induced map on stalks fx ◦ ρf(x) [see (3.4.4)] is a functorial isomorphism
Gf(x) → (f−1G)x. It follows in particular that Supp(f−1G) = f−1(Supp(G)) and that the
inverse image functor f−1 on sheaves of abelian groups is exact. [By definition the cokernel
of a homomorphism of sheaves of abelian groups is the sheafification of its pre-sheaf cokernel,
and this implies that a sequence of sheaves is exact if and only if it induces exact sequences
on stalks.]

3.8. Pseudo-discrete sheaves of topological spaces.
As this section is used only for the construction of formal schemes, we omit it.
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4. Ringed spaces

[Note: Liu (2.2.19) considers only locally ringed spaces, a restriction which is not needed
or assumed for the general discussion in this section, although all (pre)schemes are in fact
locally ringed spaces. Sheaves on locally ringed spaces are discussed in 5.5.]

4.1. Ringed spaces, A-modules and A-algebras.
(4.1.1). A ringed space (resp. topologically ringed space) (X,A) is a topological space X

with a sheaf of rings (resp. topological rings) A. X is called the underlying space of (X,A),
and A its structure sheaf, also denoted OX . One often uses the abbreviation Ox for the stalk
OX,x. We write 1 for the unit element in the ring of global sections OX(X).

When not otherwise specified, A is assumed to be a sheaf of commutative rings.
Ringed spaces form a category. A morphism (X,A) → (Y,B) is a pair (f, φ) where

f : X → Y is a continuous map and φ : B → A is an f -morphism (3.5.1), that is, a sheaf
homomorphism φ : B → f∗A, which may also be specified by giving φ] : f ∗B → A. [There is
a notational conflict here with Liu, who writes f ] where Grothendieck writes φ.] Typically
one abuses notation and writes f for the pair (f, φ).

The composition of (f, φ) : (X,A) → (Y,B) and (g, φ′) : (Y,B) → (Z, C) is given by (g ◦
f, φ′′), where φ′′ = g∗(φ) ◦ φ′ [see (3.5.2)]. This is equivalent to φ′′] = φ] ◦ f−1(φ′]). Hence
if φ] and φ′] are injective (resp. surjective), then so is φ′′] (recall from (3.7.2) that f−1 is
exact). If f is injective and φ] is surjective, then (f, φ) is a monomorphism in the category
of ringed spaces.

(4.1.2). For any subset M ⊆ X, we have the ringed space (M,A|M), called the restric-
tion of (X,A) to M . Here A|M means j−1A for the inclusion j : M → X, generalizing
the definition (3.1.5) in the case that M is open. The monomorphism of ringed spaces
(j, ω) : (M,A|M) → (X,A), where ω] is the identity map on A|M , is called the canonical
injection. The composition of a morphism of ringed spaces f : (X,A) → (Y,B) with (j, ω)
is called the restriction of f to M .

(4.1.3). Recall the definition of a sheaf of A modules, orA module for short. [The definition,
omittted in EGA, is a sheaf M of abelian groups, equipped with a homomorphism of sheaves
of sets A×M →M making each M(U) an A(U) module—cf. Liu, 5.1.1. A homomorphism
of A modules is a homomorphism of sheaves of abelian groups M → N such that every
M(U) → N(U) is an A(U) module homomorphism.] If A is non-commutative, we mean
a sheaf of left A modules unless otherwise specified. A sheaf of ideals in A (left, right or
two-sided) is an A submodule of A.

Assuming A commutative, and replacing ‘abelian group’ and ‘module’ by ‘ring’ and ‘al-
gebra’ in the definition of A module gives the definition of A algebra. Homomorphisms of A
algebras are defined similarly. One can equivalently define an A algebra to be an A module
B equipped with a homomorphism µ : B ⊗A B (‘multiplication’), which is associative in the
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sense that the diagram below commutes.

B ⊗A B ⊗A B
µ⊗1−−−→ B ⊗A B

1⊗µ
y µ

y
B ⊗A B

µ−−−→ B.
The condition that B is commutative can similarly be expressed by a commutative diagram.
[The tensor product of presheaves ofAmodules is defined by (M⊗AN)(U) = M(U)⊗AN(U).
If M and N are sheaves, their presheaf tensor product is not in general a sheaf. The tensor
product of sheaves M ⊗A N is defined to be the sheaf associated to the presheaf tensor
product.]

If M ⊆ B is an A submodule, the sum of the images of the A module homomorphisms⊗n
AM→ B for n > 0 is theA subalgebra of B generated byM. It is also the sheaf associated

to the presheaf which assigns to U the A(U) subalgebra of B(U) generated by M(U).
(4.1.4). A sheaf of rings A is reduced at x ∈ X if the stalk Ax is reduced (1.1.1); reduced

if it is reduced at every point. A is regular at x if Ax is a regular local ring [cf. Liu, 4.27];
regular if it is regular at every point. A is normal at x if Ax is an integrally closed domain
[cf. Liu, proof of 4.1.21], normal if it is normal at every point. A ringed space (X,A) is said
to have any of these properties if A does.

A sheaf of rings A is graded if it is a direct sum of sheaves of abelian groups A =
⊕

nAn,
satisfying AmAn ⊆ Am+n. An A module M is graded if it is a direct sum of sheaves of
abelian groups M =

⊕
nM, satisfying AmMn ⊆Mm+n. Clearly this makes each stalk Ax

a graded ring, and Mx a graded module.
(4.1.5). Given a possibly non-commutative ringed space (X,A), one has the bi-functors
F⊗AG and HomA(F ,G) from sheaves of A modules (left or right, as appropriate) to sheaves
of abelian groups, or more generally, to sheaves of Z modules, where Z is the center of A.
[For reference, here are the definitions: F ⊗A G is the sheaf associated to the presheaf
U 7→ F(U)⊗A(U) G(U); HomA(F ,G)(U) = HomA|U(F|U,G|U), which is already a sheaf by
(3.3.2). See also Liu, p. 158 and Exercise 5.1.5(a).]

The stalk (F ⊗A G)x is canonically isomorphic to Fx ⊗Ax Gx. There is a canonical ho-
momorphism HomA(F ,G)x → HomAx(Fx,Gx), which is neither injective nor surjective in
general.

The functor F ⊗A G is right exact in each variable, and commutes with direct limits. The
sheaves A⊗A F and F ⊗A A are canonically isomorphic to F .

The functors HomA(F ,G) and HomA(F ,G) = HomA(F ,G)(X) are left exact in each
variable (these functors are contravariant in F , so this means they take right exact sequences
F → F ′ → F ′′ → 0 to left exact sequences). The dual of a left A module F is the right A
module F∨ = HomA(F ,A) [cf. Liu, Exercise 5.1.12].

If A is commutative, the p-th exterior power
∧pF of an Amodule F is the sheaf associated

to the presheaf U 7→
∧pF(U). The canonical homomorphism from this presheaf to its

associated sheaf is injective. On stalks, we have (
∧pF)x =

∧p(Fx). The exterior powers are
functorial in F .
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(4.1.6). Let A be a possibly non-commutative sheaf of rings, I a sheaf of left ideals, F a
left A module. Then IF denotes the submodule of F which is the image of multiplication
I ⊗Z F → F (where Z is the constant sheaf associated to the presheaf U 7→ Z; if A is
commutative we could also describe I as the image of I⊗AF → F). Clearly (IF)x = IxFx.
It is also immediate that IF is the sheaf associated to the presheaf U 7→ I(U)F(U), and
that if I ′ is another sheaf of left ideals, then I(I ′F) = (II ′)F .

(4.1.7). Let (Xλ,Aλ) be a family of ringed spaces. For every two indices λ, µ suppose

given an open set Vλµ ⊆ Xλ, and an isomorphism φλµ : (Vµλ,Aµ|Vµλ)
'−→ (Vλµ,Aλ|Vλµ), such

that Vλλ = Xλ and φλλ is the identity. Assume these data satisfy the gluing condition: for
every three indices λ, µ, ν, if we denote the restriction of φλµ to Vµλ ∩ Vµν by φ′λµ, then φ′λµ
maps Vµλ ∩ Vµν onto Vλµ ∩ Vλν , and φ′λν = φ′λµ ◦ φ′µν .

Then one can construct a ringed space (X,A) with a covering by open subsets X ′λ such that
(X ′λ,A|X ′λ) ∼= (Xλ,Aλ), the sets Vλµ and Vµλ being identified with X ′λ∩X ′µ so that the given
isomorphism φλµ corresponds to the identity. The space (X,A) is said to be constructed by
gluing the spaces (Xλ,Aλ) along the sets Vλµ by means of the maps φλµ [cf. Liu, 2.3.33].

4.2. Direct image of an A-module.
(4.2.1). Given a morphism (f, φ) : (X,A) → (Y,B) of ringed spaces and an A module F ,

the direct image f∗F is naturally an f∗A module, and hence a B module via φ : B → f∗A.
This makes f∗ a left exact functor from A modules to B modules.

(4.2.2). There is a natural transformation of functors

(4.2.2.1) f∗(F)⊗B f∗(G)→ f∗(F ⊗A G),

neither injective nor surjective in general, and a commutative diagram

(4.2.2.2)

f∗(F)⊗B f∗(G)⊗B f∗(H) −−−→ f∗(F ⊗A G)⊗B f∗(H)y y
f∗(F)⊗B f∗(G ⊗A H) −−−→ f∗(F ⊗A G ⊗A H).

(4.2.3). Similarly, there is a natural transformation

(4.2.3.1) f∗HomA(F ,G)→ HomB(f∗F , f∗G).

(4.2.4). If C is an A algebra, then f∗(C) is a B algebra, with multiplication defined by the
composition

f∗(C)⊗B f∗(C)→ f∗(C ⊗A C) →
f∗(µ)

f∗(C).

Associativity [see (4.1.3)] follows from (4.2.2.2). Similarly, if F is a C module, then f∗(F) is
naturally an f∗(C) module.

(4.2.5). Consider the special case when f : X → Y is the inclusion of a closed subspace.
Let B′ = B|X = f−1B be the restriction of B to X. An A moduleM on X can be considered
as a B′ module via φ] : B′ → A. Then f∗M is the B module whose restriction to X is M
and which is 0 outside of X. In this case, the natural transformations in (4.2.2) and (4.2.3)
are isomorphisms.



15

(4.2.6). Given a third space (Z, C) and a morphism g : (Y,B) → (Z, C), the identity (g ◦
f)∗ = g∗ ◦ f∗ holds as an identity of functors from A modules to B modules.

4.3. Inverse image of a B-module.
[As is nowadays customary, I abuse notation and write f for a morphism (f, φ) : (X,A)→

(Y,B) of ringed spaces. We then write f ∗ for the preimage of a B module sheaf by the
morphism (f, φ), as opposed to f−1 for the preimage of a general sheaf by the continuous
map f , as in 3.5. In the EGA original, Grothendieck more correctly lets F = (f, φ), and
writes F ∗, f ∗ for our f ∗, f−1.]

(4.3.1). [cf. Liu, 5.1.13] Keep the notation of (4.2.1). The inverse image f−1(G) of a B
module G, constructed as in (3.7.1), is naturally an f−1(B) module. The homomorphism
φ] : f−1(B) → A makes A an f−1(B) algebra. By extension of scalars, f−1(G) ⊗f−1(B) A is
an A module, called the inverse image of G by the morphism (f, φ). We will denote it by
f ∗(G). Then f ∗ is a right exact functor from B modules to A modules. It is not exact in
general, since tensoring with A is only right exact.

One has f ∗(G)x = Gf(x) ⊗Bf(x) Ax, by (3.7.2) [cf. Liu, 5.1.14].

(4.3.2). f ∗ commutes with direct limits, and hence with both finite and infinite direct
sums.

(4.3.3). f ∗ commutes with tensor products, in the sense that one has a natural isomorphism

(4.3.3.1) f ∗(G1)⊗A f ∗(G2) ∼= f ∗(G1 ⊗B G2).
(4.3.4). If C is a B algebra, then f ∗(C) is naturally an A algebra. In particular, f ∗(B) is
A itself. Likewise, if M is a C module, then f ∗(M) is an f ∗(C) module.

(4.3.5). If I ⊆ B is a sheaf of ideals, then f−1(I) is a sheaf of ideals in f−1(B), and we have
a canonical homorphism f ∗(I) = f−1(I)⊗f−1(B)A → A, whose image we denote by f ∗(I)A,
or sometimes simply IA. Note that IA = φ](f−1(I))A, and hence (IA)x = φx(If(x))Ax.
Given another ideal sheaf I ′ ⊆ B, we have I(I ′A) = (II ′)A.

If F is an A module, we define IF = (IA)F .
(4.3.6). Given a third space (Z, C) and a morphism (g, φ′) : (Y,B) → (Z, C), we have a

canonical functorial isomorphism (g ◦ f)∗ ∼= f ∗ ◦ g∗.

4.4. Relations between direct and inverse images.
(4.4.1–3). [cf. Liu, Exercise 5.1.1] Keep the notation of (4.2.1). There is a canonical iso-

morphism of functors

(4.4.3.1) HomA(f ∗G,F) ∼= HomB(G, f∗,F),

i.e., (f ∗, f∗) is a pair of adjoint functors between B modules and A modules. In particular,
there are canonical homomorphisms

ρG : G → f∗f
∗G,(4.4.3.2)

σF : f ∗f∗F → F ,(4.4.3.3)

which determine the isomorphism (4.4.3.1) in the same way as the corresponding maps for
f−1 and f∗ do in (3.5.3) and (3.5.4).
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More explicitly, if s is a section of G on an open set V ⊆ Y , then ρG(s) is the section s′⊗1
of f ∗G on f−1(V ), where s′ is given by s′x = sf(x) for all x ∈ f−1(V ).

Given a homomorphism u : G → f∗F and its corresponding homomorphism u] : f ∗G → F ,
one has homomorphisms ux : Gf(x) → Fx on stalks, defined by composing (u])x : (f ∗G)x → Fx
with the canonical homomorphism sx 7→ sx ⊗ 1 from Gf(x) to (f ∗G)x = Gf(x) ⊗Bf(x) Ax.
Equivalently, ux is the direct limit of the homomorphisms G(V ) →

u
F(f−1(V )) → Fx over

open neighborhoods V of f(x).
(4.4.4). Given u1 : G1 → f∗F1, u2 : G2 → f∗F2, denote by u1 ⊗ u2 the homomorphism

u : G1 ⊗B G2 → f∗(F1 ⊗A F2) such that u] = u]1 ⊗ u
]
2 [this makes sense by (4.3.3)]. Then u is

also the composite

G1 ⊗B G2
u1⊗Bu2→ (f∗F1)⊗B (f∗F2)→ f∗(F1 ⊗A F2),

where the second arrow is given by (4.2.2.1).
(4.4.5). Let (Gλ) be a direct system of B modules and uλ : Gλ → f∗F a system of homo-

morphisms commuting with the maps in (Gλ). Let u = lim−→uλ be the induced morphism

from G = lim−→Gλ to f∗F . Then the homomorphisms u]λ : f ∗Gλ → F commute with the maps

in the direct system (f ∗Gλ) and we have u] = lim−→u]λ.
(4.4.6). From the defimitions one obtains a natural transformation of functors

γ : HomB(G1,G2)→ f∗(HomA(f ∗G1, f ∗G2)),
and hence a corresponding canonical natural transformation

γ] : f ∗HomB(G1,G2)→ HomA(f ∗G1, f ∗G2).
(4.4.7). If F is an A algebra, G is a B algebra, and u : G → f∗F is a B algebra homomor-

phism, then u] : f ∗G → F is an A algebra homomorphism, and conversely.
(4.4.8). Given a third ringed space and morphism (g, φ′) : (Y,B) → (Z, C), and A, B,
C modules F , G, H, with homomorphisms v : G → f∗F , v′ : H → g∗G, the composite
v′′ = g∗(v) ◦ v′ : H → (g ◦ f)∗F corresponds to (v′′)] = v] ◦ f ∗(v′]) : (g ◦ f)∗H → F .


