MATH 256 HOMEWORK SET 8

1. Let U_0, \ldots, U_n be the standard covering of \mathbb{P}_k^n by open affines. Describe the inclusion $j_i \colon \mathbb{A}^n \cong U_i \hookrightarrow \mathbb{P}_k^n$ in terms of the functor on schemes over k represented by \mathbb{P}_k^n . What line bundle L on \mathbb{A}^n and n+1 global sections generating L induce the morphism j_i ?

2. If R is a graded ring, let $R^{(d)} = \bigoplus_n R_{dn}$.

(a) Prove (EGA II, 2.4.7(i)) that the inclusion $R^{(d)} \subseteq R$ induces an isomorphism $\operatorname{Proj}(R) \cong \operatorname{Proj}(R^{(d)})$. Your proof should also apply in the more general case where we allow R to be \mathbb{Z} graded.

(b) Let R' be $R^{(d)}$ with the grading rescaled so that $R'_n = R_{dn}$. Assuming R_0 and R_1 generate R, show that R'_0 and R'_1 generate R', and that the twisting sheaf $\mathcal{O}'(1)$ on $Y = \operatorname{Proj}(R')$ coincides with $\mathcal{O}(d)$ for $Y = \operatorname{Proj}(R)$.

3. Let *i* be the Veronese embedding $i: \mathbb{P}^1_k \to \mathbb{P}^d_k$, the map induced by the complete linear system $\Gamma(\mathbb{P}^1, \mathcal{O}(d))$. Recall that if *k* is an algebraically closed field, *i* is given in coordinates by $(x:y) \to (x^d: x^{d-1}y: \cdots : y^d)$.

(a) Show that *i* also has the following description. Identify $\mathbb{P}^1_k = \operatorname{Proj}(k[x, y])$ with $\operatorname{Proj}(k[x, y]^{(d)})$ as in Problem 2. Then the surjective homomorphism $k[x_0, \ldots, x_d] \to k[x, y]^{(d)}$ of graded rings sending x_i to $x^{n-i}y^i$ identifies $k[x, y]^{(d)}$ with k[x]/I for a graded ideal *I* and the Veronese map *i* with the closed immersion whose image is $V(\widetilde{I})$.

(b) Prove that I is the full ideal $\Gamma_{\bullet}(\mathbb{P}^n_k, \widetilde{I})$.

(c) Prove that I is generated by the quadratic polynomials $x_i x_j - x_k x_l$ such that i+j = k+l. Hint: let J be the ideal generated by these polynomials and prove that $k[\boldsymbol{x}]/J$ is generated as a k module by monomials whose images in $k[x, y]^{(d)}$ are linearly independent over k.

(d) Show that the Veronese map over k is a base extension of the Veronese map for $k = \mathbb{Z}$. Then define the Veronese map $\mathbb{P}^1_T \to \mathbb{P}^d_T$ over any scheme T.

4. (a) Consider the degree 2 Veronese map $i: \mathbb{P}^1_k \to \mathbb{P}^2_k$, whose image is the curve C in \mathbb{P}^2 defined by the graded ideal $I = (x_1^2 - x_0x_2, x_2^2 - x_1x_3, x_1x_2 - x_0x_3)$. Assume for simplicity that k is an algebraically closed field. What happens if you leave out the last generator $x_1x_2 - x_0x_3$ of I?

5. (a) Prove that if X is affine over S then every S-morphism $\mathbb{P}_S^n \to X$ factors as a section $S \to X$ of X over S composed with the structure morphisms $\mathbb{P}_S^n \to S$ (where $\mathbb{P}_S^n = S \times_{\text{Spec}(\mathbb{Z})} \mathbb{P}_{\mathbb{Z}}^n$ by definition.) In particular, if S = Spec(k), where k is a field, then every k morphism from \mathbb{P}_k^n to an affine k scheme X is constant, *i.e.*, it factors through the reduced one-point scheme Spec(k).

(b) Deduce that if k is a commutative ring (not the zero ring) and n > 0, then a vector bundle over \mathbb{P}_k^n cannot be an affine scheme.

(c) Construct an example of an affine variety X and a morphism $\pi: X \to \mathbb{P}_k^n$ for some n > 0 such that X is an affine line bundle over \mathbb{P}_k^n , *i.e.*, \mathbb{P}_k^n can be covered by open sets U

such that $\pi^{-1}(U)$ is isomorphic to \mathbb{A}^1_U as a scheme over U. Why does this not contradict part (b)?

Hint on (c): $SL_2(k)$ acts on \mathbb{P}^1_k by linear change of coordinates. Choosing a point in \mathbb{P}^1_k and acting on it gives a morphism $SL_2(k) \to \mathbb{P}^1_k$. Construct X as the intersection of $SL_2(k)$ with a hyperplane in the space \mathbb{A}^4_k of 2×2 matrices.

6. Let $X = \operatorname{Proj}(S)$, where S = k[x, y, z] with $\deg(x) = \deg(y) = 1$, $\deg(z) = 2$. Show that the sheaf of modules associated to S(1) is not locally free.

7. Prove that if $\operatorname{Proj}(R)$ is quasi-compact (for example if R is finitely generated as an algebra over R_0 , although this condition is not necessary), then there exists a d such that $L = R(d)^{\sim}$ is locally free. In fact, show that $\operatorname{Proj}(R) \cong \operatorname{Proj}(S)$ for another graded ring S, where $S_0 = R_0$ and S_1 generate S, such that the twisting sheaf $\mathcal{O}(1)$ on $\operatorname{Proj}(S)$ coincides with L.

8. Let $A = k[t_1, t_2, \ldots]$ be a polynomial ring in infinitely many variables over a field k. Let $E \subseteq \mathbb{P}^1_A = \operatorname{Proj}(A[x, y])$ be a section of \mathbb{P}^1_A over $\operatorname{Spec}(A)$ (for example, E = V(y)), and let $F \subseteq \mathbb{P}^1_A$ be the the fiber over the origin $V(t_1, t_2, \ldots)$ in $\operatorname{Spec}(A)$. Let $Y = E \cup F$ and let $\mathcal{F} = \mathcal{O}(-1) \otimes_{\mathcal{O}_{\mathbb{P}^1_A}} i_* \mathcal{O}_Y$, where $i: Y \hookrightarrow \mathbb{P}^1_A$ is the inclusion morphism.

(a) Show that the quasi-coherent sheaf \mathcal{F} on \mathbb{P}^1_A is locally finitely generated.

(b) Show that $\mathcal{F} = M$ for a finitely generated graded A[x, y] module M. Using the fact that \mathbb{P}^1_A is quasi-compact, this follows from (a), but I am asking you to find a suitable module M explicitly.

(c) Show that $\Gamma(\mathbb{P}^1_A, \mathcal{F})$ is isomorphic as an A module to the ideal (t_1, t_2, \ldots) . In particular, it is not finitely generated. Later we will see that if A is Noetherian, the A module of global sections of a locally finitely-generated quasi-coherent sheaf on $\mathbb{P}^n(A)$ is always finitely generated. This example shows that the Noetherian hypothesis is necessary.

(d) Show that the above construction also provides an example of a graded A algebra R, generated over A by finitely many elements of degree 1, and a d such that $\Gamma(Y, \mathcal{O}(d))$ is not a finitely generated A module, where $Y = \operatorname{Proj}(R)$.

9. Let S be a positively graded ring, $A = S_0$, so $X = \operatorname{Proj}(S)$ is a scheme over $Y = \operatorname{Spec}(A)$. Let I be the set of elements $a \in A$ such that S_+ is contained in the radical of the annihilator of a. Prove that I is an ideal, and that $V(I) \subseteq Y$ is the scheme-theoretic closed image of the structure morphism $X \to Y$.

10. (a) Let $R = k[y_0, y_1, y_2...]$ be a polynomial ring in infinitely many variables, $J \subseteq R$ the ideal generated by the homogeneous quadratic polynomials $y_i y_j - y_0 y_{i+j}$ for all i, j, and S = R/J, a graded k-algebra generated by S_1 , but not finitely generated. Show that $\operatorname{Proj}(S) \cong \mathbb{A}^1_k = \operatorname{Spec} k[t]$, so \mathbb{A}^1_k is isomorphic to a closed subscheme of $\mathbb{P}^{\infty}_k = \operatorname{Proj}(R)$.

(b) Prove that \mathbb{A}_k^1 is not projective over $\operatorname{Spec}(k)$.

Note that, at least if k is an algebraically closed field, it is reasonable to regard $\operatorname{Proj}(R)$ as an infinite dimensional projective space, and the above immersion as being given in

coordinates by $t \mapsto (1:t:t^2:\cdots)$. The corresponding immersion $t \mapsto (1:t:\cdots:t^{N-1})$ of \mathbb{A}^1 into \mathbb{P}^N is not closed, but extends to a closed immersion $\mathbb{P}^1 \to \mathbb{P}^N$ given by $(s:t) \mapsto$ $(s^N:s^{N-1}t:\cdots:t^N)$, mapping the point (0:1) (at " $t=\infty$ ") to $(0:0:\cdots:1)$. Such an extension is of course not possible for the immersion into \mathbb{P}^{∞} .

11. Let \mathcal{E} be a quasi-coherent sheaf of \mathcal{O}_Y modules on a scheme Y, and $\mathbb{P}(\mathcal{E})$ its projective bundle, considered as a scheme over Y with structure morphism $p: \mathbb{P}(\mathcal{E}) \to Y$. Let \mathcal{F} be the kernel of the canonical surjection $p^* \mathcal{E} \to \mathcal{O}_P(1)$, and $Q = \mathbb{P}(\mathcal{F})$, a projective bundle over $\mathbb{P}(\mathcal{E})$ and thereby also a scheme over Y. Show that Q represents a functor which associates to any Y-scheme X (with structure morphism q) the set of pairs of quasi-coherent subsheaves $\mathcal{F}_2 \subseteq \mathcal{F}_1 \subseteq q^* \mathcal{E}$ such that $\mathcal{E}/\mathcal{F}_1$ and $\mathcal{F}_1/\mathcal{F}_2$ are both invertible. Generalize by constructing a scheme that represents the functor of flags $\mathcal{F}_l \subseteq \cdots \subseteq \mathcal{F}_1 = q^* \mathcal{E}$ such that each $\mathcal{F}_i / \mathcal{F}_{i-1}$ is invertible, for any l.

12. Show that every degree-2 hypersurface $V(f) \in \mathbb{P}^3_{\mathbb{C}}$, where f is a homogeneous quadratic polynomial in 4 variables, is isomorphic to one of the following:

(i) A non-reduced scheme X such that $X_{\text{red}} \cong \mathbb{P}^2_{\mathbb{C}}$,

(ii) A union of two projective planes $\mathbb{P}^2(\mathbb{C})$ intersecting along a line $\mathbb{P}^1(\mathbb{C})$, or (ii) The projective closure of the cone $z^2 = xy$ in \mathbb{A}^3 , or

(iii) $\mathbb{P}^1_{\mathbb{C}} \times \mathbb{P}^1_{\mathbb{C}}$.

To what extent does this classification depend on the ground field being the complex numbers?

13. Let X be the non-separated gluing of two copies of $\mathbb{A}^1_k = \operatorname{Spec} k[x]$ (k a field) along the open set D(x). (a) Classify the invertible sheaves \mathcal{L} on X, up to isomorphism. Which ones are generated by their global sections? (b) For each \mathcal{L} describe explicitly the open set $G(\varepsilon)$ and the morphism $G(\varepsilon) \to \operatorname{Proj}(S)$ induced as in (EGA II, 4.5.1).