MATH 256 HOMEWORK SET 1

1. In class we discussed the parametrization of the curve $C = V(y^2 - x^3)$ via the morphism $\phi \colon \mathbb{A}^1 \to C$ sending the point (t) to (t^2, t^3) , and showed that ϕ is bijective but not an isomorphism. Now prove that the subring $k[t^2, t^3]$ of k[t] is not isomorphic to a polynomial ring over k, and explain how this shows that C is not isomorphic to \mathbb{A}^1 as an affine variety (by any morphism).

2. Let k be a field of characteristic not equal to 2. Show that every line of the form V(y - t(x + 1)) in k^2 , where $t \in k$ and $t^2 \neq -1$, meets the conic $V(x^2 + y^2 - 1)$ in exactly two points: (-1, 0) and another point (a(t), b(t)). Solve for a(t) and b(t), and show that this gives a parametrization of the solutions of $x^2 + y^2 = 1$ in k^2 , omitting (-1, 0), by the open subset $k \setminus \{\pm \sqrt{-1}\}$ of k, even if k is not assumed to be algebraically closed. Deduce that every Pythagorean triple of coprime positive integers $a^2 + b^2 = c^2$ has the form $\{2pq, (p+q)(p-q), p^2 + q^2\}$ for some integers p > q > 0.

3. Extend the parametrization in Problem 2 to a morphism from \mathbb{P}^1 to the projective closure C of $V(x^2 + y^2 - 1)$, and show that it is an isomorphism. Assuming k algebraically closed, what 3 points on C correspond to the points $\pm \sqrt{-1}$ and ∞ on \mathbb{P}^1 which one omits to get the morphism with domain $\mathbb{A}^1(k) \setminus \{\pm \sqrt{-1}\}$ in Problem 2?

4. (a) Show that \mathbb{P}^9 parametrizes the set of all cubic curves in \mathbb{P}^2 , and find the equation of the universal family $H \subseteq \mathbb{P}^9 \times \mathbb{P}^2$ whose fiber over a point of \mathbb{P}^9 is the curve parametrized by that point.

(b*) Let Y be the locus in \mathbb{P}^9 which parametrizes cubic curves that decompose into a line and a conic (including as degenerate cases 3 lines, a line and a double line, or a triple line). Show that Y is a closed subvariety of \mathbb{P}^9 and find its equation(s).

5. We can regard $SL_2(k)$ as the affine variety V(ad - bc - 1) in the space $\mathbb{A}^4(k)$ of 2×2 matrices $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$. Show that the group law in $SL_2(k)$ and the map sending an element to its inverse are morphisms of algebraic varieties.

6. The group $SL_2(k)$ acts on the vector space k^2 , and therefore on $\mathbb{P}^1(k)$, which we can identify with the set of one-dimensional subspaces of k^2 : explicitly, the action sends $(z:w) \in \mathbb{P}^1$ to (z':w'), where

$$\begin{pmatrix} z'\\w' \end{pmatrix} = \begin{pmatrix} a & b\\c & d \end{pmatrix} \begin{pmatrix} z\\w \end{pmatrix}.$$

(a) Show that on the affine line $\{(z : 1)\} \subset \mathbb{P}^1$, this action is the fractional linear transformation sending (z) to (az + b)/(cz + d), for cz + d = 0, extending to all of \mathbb{P}^1 by sending (-d:c) to (1:0) and (1:0) to (a:c).

(b) Show that the action of any fixed matrix in $SL_2(k)$ is a morphism from \mathbb{P}^1 to \mathbb{P}^1 , by covering \mathbb{P}^1 with affine open sets on which it is given by a polynomial map (you will need different open coverings on \mathbb{P}^1 regarded as the domain and codomain of the map).

(c) Show that the action of the whole group is a morphism $SL_2(k) \times \mathbb{P}^1 \to \mathbb{P}^1$.