
Math 256 Homework Set 6

1. (a) Show that a finite disjoint union of affine schemes X = X1 t · · · tXn is affine and
describe its coordinate ring in terms of those of the Xi.

(b) Show that an infinite disjoint union of (non-empty) affine schemes is not affine in
general.

2. (a) Let (Ri)i∈I be a directed system of commutative k algebras and let R = lim−→i
Ri be

their direct limit. Prove that Spec(R) is the projective limit of the schemes Xi = Spec(Ri)
in the category of schemes over k.

(b) Prove that infinite products of affine schemes over k exist and are affine.

(c) Prove that if p is a prime ideal of a ring A, the local scheme Spec(Ap) is the product
over X = Spec(A) of all standard affine open neighborhoods Xf = Spec(Af ) of p in Spec(A).
Show that it is also the product of all open neighborhoods of p in Spec(R).

(d) What goes wrong if you try to use (b) and gluing to construct infinite products of
arbitary schemes over a scheme S? Hint: you can see the difficulty by considering the
problem of constructing the product over S of infinitely many arbitrary open subschemes
Uα ⊆ S.

(e)∗ Construct an example of an infinite collection of schemes over a scheme S for which
the product does not exist in the category of schemes over S, and prove it.

3. Let F be a sheaf on a space X and let (Fα)α∈I be a collection of subsheaves of F , that
is, sub-presheaves which are sheaves.

(a) Prove that the presheaf intersection
⋂
αFα is a subsheaf of F .

(b) Show that if the collection is finite, the stalks of the intersection are given by(⋂
α

Fα

)
x

=
⋂
α

Fα,x,

but that this does not hold in general for infinite intersections.

(c) Show that the presheaf union
⋃
αFα need not be a sheaf, even in the finite case.

(d) Prove that the stalks of the presheaf union are given by(⋃
α

Fα

)
x

=
⋃
α

Fα,x,

even in the infinite case, and deduce that the sheafification of the presheaf union is a subsheaf
of F with these stalks.

4. (a) Let k be a field and k its algebraic closure. Let K be a finite algebraic extension of
K. Prove that Spec(k)×Spec(k) Spec(K) has a finite number of points, that the Galois group
G of K over k acts freely on them (that is, each point has trivial stabilizer), and the the G
orbits correspond bijectively to intermediate fields k ⊆ L ⊆ k which are isomorphic to K as
an extension of k.
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(b) Prove that Spec(k) ×Spec(k) Spec(K) has just one point if and only if K is a purely
inseparable extension of k, that is, an extension obtained by adjoining a sequence of p-th
roots, where char(k) = p.

5. IfX is a scheme over k andR is a k algebra, we writeX(R) for the set Homk((SpecR), X)
of R valued points of X. In the case X = An

k , we have X(R) = Rn, which is not just a set
but a an abelian group and a module over the ring A1

k(R) = R.

(a) Verify that the these structures are functorial in R, e.g., the addition map Rn×Rn →
Rn is functorial in R, and likewise for other maps describing the zero element, additive
inverse, and scalar multiplication by R on Rn.

(b) Construct explicitly the morphism An
k ×k An

k → An
k which induces the addition map

on Rn = An
k(R), and likewise for the other maps in part (a).

(c) Show that there are commutative diagrams among these morphism which express the
axioms of an abelian group and a module. In other words, An

k is an abelian group scheme
over k, and also an A1

k module scheme (and A1
k is a commutative ring scheme).

6. (a) Let M = An2
(k) = Spec k[x1,1, . . . , xn,n]. Let X be the open subscheme Mf where

f ∈ Spec k[x1,1, . . . , xn,n] is the determinant of the n × n matrix whose with entries xi,j.
Construct morphisms µ : X ×k X → X, i : X → X and e : Spec(k) → X which, for every
scheme T over k, equip the set X(T )k with the product, inverse and identity element of a
group, in such a way that for every R algebra k, if T = Spec(R), then X(T )k ∼= GLn(R).

(b) Describe the group X(T )k for general schemes T over k.

7. Using our provisional definition of projective space Pnk over a ring k in terms of its
covering by standard affine open subsets, prove that Pnk ∼= Spec(k) ×Spec(Z) PnZ as a scheme
over k (note that every scheme is a scheme over Z in a unique way). Thus PnZ provides the
universal model for projective space from which all others are obtained by base extension.

8. Denoting the group scheme in problem 6 by (GLn)k, prove that (GLn)k ∼= Spec(k)×Spec(Z)
(GLn)Z as a group scheme over k.

9. (a) With the abelian group scheme structure on An
k from problem 5, prove that if k

is a field of characteristic p 6= 0, and I ⊆ k[x1, . . . , xn] is the ideal generated by the p-th
powers xpi , then the closed subscheme Spec k[x1, . . . , xn]/I of An

k is a subgroup scheme. This
gives examples of non-reduced group schemes of finite type over a field, something which
only exists in positive characteristic. See also part (c) of this problem.

(b) Show that Cn = SpecZ[x]/(xn − 1) can be identitfied with a subgroup scheme (over
SpecZ) of (GL1)Z, in the notation of Problem 8, and that for any ring R this identifies
Cn(R) with the group of n-th roots of 1 in R.

(c) Let k be an algebraically closed field. Show that if char(k) does not divide n, then the
group scheme Spec(k) ×Spec(Z) Cn over k is reduced, i.e., it is a classical algebraic variety,
whose underlying set can be naturally identified with the group of n-th roots of 1 in k. Show
that if char(k) does divide n, then Spec(k) ×Spec(Z) Cn is a non-reduced group scheme over
k.
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10. Let Gm = (GL1)k = Spec(k[z, z−1]), regarded as a group scheme over k as in problems
6 and 8, act on A2

k by the formula (z) · (x, y) = (zx, z−1y); in other words, the morphism
ρ : Gm × A2 → A2 which defines the action corresponds to the k algebra homomorphism
φ : k[x, y]→ k[z, z−1]⊗ k[x, y] = k[z, z−1, x, y] that maps x 7→ zx, y 7→ z−1y.

(a) Let X be the open subscheme A2 \ V (x, y). Show that X is Gm invariant, i.e., the
action ρ restricted to Gm ×X has image X.

(b) Let Y be the non-separated scheme obtained by gluing two copies of A1 along the
identity map on the open subscheme U = A1 \ V (x). Construct a surjective morphism
f : X → Y which is equivariant for the above Gm action on X and the trivial Gm action on
Y .

(c) Show that Gm acts freely on X with quotient X/Gm = Y , in the following precise
sense: there is a covering of Y by open subschemes V such that fV : f−1(V ) → V makes
f−1(V ) isomorphic to Gm×V as a scheme over V with Gm action (where Gm acts on Gm×V
by the left action of Gm on itself and the trivial action on V ).

Note that this example is not just an artificial pathology having to do with the definition
of schemes. If you like, you can take k = C, so all schemes here are classical algebraic
varieties. Then the group variety C∗ acts freely on the open subvariety X = C2 \ {(0, 0)},
the orbits are the hyperbolas xy = c for c 6= 0, plus the two components of xy = 0, and the
quotient is genuinely the non-separated variety “C1 doubled at {0}.”

11. Let X = Y = C∗ and consider the map f : X → Y , z → z2. The two-element group
Z2 acts on X by z → −z, and the action commutes with f (where Z2 acts trivially on Y ).

In the analytic topology, f makes X a principal Z2 bundle over Y , that is, we can cover
Y by open sets U such that f−1(U)→ U is isomorphic to the projection Z2 × U → U , as a
space over U with Z2 action.

(a) Show that X, Y and Z2 can be identified with the sets of closed points of (affine)
schemes of finite type over C, so that f is a morphism, and Z2 is a group scheme which acts
on X as a scheme over Y .

(b) Show that for every closed point y ∈ Y , the scheme-theoretic fiber f−1(y) is isomorphic
to Z2 with its usual left action on itself.

(c) Show that X is not a principal Z2 bundle in the Zariski topology, in fact there is no
non-empty open subscheme U ⊆ Y such that f−1(U) is isomorphic to Z2 × U as a scheme
over U . The easiest way to see this is by considering generic points. Note, however, that by
the equivalence between Xcl and X for Jacobson schemes X, it follows that the result also
holds if we omit the generic points. So this is really about the difference between the Zariski
topology and the analytic topology on the classical points.

(d) Show that X is a principal Z2 bundle in the following weaker sense: there exists a
surjective morphism U → Y (U also of finite type over C) such that U×Y X is isomorphic to
Z2 × U as a scheme over U with Z2 action. Hint: U = X works. In fact, since U = X → Y
is in this case a smooth morphism of relative dimension 0, or étale morphism, this shows
that X is a ‘principal Z2 bundle in the étale topology.’
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12. A diagram in a category C is a directed graph D = (V,E) together with a morphism
of directed graphs from D to C regarded as a directed graph; that is, a map from v 7→ Xv

from V to objects of C and a map e 7→ fe from E to arrows of C such that fe is an arrow
from Xv to Xw if e is an edge from v to w.

A projective limit lim←−D(Xv) is an object X with arrows αv : X → Xv for all v ∈ V such
that fe ◦ αv = αw for every edge e ∈ E, where e goes from v to w, and such that for any
Y and arrows βv : Y → Xv satisfying the same commutativity condtion, there is a unique
arrow φ : X → Y such that βv = αv ◦ φ for all v.

As usual for an object defined by a universal property, lim←−D(Xv) is unique up to canonical
isomorphism if it exists.

(a) Show that products, fiber products and equalizers are special cases of projective limits
of diagrams. (An equalizer of two arrows f, g : X → Y is an object E with an arrow
α : E → X such that f ◦α = g ◦α, and for every φ : T → X such that f ◦φ = g ◦φ, φ factors
through a unique arrow T → E.)

(b) Show that every projective limit lim←−D(Xv) is the equalizer of two morphisms
∏

vXv →∏
eXh(e), where h(e) is the head of e (the vertex e goes to), assuming the two products

exist. In particular, a category has all (finite) projective limits if and only if it has all (finite)
products and all equalizers.

(c) Show that equalizers are a special case of fiber products.

(d) Deduce that the category of schemes over a given scheme S has all finite projective
limits.

13. A morphism f is said to have property P universally if every base extension of f has
property P . Prove that the property “f has property P universally” is stable under base
extension, no matter what P is.

14. Let f : X → Y be a morphism of schemes over S, and Γf = (1X , f) : X → X ×S Y its
graph morphism.

(a) Regarding X ×S Y as a scheme over Y ×S Y via the morphism f × 1Y , prove that Γf
can be identified with the base extension from Y ×S Y to X ×S Y of the diagonal morphism
∆Y/S : Y → Y ×S Y . Use this to prove each of the next three statements.

(b) The graph morphism Γf is always an immersion (take as known that the diagonal
morphism of any morphism is an immersion).

(c) (‘Closed graph theorem’) if Y is separated over S, then Γf is a closed immersion.

(d) If Y is quasi-separated over S, then Γf is quasi-compact.

(e) Prove that in (c) and (d), the hypothesis on Y is necessary for the conclusion to hold
for every S morphisms f : X → Y . Hint: what is the graph morphisms of the identity map
on Y ?

Remark: part (c) is an analog of the theorem in topology that if Y is a Hausdorff space,
then the graph of every continuous map f : X → Y is closed in X × Y , and part (e) of the
fact that the Hausdorff condition on Y is necessary.


