
Math 256 Homework Set 4

1. Verify in detail the gluing construction (EGA 0, 4.1.7) for ringed spaces, as follows.

(a) Suppose given a collection of sets Xλ, and for every two indices λ, µ a subset Vλµ ⊆ Xλ

and a bijection φµλ : Vλµ → Vµλ, satisfying the gluing conditions: Vλλ = Xλ, φλλ = 1Xλ , and
for every three indices λ, µ, ν, φµλ(Vλµ ∩ Vλν) = Vµλ ∩ Vµν , and φ′µλ = φ′µν ◦ φ′νλ, where φ′µλ,
φ′νλ are the restrictions of φµλ, φνλ to Vλµ ∩Vλν and φ′µν is the restriction of φµν to Vνλ ∩Vνµ.

Prove that the relation on the disjoint union
∐

λXλ defined by x ∼ y if x ∈ Xλ, y ∈ Xµ

and φµλ(x) = y is an equivalence relation. Let X be the set of equivalence classes. Prove
that the canonical maps ιλ : Xλ →

∐
λXλ → X are injective, that ιλ(Vλµ) = ιµ(Vµλ), and

that under the identification of each Xλ with ιλ(Xλ) ⊆ X, φλµ corresponds to the identity
map on ιλ(Vλµ).

Note that the gluing conditions are necessary, in the sense that they hold automatically
in the case where Xλ are subsets of a set X, Vλµ = Xλ ∩Xµ, and φµλ is the identity map on
Vλµ = Vµλ.

(b) Suppose each Xλ is a topological space, each Vλµ ⊆ Xλ is open, and each φµλ is a
homeomorphism. Let Uλ = ι(Xλ) ⊆ X. Prove that in the topologies on Uλ and Uµ induced
by their identifications with Xλ, Xµ, the subset Uλ ∩ Uµ is open in both Uλ and Uµ, and
inherits the same topology as a subspace of each.

Deduce that X has a unique topology such that each Uλ is open and each ιλ : Xλ → Uλ is
a homeomorphism.

(c) Suppose further that on each Xλ we are given a sheaf Aλ of rings, and for each λ, µ an
isomorphism φ[µλ : Aµ|Vµλ → (φµλ)∗(Aλ|Vλµ), such that the gluing condition in (a) holds for

the ringed space isomorphisms (φµλ, φ
[
µλ). Let Fλ be the unique sheaf of rings on Uλ such

that ι−1λ Fλ = Aλ (this makes sense since ιλ is a homeomorphism of Xλ onto Uλ). Prove that
there are isomorphisms of sheaves of rings θµλ : Fλ|(Uλ ∩ Uµ)→ Fµ|(Uλ ∩ Uµ) which satisfy
the gluing condition for sheaves in (EGA 0, 3.1.3), namely for every three indices λ, µ, ν,
the restrictions θ′µλ, θ

′
µν , θ

′
νλ of θµλ, θµν , and θνλ to Uλ ∩ Uµ ∩ Uν satisfy θ′µλ = θ′µν ◦ θ′νλ.

(d) Prove (EGA 0, 3.1.3). That is, given a space X, open subsets Uλ which cover X,
and sheaves (of sets, abelian groups, or rings) Fλ on Uλ, together with isomorphisms θµλ
satisfying the gluing condition, there is a sheaf F on X and isomorphisms ηλ : Fλ → F|Uλ
such that for all λ, µ we have θµλ = (η′µ)−1 ◦ η′λ, where η′λ, η

′
µ are the restrictions of ηλ, ηµ to

Uλ ∩ Uµ.
Moreover, F and the ηλ are unique up to an isomorphism commuting with all the ηλ.

2. It follows from what we proved in class about Jacobson schemes and morphisms locally
of finite type that if K ⊆ L is a field extension, and L is finitely generated as a K algebra,
then L is finite algebraic over K. In this problem we’ll show that some of the theory of
Jacobson schemes follows, conversely, from this theorem on field extensions.

(a) Deduce from the aforementioned theorem that if X is a scheme locally of finite type
over a field K, then the closed points x ∈ X are precisely the points whose residue field k(x)
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is finite algebraic over K. For this you will also want to use the easy result that an integral
domain finite-dimensional over a field is itself a field.

(b) Deduce from (a) that if f : X → Y is a K-morphism between schemes locally of finite
type over K, then f sends closed points to closed points (in fact this holds if we only assume
that X is locally of finite type).

(c) Prove that if X is locally of finite type over K, then so is every closed, open, or locally
closed subscheme of X.

(d) Deduce from (b) and (c) that every non-empty locally closed subset of X contains a
closed point of X, hence that X is Jacobson.

Note in particular that (a) and (d) are sufficient to establish the equivalence between
reduced schemes locally of finite type over an algebraically closed field K and classical
algebraic varieties over K.

3. If A is a local ring with maximal ideal m and residue field k = A/m, then m/m2 is a
k module, that is, a vector space over k. If X is a scheme and x ∈ X, the Zariski tangent
space TxX to X at x is defined to be the dual space (m/m)∗, where A = OX,x.

(a) Let k be a field and define T = Spec(k[t]/(t2)), an affine scheme over k. For any
scheme X over k, the set of k-morphisms T → X is called the set of T -valued points of X
in the category of schemes over k, and denoted X(T )k. Prove that X(T )k is in canonical
bijection with data consisting of (i) a k-rational point x ∈ X, that is, a point such that the
field extension k ⊆ k(x) induced by the structure morphism X → Spec(k) is trivial, and (ii)
a vector in TxX. Hint: the underlying space of T has only one point.

(b) Let k be algebraically closed, so that the k-rational points of An
k = Spec(k[x1, . . . , xn]),

which are the same as its closed points, are identified with classical points in kn. Prove that
the Zariski tangent space of An

k at every closed point is canonically identified with the vector
space kn.

(c) Part (a) implies that if f : X → Y is a morphism of schemes over k, x ∈ X is a
k-rational point, and y = f(x), then f induces a canonical linear map dfx : TxX → TyY ,
called the differential of f at x. Prove that if X is a closed subvariety of An

k (that is, a
reduced closed subscheme V (I) = Spec(R/I), where I ⊆ R = k[x1, . . . , xn] is a radical
ideal), then the differential of the inclusion map X → An

k at any k-rational (i.e., closed)
point of X is injective, and identifies TxX with the subspace of kn consisting of vectors v
such the directional derivative ∂v(f) at x vanishes for all f ∈ I (note that derivatives of
polynomials make sense formally over any field).

4. Let k be a commutative ring. Let R be a polynomial ring over k in n2 variables xij,
1 ≤ i, j ≤ n. Thinking of the xij as the entries of an n×n matrix M , let d = det(M) and let

A be the localization Rd = R[1/d], so Spec(A) is the affine open subset An2

k \ V (d). Define
GLn = Spec(A).

(a) Prove that for any scheme T over k, the set GLn(T )k of k-morphisms T → GLn is
canonically identified with the set of invertible n× n matrices over OT (T ).



3

(b) Prove that there are unique morphisms m : GLn ×k GLn → GLn, e : Spec(k)→ GLn
and i : GLn → GLn so that for every k-scheme T , the maps GLn(T )k×GLn(T )k → GLn(T )k,
{point} → GLn(T )k, and GLn(T )k → GLn(T )k induced by m, e and i give the group law,
unit element, and inverse in the group of invertible n × n matrices over OT (T ). To do this
problem before we define products you can provisionally define GLn×k GLn to be Spec(B),
where B is the localization of a polynomial ring in two sets of n2 variables xij and yij, in
which we invert the determinants of the matrices of x variables and of y variables. Then you
should prove that k-morphisms T → Spec(B) correspond bijectively to GLn(T )k×GLn(T )k.

(c) Show that even in the simplest case, when k is a field, so Spec(k) has just one point,
and n = 1, so GL1 = Spec(k[x, x−1]), the morphism m does not define a group law on the
underlying set of the scheme GLn.

5. In class we showed, using the gluing construction of Pnk , that if k is a commutative
ring, then to any tuple (a0, . . . , an) ∈ kn such that the ai generate the unit ideal in k, we
can associate a k-morphism φ : Spec(k) → Pnk , or equivalently a k-valued point φ ∈ Pn(k)
of Pn = PnZ, and that φ depends only on the equivalence class of (a0, . . . , an) under scalar
multiplication by invertible elements of k.

(a) Prove that if k is a field, every φ ∈ Pn(k) is of this form, and this identifies Pn(k) with
the set of points (a0 : · · · : an) of classical projective space over k.

(b) Prove that if k is a local ring, every φ ∈ Pn(k) is of this form.

(c) Prove that if k = Z, every φ ∈ P1(Z) is of this form, and this identifies P1(Z) with
the set of pairs of relatively prime integers (m,n), up to sign. Show that this set is also
canonically identified with P1(Q); in fact the unique morphism Spec(Q)→ Spec(Z) induces
a bijection P1(Z)→ P1(Q).

(d)* Generalize part (c) to all n and any principal ideal domain R in the role of Z (with its
fraction field in the role of Q). Actually it’s true when R is a unique factorization domain,
but to prove that requires the theory of divisors and a better description of the functor of
points of Pn.

6. Prove that Spec(A) has exactly one point if and only if A is not the zero ring, and
every element of A is either invertible or nilpotent.

7. Let X be a disconnected scheme, that is, X is the disjoint union of two non-empty open
(and therefore closed) subschemes X1 and X2. Prove that the ring Γ(X,O) is the Cartesian
product Γ(X1,O)× Γ(X2,O). Conversely, prove that that if X is a scheme and Γ(X,O) is
a Cartesian product A1 × A2, non-trivial in the sense that neither ring Ai is the zero ring,
then X is disconnected.

8. Prove that to give a morphism X → Spec(Z× Z), where X is a scheme, is equivalent
to giving a decomposition X = X1 ∪ X2 of X into two disjoint (possibly empty) open
subschemes.
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9. Let k be any commutative ring. Prove that the open subset U = A2 \ V (x, y) in A2 =
Spec(k[x, y]) is not an affine scheme. Hint: first prove that restriction from O(A2) = k[x, y]
to O(U) is an isomorphism of rings.

10. As in (EGA I, 2.4.1), for any scheme X and point x ∈ X, there is a canonical
morphism f : Spec(OX,x) → X, obtained by composing the inclusion U → X of an affine
open neighborhood U = Spec(A) of x with the morphism Spec(OX,x) → U induced by the
canonical ring homomorphism A→ Apx = OX,x.

If p ∈ X is a point such that x ∈ {p}, then every open neighborhood of x contains p. Every
element of OX,x is by definition the germ sx of a section s ∈ OX(V ) for some neighborhood
V of x, and two sections s ∈ OX(V ), s′ ∈ OX(V ′) have the same germ if they coincide on
some smaller neighborhood W ⊆ V ∩ V ′. Since p belongs to every neighborhood of x, the
germ sp depends only on sx. This gives a canonical ring homomorphism OX,x → OX,p (for

x ∈ {p} in any ringed space X, not just schemes).

(a) Prove that f has the description given by (EGA I, 2.4.2). In more detail, let Z ⊆ X

be the subspace consisting of points p such that x ∈ {p}, and make Z a locally ringed space
by defining OZ = i−1OX , where i : Z ↪→ X is the inclusion. Then i becomes a morphism
of locally ringed spaces with i] : i−1OX → OZ the identity map. Since Z is the unique
open neighborhood of x in Z, the germ map OZ(Z) → OZ,x = OX,x is an isomorphism.
Then, since Z is a locally ringed space, the inverse isomorphism OX,x → OZ(Z) induces a
morphism j : Z → Spec(OX,x). Prove that j is an isomorphism, and that f = i◦j−1. Deduce
that f does not depend on the choice of U , is a homeomorphism of Spec(OX,x) onto Z, and

for every p ∈ Spec(OX,x), f ]p is an isomorphism from OX,p to (OX,x)p, where p = f(p). In

fact, the canonical ring homorphism OX,x → OX,p is the inverse of f ]p composed with the
localization homomorphism OX,x → (OX,x)p.

(b) Prove (EGA I, 2.4.4), that is, if A is a local ring with maximal ideal m, then every
morphism g : Spec(A) → X, where X is a scheme, factors uniquely through the canonical
morphism Spec(OX,x) → X, where x = g(m). Deduce that morphisms g : Spec(A) → X
are in canonical bijection with data consisting of a point x ∈ X together with a local ring
homomorphism OX,x → A.

(c) Deduce as a corollary (EGA I, 2.4.6) that if k is a field, morphisms Spec(k)→ X are
in canonical bijection with data consisting of a point x ∈ X and a field extension k(x) ↪→ k
(it is also easy to prove this directly, for any locally ringed space X).


