
NOTES ON SHEAF COHOMOLOGY FOR SCHEMES

MARK HAIMAN

1. Čech resolutions

Let M be a sheaf of abelian groups on a topological space X. Given U ⊆ X open, we
write jU : U → X for the inclusion. Then we have a canonical functorial sheaf homomorphism
M → (jU)∗ j

−1
U M , the co-unit of the adjunction between the functors j−1U and (jU)∗. More

explicitly, j−1U M = M |U , so for any open V ⊆ X we have ((jU)∗ j
−1
U M)(V ) = (M |U)(U ∩

V ) = M(U ∩ V ), and M(V )→ ((jU)∗ j
−1
U M)(V ) is just restriction ρVU∩V .

The canonical homomorphism M → (jU)∗ j
−1
U M restricts to an isomorphism on U and

hence on any V ⊆ U . Let j−1V (jU)∗ j
−1
U M → j−1V M be its inverse on V . By the adjunction

between j−1V and (jV )∗, this corresponds to a homomorphism (jU)∗ j
−1
U M → (jV )∗ j

−1
V M . Put

another way, the co-unit 1 → (jV )∗ j
−1
V applied to the sheaf (jU)∗ j

−1
U M gives a canonical

homomorphism (jU)∗ j
−1
U M → (jV )∗ j

−1
V (jU)∗ j

−1
U M , and we can identify j−1V (jU)∗ j

−1
U M with

j−1V M to get (jU)∗ j
−1
U M → (jV )∗ j

−1
V M . In terms of sections we have ((jU)∗ j

−1
U M)(W ) =

M(U ∩W ), ((jV )∗ j
−1
V M)(W ) = M(V ∩W ), and the homomorphism ((jU)∗ j

−1
U M)(W ) →

((jV )∗ j
−1
V (jU)∗ j

−1
U M)(W ) is given by restriction ρU∩WV ∩W .

In particular, for open sets U ′′ ⊆ U ′ ⊆ U we see that the composite of canonical maps
(jU)∗ j

−1
U M → (jU ′)∗ j

−1
U ′ M → (jU ′′)∗ j

−1
U ′′M is equal to the canonical map (jU)∗ j

−1
U M →

(jU ′′)∗ j
−1
U ′′M .

Lemma 1.1. For any two open sets U and V there is a canonical identification

(1) (jU∩V )∗ j
−1
U∩VM = (jU)∗ j

−1
U (jV )∗ j

−1
V M

compatible with the canonical homomorphisms described above.

Proof. On any open setW the set of sections of the sheaf on either side in (1) is M(U∩V ∩W ),
so the two sheaves are equal. Even without being precise about what ‘compatible’ means, it
is clear from this description that all reasonable compatibilities must hold. �

Now let F = (Uα)α∈I be a collection of open subsets of X. For each finite subset I ⊆ I of
the index set, we put UI =

⋂
α∈I Uα; in particular, U∅ = X. We build a complex of sheaves

C•(M,F), zero in negative degrees, with

(2) Cn(M,F) =
∏

I⊆I, |I|=n

(jUI )∗ j
−1
UI
M
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for n ≥ 0. The differentials in C•(M,F) are constructed as follows. For each I ⊆ J ⊆ I, with
|I| = n and |J | = n+1, we have UJ ⊆ UI , and we get a map pI,J : Cn(M,F)→ (jUJ )∗ j

−1
UJ
M by

composing the canonical map (jUI )∗ j
−1
UI
M → (jUJ )∗ j

−1
UJ
M with the projection Cn(M,F)→

(jUI )∗ j
−1
UI
M on a component of the product in (2). To determine signs, we fix a total ordering

of the index set I. For each J ⊆ I of size n + 1, let J = {α0, . . . , αn} with the elements
listed in order, and define qJ : Cn(M,F)→ (jUJ )∗ j

−1
UJ
M by qJ =

∑
i(−1)ipJ\{αi},J . Finally we

define dn : Cn(M,F)→ Cn+1(M,F) by taking its projection on the component (jUJ )∗ j
−1
UJ
M

of Cn+1(M,F) to be qJ . It is an easy exercise to see that the sign rule in the definition of qJ
makes dn+1 ◦ dn = 0.

Definition 1.2. The complex C•(M,F), d• is the Čech complex of M with respect to the
(ordered) collection F .

Up to isomorphism, the Čech complex does not depend on the chosen ordering of the index
set I. More precisely, given two different orderings, there is an isomorphism between the cor-
responding versions of the Čech complex, given on each term Cn(M,F) by an automorphism
which is multiplication by ±1 on each component.

Lemma 1.3. Fix an index α ∈ I and define I ′ = I\{α} and F ′ = (Uβ)β∈I′ Then C•(M,F) is
isomorphic to the −1 shift of the mapping cone of the canonical homomorphism of complexes
of sheaves

(3) C•(M,F ′)→ (jUα)∗ j
−1
Uα
C•(M,F ′).

Proof. The essential point is the identification (jUα)∗ j
−1
Uα

(jV )∗ j
−1
V M = (jUα∩V )∗ j

−1
Uα∩VM for

any open set V given by Lemma 1.1. Using this, we can decompose Cn(M,F) as Cn(M,F ′)⊕
(jUα)∗ j

−1
Uα
Cn−1(M,F ′), in which the first term is the product of the factors (jUI )∗ j

−1
UI
M for

α 6∈ I and the second term is identified with the product of the factors for α ∈ I. Here we are
also using the fact that the functors (jUα)∗ and j−1Uα commute with products: (jUα)∗ because

any direct image commutes with products, and j−1Uα because it is same as the restriction
functor M 7→M |Uα.

This decomposition identifies each term Cn(M,F) with the (n− 1)-st term of the cone on
the map in (3). Matching up the differentials is a simple exercise in sign bookkeeping. �

For I finite, Lemma 1.3 implies that we could construct C•(M,F) (up to shift) as an
iterated mapping cone. However, we do not want to take that as a definition since it only
applies in the finite case.

By definition, jU∅ is the identity map 1X , so the 0-th term of the Čech complex is just
C0(M,F) = M . If F is a covering of X, that is, if X =

⋃
α∈I Uα, then, according to the next

result, the rest of the complex is a resolution of M .

Corollary 1.4. If F is a covering of X, then the complex

(4) C•(M,F) = (0→M → C1(M,F)→ · · · )
is acyclic.
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Proof. More generally we claim that for any F , the Čech complex is acyclic on V =
⋃
α∈I Uα.

Equivalently, the complex of stalks at x is acyclic for all x ∈ V . Choosing some α such that
x ∈ Uα, the homomorphism in (3) is an isomorphism on Uα and in particular on stalks at x.
So the complex of stalks is the mapping cone of an isomorphism, hence acyclic. �

Remark 1.5. Let V =
⋃
α∈I Uα and let Ĉ•(M,F) denote the shifted Čech complex

C•(M,F)[1] with its degree −1 term C0(M,F) = M deleted. The proof of Corollary 1.4

shows that M |V is quasi-isomorphic to Ĉ•(M,F)|V . Since Ĉ•(M,F)|V is zero in negative

degrees, and ΓV is a left exact functor, we have H0ΓV Ĉ•(M,F) = M(V ). Interpreting the
left hand side in terms of sections of M on the covering F of V , this identity simply expresses
the fact that M satisfies the sheaf axiom.

If M has additional structure compatible with direct images, products, and restriction to
open sets, then so does the Čech complex C•(M,F). In particular, if X is equipped with a
sheaf of rings OX and M is a sheaf of OX modules, then C•(M,F) is a complex of sheaves of
OX modules. From now on we will assume that M is a sheaf of modules for some specified
sheaf of rings on X. The Čech complex of a sheaf of abelian groups is the special case of
this in which the sheaf of rings is the constant sheaf Z with stalks Z.

2. Čech acyclic sheaves

Let B be a base of open neighborhoods on X which is closed under finite intersections; in
particular, we require X ∈ B as the ‘void intersection.’

Definition 2.1. A sheaf of OX modules M on X is B-acyclic if the complex ΓUC•(M,F) is
acyclic for every U ∈ B and every covering F of U by subsets U ⊇ Uα ∈ B.

Lemma 2.2. Flasque sheave are B-acyclic.

Proof. Let F be a cover in B of U ∈ B. Since flasque sheaves are preserved by restriction
to open sets, direct images, and products, C•(M,F)|U is a complex of flasque sheaves on
U , and it is acyclic by Corollary 1.4. Since flasque resolutions compute RΓ, it follows that
ΓUC•(M,F) is acyclic. �

Corollary 2.3. Every sheaf of OX modules is a subsheaf of a B-acyclic sheaf.

In Remark 1.5 we noticed that for
⋃
F = V , we have H0ΓV Ĉ(A,F) = A(V ) and that this

is really just a formulation of the sheaf axiom. The argument we will use in the proof of the

next lemma shows that H1ΓV Ĉ(A,F) also has a fundamental sheaf-theoretic interpretation:
it contains the ‘obstruction’ to lifting a section of a quotient sheaf M/A to a section of M
on V .

Lemma 2.4. If 0→ A→M → N → 0 is an exact sequence of sheaves and A is B-acyclic,
then 0 → A(U) → M(U) → N(U) → 0 is exact for all U ∈ B. In particular, this holds for
U = X.
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Proof. Since ΓU is left exact we are to show that M(U) → N(U) is surjective. Let s ∈
N(U). We need to lift s to a section s ∈ M(U). By the definition of epimorphism of
sheaves, this can be done locally, that is, we can cover U by open subsets Uα and find lifts
sα ∈ M(Uα) of s|Uα. Since B is a base of the topology on X, we can do this with each
Uα ∈ B. Let F be the collection of these Uα. For all α and β, we have (sα− sβ)|(Uα ∩Uβ) ∈
A(Uα ∩ Uβ) = ΓU(jUα∩Uβ)∗ j

−1
Uα∩UβA, since both sα|(Uα ∩ Uβ) and sβ|(Uα ∩ Uβ) are lifts of

s|(Uα ∩ Uβ) ∈ N(Uα ∩ Uβ). This system of sections of A on the various Uα ∩ Uβ defines an
element of ΓUC2(A,F). Furthermore, this element is a cycle, a fact which reduces to the
identity sα − sγ = (sα − sβ) + (sβ − sγ) on Uα ∩ Uβ ∩ Uγ. By hypothesis, ΓUC•(A,F) is
acyclic, so our cycle is a boundary. That is, there exist sections tα ∈ A(Uα) such that on
each Uα ∩ Uβ we have sα − sβ = tα − tβ, or equivalently sα − tα = sβ − tβ.

Since the tα are sections of A, the sections sα − tα ∈ M(Uα) are again lifts of s|Uα. But
now they agree on intersections Uα ∩ Uβ, so by the sheaf axiom, they are the restrictions
s|Uα of a secton s ∈M(U), which is our desired lift of s. �

Lemma 2.5. If A is B-acyclic and U ∈ B, then (jU)∗ j
−1
U A is B-acyclic.

Proof. This follows easily from the canonical identifications ΓV (jU)∗ j
−1
U A = ΓV (jU∩V )∗ j

−1
U∩VA

and the fact that B is closed under finite intersections. �

To make sense of the statement of the next corollary, note that for fixed F , the Čech
complex C•(M,F) is functorial in M .

Corollary 2.6. Let F be a cover in B of U ∈ B. If 0→ A→ M → N → 0 is exact and A
is B-acyclic, then the sequence of complexes

(5) 0→ ΓV C•(A,F)→ ΓV C•(M,F)→ ΓV C•(N,F)→ 0

is exact for every V ∈ B.

Proof. We are to show that 0 → ΓV Cn(A,F) → ΓV Cn(M,F) → ΓV Cn(N,F) → 0 is exact
for all n. Since ΓV commutes with products, this reduces to proving exactness of 0 →
ΓV (jUI )∗ j

−1
UI
A→ ΓV (jUI )∗ j

−1
UI
M → ΓV (jUI )∗ j

−1
UI
N → 0 for the open sets UI in the definition

of C(−,F). Since B is closed under finite intersections, we have UI ∈ B. The result now
follows from Lemmas 2.4 and 2.5. �

Remark 2.7. Since B is a base of the topology, Corollary 2.6 implies that 0→ C•(A,F)→
C•(M,F)→ C•(N,F)→ 0 is an exact sequence of complexes of sheaves. This statement is
weaker than (5), however, since ΓV is not an exact functor.

Corollary 2.8. If 0→ A→ B → N → 0 is exact and both A and B are B-acyclic, then N
is B-acyclic.

Proof. The hypothesis is that for every cover F in B of some U ∈ B, the first two terms in
(5) are acyclic complexes for V = U . The conclusion is that the same holds for the third
term. �
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Now recall from Proposition 5.6 in the Notes on Derived Categories and Derived Functors,
that a sufficient condition for resolutions in a class of sheaves A to compute the derived
functor RF of a left exact functor F on D+(OX-Mod) are: (i) every sheaf M of OX modules
is a subsheaf of a sheaf A ∈ A; (ii) A is closed under finite direct sums, and if 0 → A →
B → N → 0 is exact and A,B ∈ A, then N ∈ A; and (iii) the functor F is exact on all exact
sequences 0→ A→M → N → 0 with A ∈ A.

In Corollary 2.3, Lemma 2.4 and Corollary 2.8 we have shown that the class A of B-acyclic
sheaves has these properties with respect to the global section functor, and more generally
with respect to the functor of sections ΓU for all U ∈ B. This proves the following.

Proposition 2.9. The B-acyclic sheaves are acyclic for the global section functor ΓX and
more generally for the functor of sections ΓU for U ∈ B. In particular, the derived functors
RΓX and RΓU for U ∈ B can be calculated using B-acyclic resolutions.

3. Finiteness

In §2 the space X and base B were arbitrary. We now explore to what degree the theory
can be improved under the following extra assumption.

(C) Every member of B, in particular X itself, is quasi-compact.

Assumption (C) implies that every cover F in B of an open set U ∈ B has a finite subcover
F ′ ⊆ F . Conversely, since B is a base of the topology, this condition implies (C).

In the presence of (C) we study a class of sheaves defined by a weaker condition than 2.1.

Definition 3.1. A sheaf of OX modules M on X is finitely B-acyclic if the complex
ΓUC•(M,F) is acyclic for every U ∈ B and every finite covering F of U by subsets
U ⊇ Uα ∈ B.

Of course, of course B-acyclic sheaves are finitely B-acyclic, so Lemma 2.2 immediately
implies:

Corollary 3.2. Flasque sheaves are finitely B-acyclic.

Corollary 3.3. Every sheaf of OX modules is a subsheaf of a finitely B-acyclic sheaf.

Assuming (C), we can choose the local lifts sα in the proof of Lemma 2.4 on a finite covering
F of U in B. Then the proof goes through assuming only that A is finitely B-acyclic, to give
the following result.

Lemma 3.4. Assume (C) holds. If 0→ A→ M → N → 0 is an exact sequence of sheaves
and A is finitely B-acyclic, then 0 → A(U) → M(U) → N(U) → 0 is exact for all U ∈ B.
In particular, this holds for U = X.

The same reasoning as in the proof of Lemma 2.5 also proves the finite version, and the
proof of Corollary 2.6 applies verbatim with Lemmas 3.4 and 3.5 in place of 2.4 and 2.5.

Lemma 3.5. If A is finitely B-acyclic and U ∈ B, then (jU)∗ j
−1
U A is finitely B-acyclic.
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Corollary 3.6. Assume (C) holds. Let F be a finite cover in B of U ∈ B. If 0 → A →
M → N → 0 is exact and A is finitely B-acyclic, then the sequence of complexes

(6) 0→ ΓV C•(A,F)→ ΓV C•(M,F)→ ΓV C•(N,F)→ 0

is exact for every V ∈ B.

Corollary 3.7. Assume (C) holds. If 0 → A → B → N → 0 is exact and both A and B
are B-acyclic, then N is B-acyclic.

Proof. Same as the proof of Corollary 2.8, but considering only finite covers. �

Corollary 3.3, Lemma 3.4 and Corollary 3.7 now allow us to deduce the finite version of
Proposition 2.9.

Proposition 3.8. Assume (C) holds. The finitely B-acyclic sheaves are acyclic for the
global section functor ΓX and more generally for the functor of sections ΓU for U ∈ B. In
particular, the derived functors RΓX and RΓU for U ∈ B can be calculated using finitely
B-acyclic resolutions.

4. Sheaf cohomology on affine schemes

In this section we will prove the following fundamental theorem.

Theorem 4.1. Every quasi-coherent sheaf on an affine scheme X = Spec(R) is acyclic for
the global section functor Γ.

Before turning to the proof, let’s try to understand where this theorem fits in with our
other knowledge about affine schemes. Recall that if X = Spec(R), we have an equivalence
of categories between R modules and quasi-coherent sheaves on X, given in one direction

by the construction of the sheaf M̃ associated to an R module M and in the other by Γ.
Hence Γ is an exact functor on the category of quasi-coherent sheaves. At first sight Theorem
4.1 might seem to be merely a restatement of this fact. What the latter actually means,
however, is that RΓ = Γ as a functor on the derived category D(Qco(X)) of the category of
quasi-coherent sheaves on X. Theorem 4.1 is the stronger statement that the derived functor
RΓ on the derived category of all sheaves of OX modules, or indeed on the derived category
of all sheaves of abelian groups, has the property that RΓQ = ΓQ for Q a quasi-coherent
OX module. In this context, the definition of RΓ is a purely topological one, in which the
quasi-coherent sheaves play no special role a priori.

Nevertheless, since we mainly care about quasi-coherent sheaves, why not simply work with
D(Qco(X)) and avoid the need for Theorem 4.1? The answer is that in general the derived
category D(OX-Mod) provides a better context for sheaf cohomology than D(Qco(X)),
which has various shortcomings, among them the lack of enough injective or flasque objects
in Qco(X), and the fact that direct image functors f∗ need not preserve quasi-coherent
sheaves.
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Proof of Theorem 4.1. Consider the base B for the topology on X consisting of open sets
Xf = X \ V (f). It is closed under intersections since Xf ∩Xg = Xfg. Since Xf is homeo-
morphic to Spec(Rf ), it is quasi-compact, so B has property (C) from §3.

Every quasi-coherent sheaf M on X is isomorphic to M̃ , where M =M(X). By Propo-

sition 3.8, it suffices to prove that M̃ is finitely B-acyclic for every R module M . Since
the members of B are themselves affine schemes, we need only consider finite covers in B of
U = X. That is, we are given finitely many elements fi ∈ R which generate the unit ideal, so

the Ui = Xfi cover Spec(R). For this cover F , we are to prove that ΓXC•(M̃,F) is acyclic.

Now, the products in the definition (2) of Cn(M̃,F) are finite, so they are direct sums.

Consider a summand (jUI )∗j
−1
UI
M̃ , in which UI = Xg, with g =

∏
i∈I fi. Then j−1UI M̃ = M̃g

as a sheaf on Xg = Spec(Rg), and its direct image under the morphism of affine schemes

jUI : Xg ↪→ X is (jUI )∗j
−1
UI
M̃ = M̃g, where we regard Mg as an R module. This shows that

C•(M̃,F) is a complex of quasi-coherent sheaves. It is acyclic by Corollary 1.4. Since ΓX is

exact on quasi-coherent sheaves, ΓXC•(M̃,F) is acyclic. �

Corollary 4.2. Let f : X → Y be an affine morphism. If M is a quasi-coherent sheaf of
OX modules, then Rf∗M = f∗M .

Proof. Theorem 4.1 implies that M satisfies the hypothesis of Proposition 5.12 in the Notes
on Derived Categories and Derived Functors, with B the set of all open affine subsets of
Y . �

Lemma 4.3. The derived functor RΓX for sheaves of OX modules on any ringed space X
commutes with arbitrary products.

Proof. Products of injective objects in any abelian category A are injective. We can therefore
compute RΓX(

∏
αMα) by taking an injective resolution M →

qis
I•α of each Mα and applying

ΓX to
∏

α I
•
α. Since ΓX commutes with products, the result coincides with

∏
αRΓ(Mα). �

Remark 4.4. The proof shows that if F is any left exact functor which commutes with
products, then so does RF .

Corollary 4.5. Any product of quasi-coherent sheaves on an affine scheme is acyclic for the
global sections functor.

For any collection (fα)α∈I of elements fα ∈ R, the open sets F = (Xfα) cover U =

X \V ((fα)). If M is an R module, then C•(M, (fα)) =
def

ΓXC•(M̃,F) is the ‘local cohomology

complex’ with n-th term

(7) Cn(M, (fα)) =
∏

I⊆I, |I|=n

MfI ,

where fI =
∏

α∈I fα. The differentials are constructed from projections on the factors and
the canonical homomorphisms MfJ →MfI for J ⊆ I, with signs depending on a chosen total
ordering of I in the same way as in Definition 1.2.
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Given an index α ∈ I, let I ′ = I \ {α} and (fβ)′ = (fβ)β∈I′ . As in Lemma 1.3, the local
cohomology complex is the −1 shift of the mapping cone of a homomorphism

(8) C•(M, (fβ)′)→ C•(Mfα , (fβ)′).

However, if I is infinite, (8) does not reduce to an isomorphism upon localizing at p ∈ Xfα ,
because localization does not commute with infinite products.

It is nevertheless true that if the fα generate the unit ideal, the complex C•(M, (fα))

is acyclic, even in the infinite case. In other words, the quasi-coherent sheaf M̃ is in fact

B-acyclic and not just finitely B-acyclic. This follows from Corollary 4.5, since C•(M̃,F) is
a complex of products of quasi-coherent sheaves.

5. Čech cohomology

Let X be a scheme and F = (Uα)α∈I a covering of X by open affine subschemes Uα.
Suppose that for every finite, non-empty I ⊆ I, the intersection UI =

⋂
α∈I Uα is affine. In

particular, this condition holds automatically if X is separated, since the intersection of any
two affines in X is then affine.

Let M be a quasi-coherent sheaf of OX modules. As in Remark 1.5, define Ĉ•(M,F) to
be the truncation of C•(M,F)[1] to terms in non-negative degree, that is, we drop the term
M in degree −1.

Theorem 5.1. Under the assumptions above,

(9) RΓ(M) ∼= ΓĈ•(M,F).

In particular, H i(X,M) =
def
RiΓ(M) is the i-th cohomology of the complex ΓĈ•(M,F).

Remark 5.2. We can describe the complex ΓĈ•(M,F) explicitly. For each non-empty finite

subset I ⊆ I, UI is an affine scheme Spec(RI), M(UI) is an RI module, and ΓĈn(M,F) is
the product of the M(UI) for all I of cardinality n + 1. Of course it is not always easy to
calculate the cohomology of a complex even if one has a fully explicit description of its terms
and differentials.

Proof. By Corollary 1.4, the complex Ĉ•(M,F) is quasi-isomorphic to M , so it is enough

to show that each Ĉn(M,F) = Cn+1(M,F) is acyclic for Γ. By Lemma 4.3, this reduces to
each (jUI )∗j

−1
UI
M being acyclic for Γ. Since UI ∩ Uα is affine for all α ∈ I, jUI is an affine

morphism. Hence (jUI )∗j
−1
UI
M = R(jUI )∗j

−1
UI
M , by Corollary 4.2. Then RΓ(jUI )∗j

−1
UI
M =

RΓR(jUI )∗j
−1
UI
M = RΓ(UI ,M |UI) by Corollary 5.11 in the Notes on Derived Categories and

Derived Functors. Finally, RΓ(UI ,M |UI) = Γ(UI ,M |UI) by Theorem 4.1, since UI is affine.
This shows that RiΓ(jUI )∗j

−1
UI
M = 0 for i > 0, that is, (jUI )∗j

−1
UI
M is acyclic for Γ. �

Corollary 5.3. Under the same assumptions as in Theorem 5.1, except with U =
⋃
α∈I Uα

not necessarily equal to X, we have

(10) RΓ(U,M) ∼= ΓĈ•(M,F).
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Proof. Since UI ⊆ U for all non-empty I ⊆ I, we have ΓX(jUI )∗j
−1
UI
M = ΓU(jUI )∗j

−1
UI
M .

Since ΓX and ΓU commute with products, it follows that ΓX Ĉ•(M,F) = ΓU Ĉ•(M,F). Then
the result follows from Theorem 5.1 applied to U instead of X. �

As a particular case of Corollary 5.3, suppose X = Spec(R) is affine and U = X \ V (a) is
any open subset. If (fα)α∈I generate the ideal a, then the open sets Uα = Xfα form a covering

of U satisying the hypotheses. Given any R module M , we can therefore calculate RΓ(U, M̃)
as a truncation of the shifted local cohomology complex C•(M, (fα))[1]. In particular, up to
isomorphism in the derived category of R modules, this complex depends only on M and a,
and not on the choice of generators fα.


