MATH 256 HOMEWORK SET 5

1. Let X be a scheme. By definition (EGA I, 4.1.3), a subscheme of X is a closed subscheme of an open subscheme; and by (EGA I, 4.1.6), any open subscheme of a closed subscheme is a subscheme. However, it is not true in general that every subscheme is open in a closed subscheme.

Prove that if Y is a closed subscheme of a quasicompact open $U \subseteq X$, then $Y = U \cap \overline{Y}$, where \overline{Y} is the smallest closed subscheme containing Y, that is, the scheme-theoretic closure of the image of the inclusion morphism $j: Y \hookrightarrow X$, defined by the largest quasi-coherent ideal sheaf contained in ker (j^{\flat}) .

Deduce that if the underlying space of X is locally Noetherian, then every subscheme of Y is open in its closure.

2. (a) Let $R = k[t, x_1, x_2, \ldots]$, where k is a field, and take X = Spec(R). For each m > 0, define an ideal $I_m \subseteq R$ by

$$I_m = (t^m, x_1, \dots, x_m).$$

Let $U = X \setminus V(t, x_1, x_2...)$, that is, the complement of the closed point corresponding to the origin in the infinite dimensional affine space X. Define $\mathcal{I} \subseteq \mathcal{O}_U$ to be

$$\mathcal{I} = \bigcap_{m} (\widetilde{I_m} | U).$$

Prove that \mathcal{I} is quasi-coherent, and that if $Y \subseteq U$ is the closed subscheme defined by \mathcal{I} , then $Y \neq U \cap \overline{Y}$. (Note that, by Problem 1, it was necessary to use a non-Noetherian ring R to see this phenomenon.)

(b) Show that the example in part (a) is nevertheless an open subscheme $V \cap \overline{Y}$, for a smaller open subset $V \subseteq U$ which contains Y.

(c) Prove that the union Y' of Y and V(t-1), which is again a closed subscheme of U, is not the intersection of $\overline{Y'}$ with any open subset $V \subseteq X$, and hence is not an open subscheme of a closed subscheme of X.

3. Let X be any topological space, let $P = \{p\}$ be a one-point space, and let $\pi: X \to P$ be the unique map. Given any set, abelian group, or ring A, there is a unique sheaf \underline{A} on P such that $\underline{A}_p = A$. Let us also use the notation \underline{A} for the sheaf $\pi^{-1}(\underline{A})$ on X, called the constant sheaf with values in A. In particular, $\underline{A}_x = A$ for all $x \in X$.

(a) Prove that \underline{A} is isomorphic to the sheaf of continuous A valued functions on open sets in X, where A is given the discrete topology.

(b) Prove that to give a sheaf homomorphism $\underline{A} \to \mathcal{F}$, where \mathcal{F} is any sheaf on X, it is equivalent to give a homomorphism (of sets, abelian groups, or rings) $A \to \mathcal{F}(X)$.

(c) Show that for any continuous map $f: X \to Y$, there is a canonical sheaf homomorphism $\underline{A}_Y \to f_* \underline{A}_X$.

(d) Assume that $A \neq 0$. Prove that if $i: Y \to X$ is the inclusion of a disconnected closed subset Y into a connected space X, the canonical map $\underline{A}_Y \to i_*\underline{A}_X$ is an example of a surjective homomorphism of sheaves which induces a non-surjective map on global sections.

(e) Prove that if $\phi: M \to N$ is a surjective homomorphism of sheaves which is not surjective on global sections, and $K = \ker(\phi)$, then K is an example of a subsheaf of M such that the presheaf quotient M/K is not a sheaf. In particular, the construction in part (d) provides such examples.

4. If X and T are schemes over S, define $X_S(T) = \operatorname{Hom}_{\operatorname{Sch}/S}(T, X)$. For X fixed, this defines a functor $X_S: T \mapsto X_S(T)$ from schemes over S to sets called the *functor of points* of X. As in (EGA I, 2.5), if $S = \operatorname{Spec}(k)$ we may also use the term *scheme over* k instead of scheme over S, and write X_k instead of X_S .

Now let S = Spec(k). Show that if $X = \text{Spec}(k[x_1, \ldots, x_n])$ then $X_k(T) = \mathcal{O}(T)^n$. Here the equal sign means there is a functorial identification between the two sets. If $X = \text{Spec}(k[x_1, \ldots, x_n]/I)$, where I is an ideal, show that $X_k(T)$ is the solution set in $\mathcal{O}(T)^n$ of the equations $f(x_1, \ldots, x_n) = 0$ for all $f(x) \in I$. More generally, prove the analogous facts when X = Spec(R) for R a polynomial ring in perhaps infinitely many variables, or a quotient of such a ring by an ideal (that is, an arbitrary k-algebra with a chosen set of generators).

5. Let X and Y be schemes over S. Show that $U \mapsto X_S(U)$ for every open $U \subseteq Y$ defines a sheaf of sets on Y. (One refers to this property by saying that the functor X_S from schemes over S to sets is a *sheaf in the Zariski topology*. Since not every functor from schemes over S to sets is a sheaf in the Zariski topology, this gives a nontrivial necessary condition for a functor to be representable as the functor of points of some scheme.)

6. Let k be an algebraically closed field. The set X of $m \times n$ matrices M over k such that rank $(M) \leq r$ is then an affine algebraic variety in \mathbb{A}_k^{mn} , defined by the vanishing of all $(r+1) \times (r+1)$ minors of M. Prove that X is an irreducible variety. Hint: find a surjective morphism from an affine space onto X.

7.* Prove that the $(r + 1) \times (r + 1)$ minors of M generate the ideal of the variety X in Problem 6, or in other words, that the ideal I generated by the minors is prime.

One method of doing this is as follows. Let $J = \sqrt{I}$ be the full ideal of X, so $X = \operatorname{Spec}(k[x]/J)$, where k[x] denotes the polynomial ring in the mn entries of M. The surjective morphism $\mathbb{A}_k^N \to X$ which you found in Problem 6 corresponds to an injective ring homomorphism $k[x]/J \to k[y]$, where k[y] is a polynomial ring in N variables. Composing this with the canonical homomorphism $k[x]/I \to k[x]/J$ gives a homomorphism $\phi: k[x]/I \to k[y]$. To show that I = J, we want to show that ϕ is injective. One way to do this is to find a set A of monomials in k[x] such that (i) ϕ maps the monomials in A to linearly independent elements of k[y] (for example, to polynomials with distinct leading terms in some suitable ordering of the monomials in k[y]) and (ii) A spans k[x]/I (for example, because every monomial not in A is divisible by the leading term of some generator of I, for a suitable ordering of monomials in k[x]).

If you find the general case too hard, try it for m = 2, n = 3, r = 1.

8. Let k be a ring and let $I \subseteq k[x_0, \ldots, x_n]$ be an ideal generated by homogeneous polynomials. Recall that we constructed projective space \mathbb{P}_k^n by gluing affine spaces $U_j = \operatorname{Spec}(R_j) \cong \mathbb{A}_k^n$, where R_j is the polynomial ring in the x_i/x_j for $i = 0, \ldots, n$ (excluding i = j).

If f is homogeneous of degree d, then for each j we have $f/x_j^d = f(x_0/x_j, \ldots, x_n/x_j)$, and we can form an ideal $I_j \subseteq R_j$ generated by elements of this form for homogeneous $f \in I$. Prove that the ideal sheaves $\widetilde{I}_j \subseteq \mathcal{O}_{U_j}$ and $\widetilde{I}_k \subseteq \mathcal{O}_{U_k}$ coincide on $U_j \cap U_k$, hence are the restrictions of a single quasi-coherent ideal sheaf \mathcal{I} on \mathbb{P}_k^n , defining a closed subscheme $V(\mathcal{I}) \subseteq \mathbb{P}_k^n$ whose intersection with U_j is $\operatorname{Spec}(R_j/I_j)$.

Show that when k is an algebraically closed field, so the closed points of \mathbb{P}_k^n are just the points of classical projective space, the set of closed points belonging to $V(\mathcal{I})$ is the solution locus V(I) of the equations defined by homogeneous generators f of I.