
Math 256 Homework Set 3

On this homework, assume that all (pre)sheaves take values in the category of sets, abelian
groups, or rings. More generally everything will hold for sheaves with values in a category
K which has all projective limits and filtered inductive limits.

1. Let X = {p} be a space with just one point. Show that the global section functor
Γ: S 7→ S(X) from sheaves (not presheaves!) on X to sets (or abelian groups, or rings)
is an equivalence of categories, that is, for every set A there exists a sheaf SA such that
SA(X) = A, and Γ induces an isomorphism from Hom(SA, SB) in the category of sheaves to
Hom(A,B) in the category of sets (or abelian groups, or rings).

More generally, the same holds for sheaves with values in any target category K which
has a terminal object E (that is, every object of K has a unique morphism to E).

2. Given a presheaf F on a space X, define F̂ to be the product of the sheaves (ix)∗Fx for
all x ∈ X, where ix is the inclusion of {x} in X, and we identify the stalk Fx of F with a
sheaf on {x} as in Problem 1.

(a) More explicitly, show that F̂ (U) =
∏

x∈U Fx and describe the restriction maps.

(b) Show that the map j : F → F̂ sending s ∈ F (U) to the element (sx)x∈U ∈ F̂ (U) given
by the germs sx = ρx(s) ∈ Fx is a homomorphism of presheaves.

(c) Show that F̂ is a sheaf. (More generally all direct images and products of sheaves are
sheaves.)

(d) Prove that F is a sheaf if and only if (i) the map j : F → F̂ is injective, and (ii)
the image j(F ) is locally determined, in the sense that for any open U and open covering

U =
⋃
α Uα, a section s ∈ F̂ (U) belongs to j(F )(U) if and only its restriction s|Uα belongs

to j(F )(Uα) for all α.

3. Let B be a base of open sets on X in the weak sense that every open subset of X is a
union of sets belonging to B (in EGA a base of open sets is also assumed closed under finite
intersections). Define a presheaf F on B, and its extension F ′ to a presheaf on X, as in
EGA (0, 3.2.1). The axiom (F0) in EGA (0, 3.2.2) only makes sense under the assumption
that B is closed under intersections, but we can replace it with:

(F1) For every U ∈ B, every covering U =
⋃
α Uα of U by sets Uα ∈ B, and

every covering Uα ∩Uβ =
⋃
γ Uα,β,γ of Uα ∩Uβ by sets Uα,β,γ ∈ B, F(U) is the

projective limit of the system formed by all the F (Uα) and F(Uα,β,γ) and all
restriction maps from F(Uα) or F(Uβ) to F(Uα,β,γ).

Prove that F ′ is a sheaf if and only if F satisfies axiom (F1). Hint: use Problem 2 (d).

4. Describe X = Spec(Z) in detail: list its points and its open subsets (or its closed
subsets), calculate OX(U) on each open set U and the stalk OX,x and residue field kx at
each point x, and specify the restriction, germ and evauation maps. Give a similarly detailed

description of the sheaf M̃ , and determine the support Supp(M̃) (the set of points x where
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M̃x 6= 0), for each of the following Z modules (that is, abelian groups): (a) M = Z/nZ, for
any integer n 6∈ {0,±1}; (b) M = Q.

5. Repeat Problem 4 with Z replaced by k[x], where k is a field, and in the last part
considering (a) M = k[x]/f(x), for any non-constant, non-zero polynomial f(x); (b) M =
k(x). What simplifications occur if k is algebraically closed?

6. Let I ⊆ R be an ideal and M a finitely generated R module. Prove the special case
in (EGA 0, 1.7.5): the support Supp(M/IM )̃ of the sheaf on Spec(R) associated to the
module M/IM is equal to V (I + annM) (or, if you prefer, prove the full statement about
Supp(M ⊗R N) in (EGA 0, 1.7.5) and deduce the special case). Give an example to show
that the assumption that M is finitely generated is necessary.

7. Let X be a topological space on which a group G acts by continuous automorphisms.
We say that G acts equivariantly on a sheaf F on X if we are given sheaf homomorphisms
σg : F → (g−1)∗F for all g ∈ G (so σg maps F(U) to F(g(U))), such that σ1 is the identity
and σgh = (h−1)∗(σg) ◦ σh for all g, h ∈ G. In other words, the G action on X extends to an
action on (X,F) in the category of pairs consisting of a space and a sheaf on it. If G acts on
another space Y , and f : X → Y is a continuous map commuting with the G actions, show
that G acts equivariantly on f∗F in a natural way.

8. Now for an interesting (I hope) application of the previous problem. Let X = Y =
C× = C \ {0}, with the usual Hausdorff topology, and let G = {1, τ} be the two-element
group acting on X by τ(z) = −z. Let G act trivially on Y . Let f : X = C× → C× = Y be
given by f(z) = z2. Let Z denote the constant sheaf on X such that Z(U) = Z for every
connected U .

(a) Show that there is a unique equivariant action of G on Z such that under the identifi-
cation of Z(X) with Z, στ acts on Z(X) as multiplication by −1.

(b) Since G acts trivially on Y , Problem 7 gives an action of G by sheaf automorphisms on
f∗Z. Let F ⊆ f∗Z be the subsheaf of G-invariant sections of f∗Z. Show that F is a locally
constant sheaf with stalks Z, but not a constant sheaf; in fact F(Y ) = {0}.

(c) Fix a point z ∈ Y , and let A be the skyscraper sheaf with stalk Z at z. Verify that
there is a surjective sheaf homomorphism F → A that sends s to its germ sz, or to zero
if s ∈ F(U) for z 6∈ U . This is an example of a surjective sheaf homorphism which is not
surjective on sections, since A(Y ) = Z.

(d) Let F be a locally constant sheaf on any space X, let z be a point of X, and let
p : [0, 1] → X, p(0) = p(1) = z represent an element of the fundamental group π1(X, z).
Then p−1F is a constant sheaf, so there are canonical identifications Fz ∼= (p−1F)0 ∼=
(p−1F)([0, 1]) ∼= (p−1F)0 ∼= Fz. Composing these gives an an automorphism σp of Fz,
and this is an action of π1(X, z) on Fz, called the monodromy action. Show that in the
example above, the locally constant sheaf F on Y = C× has non-trivial monodromy; in
particular a generator of the fundamental group acts as −1 on Fz.
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(e) If you used the Zariski topology on C× instead, you would get F = 0. Indeed, since C×
is irreducible, any locally constant sheaf is constant in the Zariski topology. So, even though
we constructed the covering f : X → Y purely algebraically, there is no locally constant
sheaf in the Zariski topology on Y that detects its monodromy.

It is possible to define a purely algebraic notion of “sheaf in the étale topology,” which
for complex algebraic varieties more closely resembles the notion of sheaf in the classical
topology, but also makes sense, for example, in characteristic p. Time permitting, we might
discuss this later in the course.

9. Let A = k[x1, x2, . . .]/(x
2
1, x

2
2, . . .) be a polynomial ring in infinitely many variables over

a field k, modulo the ideal generated by the squares of the variables. Show that A has a
unique prime ideal m = (x1, x2, . . .), but A is not Noetherian. In particular, Spec(A) being
a Noetherian space does not imply that A is a Noetherian ring.

10. Let A = k[x, y], where k is an algebraically closed field.

(a) Show that if two polynomials p(x, y), q(x, y) have no common factor, then the solution
set V (p, q) ⊆ k2 is finite.

(b) Deduce that every prime ideal of A is one of the following: (i) the zero ideal, (ii) a
maximal ideal (x−a, y− b) for some (a, b) ∈ k2, or (iii) a principal ideal (f) generated by an
irreducible polynomial f(x, y). For (ii), assume Hilbert’s Nullstellensatz: if an ideal I ⊆ A
is not the unit ideal, then V (I) ⊆ k2 is non-empty.

Note that (b) shows that Spec(A) consists of closed points in bijection with k2, together
with a generic point for each irreducible algebraic curve in k2, and a generic point for the
whole plane k2.

11. With A as in Problem 10, let f(x, y) ∈ A be an irreducible polynomial and B =
k[x, y]/(f).

(a) Show that the points of Spec(B) are (i) the generic point p = (0), and (ii) closed points
corresponding to points (a, b) on the curve f(x, y) = 0 in k2.

(b) Show that the closed sets in the the Zariski topology on X = Spec(B) are X itself, and
finite subsets of the closed points. In particular, the topology of Spec(B) does not depend
on f , up to homeomorphism, although in general Spec k[x, y]/(f) and Spec k[x, y]/(g) need
not be isomorphic as schemes.

12. Consider the case of Problem 11 where f(x, y) has the form y − g(x), so the curve is
the graph of a function g(x). Show that in this case, Spec(B) is isomorphic to the affine line
Spec(k[x]).


