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1. Basic concepts

Definition 1.1. An additive category is a categoryA in which Hom(A,B) is an abelian group
for all objects A, B, composition of arrows is bilinear, and A has finite direct sums and a
zero object. An abelian category is an additive category in which every arrow f has a kernel,
cokernel, image and coimage, and the canonical map coim(f)→ im(f) is an isomorphism.

The abelian categories of interest to us will be the category of modules over a ring (includ-
ing the category of abelian groups, as Z-modules), the category of sheaves of OX-modules
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on a ringed space X, and some of their abelian subcategories, such as the category of quasi-
coherent OX-modules. In these ‘concrete’ abelian categories, the objects are sets and it is
convenient to formulate arguments in terms of their elements (sections on open sets and
germs in stalks, in the case of sheaves). Arguments in terms of elements can also be justified
in abstract abelian categories by associating to an object A the abelian groups Hom(T,A)
for various objects T . One thinks of arrows T → A as ‘T -valued elements’ of A, just as in
the category of schemes we think of morphisms T → X as T -valued points of X.

Definition 1.2. A complex in an abelian category A is a sequence A• of objects and maps
(called differentials)

· · · d
−1

→ A0 d0→ A1 d1→ A2 d2→ · · ·

such that di+1 ◦ di = 0 for all i. A homomorphism f : A• → B• of complexes consists of
maps f i : Ai → Bi commuting with the differentials. The complexes in A form an abelian
category C(A). The object H i(A•) = ker(di)/ im(di−1) is the i-th cohomology of A•. I’ll
stick to cohomology indexing. It is also conventional sometimes to use “homology” indexing
defined by Ai = A−i, Hi(A•) = H−i(A•).

The shift A[n]• of A• is the complex with terms A[n]i = Ai+n and differentials diA[n] =

(−1)ndi+nA . If f : A• → B• is a homomorphism of complexes, we define f [n] : A[n]• → B[n]•
by f [n]i = f i+n. This makes the shift a functor from C(A) to itself.

The general principle governing sign rules is that all constructions involving complexes
should be ‘graded-commutative,’ meaning that homogeneous operators s, t of degrees p, q
should satisfy ts = (−1)pq st. In the present case, the shift has degree n and the differentials
have degree 1, so shift and differentials should commute up to a sign (−1)n, which explains
the definition diA[n] = (−1)ndi+nA . A homomorphism f , by contrast, has degree zero, so no

sign appears in the definition f [n]i = f i+n.
An object A of A can be identified with the complex which is A in degree 0 and zero in all

other degrees. This makes A a full subcategory of C(A). The shift A[n] is then the complex
which is A in degree −n.

Definition 1.3. A homomorphism of complexes f : A• → B• is a quasi-isomorphism (“qis”

for short) if f induces isomorphisms H i(A•)
'→ H i(B•) for all i. A complex is quasi-

isomorphic to zero if and only if H i(A•) = 0 for all i, that is, if A• is acyclic.

Definition 1.4. The mapping cone of a homomorphism f : A• → B• is the complex C(f)
with terms C(f)n = An+1 ⊕ Bn (the same as A[1] ⊕ B), and differentials dn(a, b) =
(−dn+1

A (a), fn+1(a) + dnB(b)).
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Pictorially, C(f) looks like this:

→ A0
−d0A→ A1

−d1A→ A2 →
↘
f−1

⊕ ↘
f0

⊕ ↘
f1

⊕ ↘
f2

→ B−1 →
d−1
B

B0 →
d0B

B1 →

(−1) (0) (1)

,

displayed so that the columns are the terms of C(f). You can verify immediately that it is
in fact a complex.

Proposition 1.5. (i) C(f) is functorial in the triple A
f→ B.

(ii) There is a canonical exact sequence of complexes

0→ B
i→ C(f)

p→ A[1]→ 0.

(iii) Let K = ker(f), Q = coker(f). The canonical maps K ↪→ A and B → Q factor
through the maps i, p in (ii), as

K
k
↪→ C(f)[−1]

p[−1]−→ A, B
i→ C(f)

q→ Q.

(iv) If f is injective, then q : C(f)
'→
qis
Q is a quasi-isomorphism.

(v) If f is surjective, then k[1] : K[1]
'→
qis
C(f) is a quasi-isomorphism.

(vi) If f is bijective, then C(f) is acyclic.
(vii) For each i, the exact sequence in (ii) induces an exact sequence

H i(B)→ H i(C(f))→ H i+1(A).

Proof. Exercise. �

Definition 1.6. A homomorphism of complexes f : A• → B• is null-homotopic, written
f ∼ 0, if there exist maps si : Ai → Bi−1 such that f i = di−1B si + si+1diA for all i. Two
homomorphisms f , g are homotopic, written f ∼ g, if f − g is null-homotopic. If f is
null-homotopic, then so is every h ◦ f and f ◦ j. Hence there is a well defined homotopy
category K(A) whose objects are complexes, and whose arrows are homotopy classes of
homomorphisms in C(A).

Remark 1.7. There is a complex Hom•(A•, B•) with n-th term

Homn(A•, B•) =
∏
j

Hom(Aj, Bj+n),

and differentials defined as follows: given an element (φj) of Homn(A•, B•), where φj : Aj →
Bj+n are arrows in A, dn(φj) is the element of Homn+1(A•, B•) whose j-th component is
the arrow (dj+nB φj − (−1)nφj+1djA) : Aj → Bj+n+1. An element f ∈ Hom0(A•, B•), given
by arrows f j : Aj → Bj, is a cycle (f ∈ ker(d0)) if and only if f is a homomorphism of
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complexes, and f is a boundary (f ∈ im(d−1)) if and only if f is null-homotopic. Thus
HomK(A)(A

•, B•) ∼= H0(Hom•(A•, B•)).

Proposition 1.8. The following properties of a homomorphism f : A → B in C(A) are
equivalent:

(a) f ∼ 0.
(b) f factors through the canonical map i : A→ C(1A) given by 1.5(ii) for 1A.
(c) f factors through the canonical map p[−1] : C(1B)[−1]→ B given by 1.5(ii) for 1B.
(d) The exact sequence 1.5(ii) for f splits.

Proof. Exercise. �

Corollary 1.9. Homotopic maps f ∼ g induce the same maps on cohomology. In particular,
the cohomology functors K(A)→ A, A 7→ H i(A) are well-defined.

Proof. A null-homotopic map f : A → B induces the zero map on cohomology because it
factors through C(1A), which is acyclic by 1.5(vi). �

Corollary 1.10. Every homotopy equivalence (i.e., every homomorphism invertible in
K(A)) is a quasi-isomorphism.

Remark 1.11. Proposition 1.5(vi) can be strengthened (exercise) to say that if f is bijective,
then C(f) is homotopy-equivalent to zero. However, it is not true that every acyclic complex
is homotopy-equivalent to zero, nor do 1.5(iv, v) hold for homotopy-equivalence.

2. Triangles

The homotopy category K(A) and the derived category D(A), to be introduced in §3, are
additive but not abelian categories. Instead, they share an extra structure described by a
distinguished collection of exact triangles. Although we are mainly interested in the derived
category, we first consider triangles in the homotopy category. It will be easier to deduce
the main properties of the derived category after this intermediate step.

Lemma 2.1. Given a homomorphism of complexes f : A → B, each composite of two suc-
cessive maps in the sequence

· · · → A
f→ B

i→ C(f)
p→ A[1]

f [1]−→ B[1]→ · · ·

induced by 1.5(ii) is zero in K(A).

Proof. The composite B → C(f)→ A[1] is already zero in C(A). For A
f→ B

i→ C(f), the
diagram

A
1A−−−→ A

1A

y f

y
A

f−−−→ B
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yields a map C(1A)→ C(f), and one checks easily that the diagram

A
f−−−→ B

i(1A)

y i

y
C(1A) −−−→ C(f)

commutes. Hence i ◦ f is null-homotopic, by 1.8(b). A similar argument takes care of

C(f)
p→ A[1]

f [1]−→ B[1], and the rest follows by shift-invariance. �

Definition 2.2. A triangle in an additive category with shift functors A 7→ A[n] is a sequence

A→ B → C → A[1]

for which the conclusion of 2.1 holds (with C in place of C(f)). A morphism of triangles is
a commutative diagram

A −−−→ B −−−→ C −−−→ A[1]

u

y v

y w

y u[1]

y
A′ −−−→ B′ −−−→ C ′ −−−→ A′[1]

.

A standard triangle in K(A) is a triangle of the form

A
f→ B

i→ C(f)
p→ A[1],

induced from a homomorphism f : A→ B by 1.5(ii). An exact triangle in K(A) is a triangle
isomorphic to a standard triangle.

Triangles are also displayed like this:

C
+1

↙ ↖
A −→ B.

Proposition 2.3. Exact triangles in K(A) satisfy the following axioms:
(o) Any triangle isomorphic to an exact triangle is exact.

(i) Every arrow f : A → B is the base of an exact triangle A
f→ B → C → A[1]. For

every object A, the triangle A
1A→ A→ 0→ A[1] is exact.

(ii) If A
f→ B

g→ C
h→ A[1] is an exact triangle, then so are its “rotations”

B
g→ C

h→ A[1]
−f [1]−→ B[1], C[−1]

−h[−1]−→ A
f→ B

g→ C.
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(iii) Given exact triangles A
f→ B → C → A[1] and A′

g→ B′ → C ′ → A′[1], every
commutative diagram in K(A)

A
f−−−→ B

h

y h′

y
A′

g−−−→ B′

extends to a morphism of triangles

A
f−−−→ B −−−→ C −−−→ A[1]y y y y

A′
g−−−→ B′ −−−→ C ′ −−−→ A′[1]

.

(iv) A direct sum of exact triangles is exact.

Proof. Axioms (o), (iv) and the first part of (i) are obvious. For the second part of (i), we
have C(1A) ∼= 0 in K(A) by Remark 1.11.

For (ii), using shift invariance (see remark below), it suffices to verify the first rotation.

We can assume the given triangle is standard, A
f→ B

i→ C(f)
p→ A[1]. Then we must show

that A[1] ∼= C(i) in K(A), via an isomorphism such that the composite A[1]→ C(i)
p(i)→ B[1]

is −f [1] and C(f)
i(i)→ C(i) → A[1] is p. Now, C(i) is identical to the mapping cone of

the map h : A → C(1B) obtained by composing i(1B) : B → C(1B) with f . This gives
a canonical map π = p(h) : C(i) → A[1], by 1.5(ii). But C(i) is also identical to the
mapping cone of (f, 1B) : A ⊕ B → B, whose kernel is isomorphic to A. This gives a map
ι = k[1] : A[1]→ C(i), by 1.5(iii). One checks that π ◦ ι = 1A[1], p(i) ◦ ι = −f [1], π ◦ i(i) = p,
and ι ◦ π ∼ 1C(i).

For (iii), we can assume both triangles are standard. If the given diagram commutes up
to a homotopy s : gh ∼ h′f , you can check that (ai+1, bi) 7→ (h(ai+1), h′(bi) + s(ai+1)) is a
homomorphism C(f)→ C(g) that yields the desired morphism of triangles in K(A). �

Remarks 2.4. (a) Warning: The morphism of triangles in (iii) is not canonical, but depends
on the choice of an isomorphism between each of the given triangles and a standard triangle.
Thus we do not have a functorial “mapping-cone” construction assigning to each arrow
f : A→ B in K(A) an exact triangle with f as its base.

(b) Triangles A
f→ B

g→ C
h→ A[1] and A

−f→ B
−g→ C

h→ A[1] are isomorphic via −1B,

and likewise if we change any two signs. If A
f→ B

g→ C
h→ A[1] is exact, a triangle

such as A
−f→ B

−g→ C
−h→ A[1] with one or three signs changed is anti-exact. Note that

C(f)[1] = C(−f [1]), so the shift A[1]
f [1]−→ B[1]

g[1]−→ C[1]
h[1]−→ A[1] is anti-exact, while

A[1]
−f [1]−→ B[1]

−g[1]−→ C[1]
−h[1]−→ A[1], gotten by rotating our original triangle three times, is

exact.
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(c) Verdier defined a triangulated category to be an additive category with shift functors,
satisfying axioms 2.3(o–iii) and an additional, more complicated, “octahedral axiom” which
relates exact triangles based on f , g and g◦f , and implies (iv). The fundamental examples of
triangulated categories in the sense of Verdier are homotopy categories of complexes, derived
categories, and the stable homotopy category of spectra of CW-complexes in topology. The
logical significance of the octahedral axiom remains a bit murky. On the one hand, it is
stronger than needed for the elementary applications of derived categories to supplying a
good framework for homological algebra and sheaf cohomology. On the other hand, while
Verdier’s definition has proven adequate for the theory of triangulated categories so far,
it is possible that future developments might require stronger axioms, valid in the natural
examples, but not following from Verdier’s axioms.

3. The derived category

Definition 3.1. The derived category D(A) = C(A)[Q−1] of A is the category obtained
from C(A) by formally inverting all quasi-isomorphisms. More precisely, D(A) is equipped
with a tautological functor j : C(A) → D(A), and has the universal property that given
any functor F : C(A) → B, if F sends all quasi-isomorphisms in C(A) to isomorphisms in
B, then F factors as F = F ′ ◦ j for a unique functor F ′ : D(A)→ B.

Remark 3.2. Some set-theoretic foundational issues in category theory impinge on the
construction of derived categories. The objects of an ordinary category C need not form a
set, but HomC(A,B) is required to be a set for all objects A, B of C. A category whose
objects do form a set is called small. Conversely, we may allow each HomC(A,B) to be a
proper class, in which case C is called large.

If C is a small category, we can formally invert any subset Q of its arrows to get another
small category C[Q−1] with the same objects as C, the arrows of C[Q−1] being defined by
suitable generators and relations. If C is an ordinary category, we can again construct C[Q−1],
but in general only as a large category.

In practice there are several strategies for coping with the set-theoretic difficulties. (1)
Ignore them—as I will do in these notes. (2) Work only with small categories. Many
categories of interest, such as the category of schemes of finite type over a given ring k,
are equivalent to a small category. Others can be well approximated by small categories.
For example, on a ringed space X, the category of sheaves of OX modules of cardinality
less than a fixed bound κ is equivalent to a small category. (3) Work inside a Grothendieck
universe U (an inner model of set theory). This is fine if you don’t mind assuming the truth
of large cardinal axioms which cannot be proven consistent with the rest of set theory. (4)
Use Gödel-Bernays set theory, which provides explicitly for a hierarchy of proper classes
beyond sets. (5) Prove that specific derived categories of interest are equivalent to ordinary
categories. This is usually true and not hard to prove; for example it holds for the derived
category D(A) of any abelian category which has enough injective objects. The mysterious
remark in Weibel’s textbook about “proving that the derived category exists in our universe”
seems meant to allude to this last strategy.
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In any event, the genuine mathematical issues involved do not concern set-theoretic tech-
nicalities, but rather concrete questions of how to describe an arrow in D(A), and how to
recognize when two arrows are equal.

By the definition of quasi-isomorphism, the cohomology functors H i : C(A) → A factor
through unique functors H i : D(A)→ A. If A is an object of A, let A[0] denote the complex
which is A in degree zero, and 0 in other degrees. Then H0(A[0]) = A, so A 7→ A[0] is a
fully faithful embedding of A into D(A), with left inverse given by the functor H0. Usually
we just identify A with A[0] and regard A as a full subcategory of D(A).

Proposition 3.3. The canonical functor C(A)→ D(A) factors (uniquely) through K(A).

Proof. It suffices to prove that f ∼ 0 implies f = 0 in D(A). This is immediate from 1.8(b),
since C(1A) ∼= 0 in D(A), by 1.5(vi). �

Corollary 3.4. The derived category D(A) can also be identified with K(A)[Q−1].

Remarks 3.5. (a) Traditionally, D(A) is often defined as K(A)[Q−1]. This tends to overem-
phasize the role of the homotopy category, which is not essential to the definition, although
it is a useful auxiliary device for understanding many properties of D(A).

(b) Equality in D(A) of homomorphisms f, g ∈ HomC(A)(A,B) does not imply that f
and g are homotopic. A criterion for equality of arrows in the derived category is given by
3.22(ii), below.

Definition 3.6. An exact triangle in D(A) is a triangle isomorphic in D(A) to a standard
triangle, as in 2.2. Equivalently (by 1.10), a triangle in D(A) is exact iff it is isomorphic in
D(A) to an exact triangle of K(A).

An advantage of the derived category is that every exact sequence in C(A) gives rise to
an exact triangle in D(A), which is not the case in K(A).

Proposition 3.7. Let 0 → A
f→ B

g→ C → 0 be an exact sequence in C(A). Then the
diagram

C(f)
'→
qis

q(f)
C

p(f)

y i(g)

y
A[1]

'→
qis

k(g)[1]
C(g)

anti-commutes in K(A), and hence in D(A).

Proof. The formula for k(g)[1] ◦ p(f) is (ai+1, bi) 7→ (f(ai+1), 0), and for i(g) ◦ q(f) it is
(ai+1, bi) 7→ (0, g(bi)). Then si(ai+1, bi) = (bi, 0) is a homotopy between k(g)[1] ◦ p(f) and
−i(g) ◦ q(f). �

Definition 3.8. The map h : C → A[1] in D(A), given in terms of the diagram in 3.7 by
h = p(f)◦q(f)−1 = −k(g)[1]−1 ◦ i(g), is the connecting homomorphism of the exact sequence

0→ A
f→ B

g→ C → 0.
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Proposition 3.9. Let 0 → A
f→ B

g→ C → 0 be an exact sequence in C(A). There is an
exact triangle

A
f→ B

g→ C
h→ A[1],

in D(A), where h is the connecting homomorphism.

Proof. By 1.5(iv), q(f) : C(f)→ C is a quasi-isomorphism whose composite with the canon-
ical map i : B → C(f) is g. Hence the standard triangle based on f is isomorphic in D(A)
to the triangle above. �

Lemma 3.10. Exact triangles in D(A) satisfy the rotation axiom 2.3(ii).

This is obvious from the definition and 2.3(ii) for K(A). Below we will see that in fact all
the axioms 2.3(o–iv) hold in D(A). First we need two preliminaries: the cohomology long
exact sequence, which is a basic tool for all of homological algebra, and a description of the
arrows in D(A).

Proposition 3.11. If A → B → C → A[1] is an exact triangle in D(A)—in particular, if
0→ A→ B → C → 0 is an exact sequence of complexes and h : C → A[1] is the connecting
homomorphism in D(A)—there is an induced long exact sequence of cohomology groups

· · · → H0(A)→ H0(B)→ H0(C)→ H1(A)→ · · · .
Proof. Apply 3.10 and 1.5(vii). �

Corollary 3.12. If a morphism between exact triangles in D(A) is an isomorphism at two
of the three corners of the triangle, then it is an isomorphism of triangles.

Proof. An arrow in D(A) is an isomorphism iff it induces isomorphisms in cohomology. In
the diagram of long exact sequences

· · · −−−→ H i(A) −−−→ H i(B) −−−→ H i(C) −−−→ H i+1(A) −−−→ · · ·y y y y
· · · −−−→ H i(A′) −−−→ H i(B′) −−−→ H i(C) −−−→ H i+1(A′) −−−→ · · ·

,

every third vertical arrow is an isomorphism, given that the others are. �

Corollary 3.13. Let A
f→ B → C → A[1] be an exact triangle (in either D(A) or K(A))

based on a homomorphism f : A→ B in C(A). Then f is a quasi-isomorphism if and only
if C is acyclic.

Proposition 3.14. If A
u→ B

v→ C
w→ A[1] is an exact triangle in K(A), then for any

complex X, there are induced long exact sequences

· · · → HomK(A)(X,A)→ HomK(A)(X,B)→ HomK(A)(X,C)→ HomK(A)(X,A[1])→ · · ·
· · · ← HomK(A)(A,X)← HomK(A)(B,X)← HomK(A)(C,X)← HomK(A)(A[1], X)← · · ·



10 MARK HAIMAN

Proof. We prove the second sequence; a similar argument applies to the first. Suppose
f : B → X satisfies fu ∼ 0. From 2.3(i,iii) we get a morphism of triangles

A
u−−−→ B

v−−−→ C
w−−−→ A[1]y f

y g

y y
0 −−−→ X

1X−−−→ X −−−→ 0

,

which shows f ∼ gv for some g : C → X. In other words, HomK(A)(A,X) ←
HomK(A)(B,X) ← HomK(A)(C,X) is exact, and the rest follows by the rotation axiom,
2.3(ii). �

Corollary 3.15. Corollary 3.12 also holds in K(A), and indeed in any “weakly” triangulated
category, satisfying axioms 2.3(o-iv).

Proof. In the proof of 3.12 we can use either long exact sequence in 3.14 in place of the one
in 3.11, together with the fact that the functor Hom(−, C) (resp. Hom(C,−)) determines C
up to canonical isomorphism. �

Remark 3.16. The proofs show that 3.12 and 3.14 hold in any weakly triangulated category.

Our next goal is to describe the arrows in D(A).

Definition 3.17. A class of Q of arrows in a category C is a (left) Ore system if it satisfies
the following conditions:

(a) Q is multiplicative, i.e. Q ◦Q ⊆ Q and 1X ∈ Q for every object X of C.
(b) Every pair of arrows A′

q← A
f→ B with q ∈ Q can be completed to a commutative

diagram

A
f−−−→ B

q

y r

y
A′

g−−−→ B′

with r ∈ Q.
(c) If f ◦ q = 0 with q ∈ Q, there exists r ∈ Q such that r ◦ f = 0.
A right Ore system is defined dually.

Remark 3.18. A category is filtered if every pair f : A → B, f ′ : A → B′ of morphisms
from the same object A can be completed to a commutative square. An inductive system of
sets (Xi)i∈I indexed by a filtered category I is also said to be filtered. A filtered inductive
system has the property that elements x ∈ Xi, x

′ ∈ Xi′ represent the same element of the
direct limit lim−→(Xi) if and only if there exist arrows α : Xi → Xj, α

′ : Xi′ → Xj in I such
that α(x) = α′(x′). To see this, one checks that in a filtered inductive system, the preceding
condition defines an equivalence relation x ≡ x′, and then lim−→(Xi) = (

⊔
i∈I Xi)/ ≡.
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Let Q be a left Ore system in C, fix an object A in C, and let Q\A be the category of

arrows A
q→ A′, where q ∈ Q, with morphisms the commutative triangles

A
q→ A′

↘
q′
↓

A′′
.

Then (a–c) imply (exercise) that Q\A is a filtered category.

Proposition 3.19. Assume Q is a left Ore system in C. Then morphisms in C[Q−1] are
given by the filtered direct limits

HomC[Q−1](A,B) = lim−→
B→

q
B′

HomC(A,B
′).

Denoting an element A
f→ B′

q← B of this direct limit by q−1f , the composition law is given

by (s−1f) ◦ (q−1h) = (rs)−1(gh), where B′
q← B

f→ C ′ completes as in (b) to a diagram such
that gq = rf .

Proof. Using 3.17 (c), one verifies that any two diagram completions A′
g→ B′

r← B, A′
g′→

B′′
r′← B in (b) represent the same element r−1g = r′−1g′ of limB→B′ HomC(A

′, B′). This
given, we can define a category C ′ with HomC′(A,B) = limB→B′ HomC(A,B

′), and check
that the composition law specified in the proposition is well-defined and associative. There
is an obvious functor j : C → C ′ sending f : A → B to 1−1B f , and is immediate that for
any q : A → B in Q, j(q) has inverse q−11B. It is also immediate that C ′ has the universal
property of C[Q−1]. Namely, given a functor F : C → B such that F (q) is invertible for all
q ∈ Q, F extends to C ′ by F (q−1f) = F (q)−1F (f), which is easily seen to be independent of
the choice of representative q−1f . �

Lemma 3.20. The quasi-isomorphisms form a left and right Ore system in K(A).

Proof. By duality, “left” suffices. Condition (a) is trivial. For (b) take B′ to be the mapping
cone of (q, f) : A → A′ ⊕ B, with (g, r) : A′ ⊕ B → B′ the canonical map i in 1.5(ii). This
mapping cone is identical to the mapping cone of the map h : C(q)[−1] → B given by
composing f with the canonical map p[−1] : C(q)[−1] → A. The map r : B → B′ coincides
under this identification with the canonical map B → C(h). By 3.13, C(q) is acyclic, hence
r is a quasi-isomorphism by another application of 3.13.

For (c), given A′
q→ A

f→ B, let C = C(q), i : A → C the canonical map. Since fq = 0
in K(A), the second long exact sequence in 3.14 implies that f = gi for some g : C → B.
Let B′ = C(g), r : B → B′ the canonical map i(g). Now, C is acyclic by 3.13, hence r is a
quasi-isomorphism by 3.13 again. Finally, rg = 0 in K(A) by 2.1, hence rf = rgi = 0. �

Remark 3.21. The quasi-isomorphisms satisfy conditions (a) and (b) for an Ore system in
C(A), but we need to work in K(A) to have (c) hold.
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Corollary 3.22. (i) Every arrow in D(A) factors as q−1f and as gr−1, where f , g, q, r are
homomorphisms in C(A), with q, r quasi-isomorphisms.

(ii) A homomorphism f : A → B in C(A) is zero in D(A) if and only if the equivalent
conditions hold: (a) there exists a quasi-isomorphism q : B → B′ such that qf ∼ 0; (b) there
exists a quasi-isomorphism r : A′ → A such that fr ∼ 0.

Corollary 3.23. The exact triangles in D(A) satisfy axioms 2.3(o–iv).

Proof. Axiom (o) holds by definition, (iv) is clear, and we have already seen (ii). Axioms (i)
and (iii) follow easily from the corresponding axioms in K(A), using 3.22(i). �

Corollary 3.24. Proposition 3.14 also holds in D(A).

Proof. See 3.16. �

Corollary 3.25. The exact triangle based on an arrow f : A→ B in D(A) is unique up to
(non-canonical) isomorphism.

Proof. Follows from axiom (iii) and 3.12. �

Remarks 3.26. (a) The octahedral axiom follows similarly, so D(A) is a triangulated cat-
egory in the sense of Verdier.

(b) The reasoning employed above applies more generally. LetK be a triangulated category
and N ⊆ K a full triangulated subcategory, closed under isomorphisms in K. Let Q consist
of the arrows in K such that the third vertex of any exact triangle based on q ∈ Q is an
object of N . Then Q is a left and right Ore system in K, and D = K[Q−1] is a triangulated
category, also denoted D = K/N . In our case, K = K(A), with N consisting of the acyclic
complexes. By 3.13, this is equivalent to Q consisting of the quasi-isomorphisms.

4. Derived Functors

We will use Deligne’s method [5] of defining and constructing derived functors.

Definition 4.1. Given a complex A, let qis\A be the category of quasi-isomorphisms A
'→
qis
A′

in K(A), with morphisms the commutative triangles as in 3.18.

By 3.18, qis\A is a filtered category. Given a functor F : K(A) → C and an object Y of
C, we have a filtered inductive limit of sets, functorial in Y ,

lim−→
A
'→
qis
A′

(
HomC(Y, F (A′))

)
.

Proposition 4.2. Let F : K(A) → C be any functor. To each arrow f : A → B in K(A)
there is canonically associated a natural transformation

(1) rF (f) : lim−→
A
'→
qis
A′

(
HomC(−, F (A′))

)
→ lim−→

B
'→
qis
B′

(
HomC(−, F (B′))

)
between functors from Cop to Sets. This gives a functor rF : K(A)→ Fun(Cop, Sets).
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Proof. Recall (3.20) that the quasi-isomorphisms Q ⊆ K(A) form a left Ore system (3.17).

Given A
q→ A′ in qis\A, we can define a an arrow F (A′) → F (B′) in C, for some B′ in

qis\B, by completing the diagram

(2)

A
f−−−→ B

q

y r

y
A′

g−−−→ B′

in K(A) and applying F to the bottom row. Equivalently, this defines a natural map
ρA′ : HomC(−, F (A′)) → HomC(−, F (B′)). As in the proof of 3.19, any two com-
pleted diagrams (2) factor into a third. Hence the natural map HomC(−, F (A′)) →
lim

B
'→
qis
B′

(
HomC(−, F (B′))

)
represented by ρA′ is independent of the choice of completion

(2). Since ρA′ is functorial with respect to A′ in qis\A, these maps combine to give (1). One
checks easily that rF (f) defined this way is functorial in f . �

Definition 4.3. Any category C has a fully faithful Yoneda embedding C ↪→ Fun(Cop, Sets)
given by X 7→ HomC(−, X). The functor category Fun(Cop, Sets) has direct limits, inherited
from Sets. The closure under filtered direct limits of the image of C in Fun(Cop, Sets) is called
the ind-completion Ind(C) of C.

The dual concept, constructed from the dual Yoneda embedding C ↪→ Fun(C, Sets)op,
X 7→ HomC(X,−), is the pro-completion Pro(C) of C. (In other words, Pro(C)op = Ind(Cop).)

Remark 4.4. (a) Ind(C) has the universal property that any functor F : C → D into a

category D with filtered direct limits extends uniquely to a functor F̃ : Ind(C) → D which
preserves filtered direct limits. In particular, any functor F : C → D induces a functor
Ind(F ) : Ind(C)→ Ind(D) commuting with the inclusions, and if C has filtered direct limits,
the inclusion has a canonical left inverse Ind(C)→ C.

(b) In terms of the Yoneda embedding, the condition for X = lim−→λ
(Aλ) to be the limit

of a filtered inductive system (Aλ) in C is Hom(X,−) = lim←−λ Hom(Aλ,−), which is not the

same as X being isomorphic to the ind-object “lim−→”(Aλ) in Ind(C). The latter condition is
stronger: it means that the system (Aλ) is essentially constant with limit X—see 4.7.

In this language, (1) defines a functor rF : K(A) → Ind(C). When F is the identity
functor, we obtain in particular a canonical functor j = r1K(A)

: K(A)→ Ind(K(A)) sending

A to the ind-object “lim−→”(qis\A) = lim
A
'→
qis
A′

(HomK(A)(−, A′)). For arbitrary F , we have

rF = Ind(F ) ◦ j.
Proposition 4.5. The image of the functor j : K(A) → Ind(K(A)), A 7→ “lim−→”(qis\A) is
isomorphic to D(A), with j corresponding to the canonical functor K(A)→ D(A).

Proof. The definitions having been understood, this is merely a restatement of 3.19. �

Now let F : K(A)→ K(B) be an exact functor of triangulated categories, i.e. an additive
functor which commutes with shifts and preserves exact triangles. In particular, any additive
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functor F : A → B induces an exact functor F : K(A)→ K(B) (also denoted F by abuse of
notation). In practice, we only deal with functors of this last form.

Composing the canonical functor jB : K(B) → D(B) with F , and applying 4.2–4.5 (with
C = D(B)), we define a functor RF = rjBF : D(A)→ Ind(D(B)).

Definition 4.6. The right derived functor of F is defined at A in D(A), with value X in
D(B), if RF (A) = X belongs to D(B) ⊆ Ind(D(B)).

It is an exercise for the reader to work out the dual definition of left derived functor LF .

4.7. To be more precise, the definition means that RF (A) and X ∈ D(B) represent isomor-
phic functors

(3) HomD(B)(−, X) ∼= lim−→
A
'→
qis
A′

(
HomD(B)(−, F (A′))

)
from D(B)op to Sets. Then X is unique up to canonical isomorphism, which justifies writing
RF (A) = X.

Let us make this explicit. For each A
q→ A′ in qis\A, we get an arrow

ηA′ : F (A′)→ X

in D(B), corresponding via (3) to the the element represented by 1F (A′) on the right-hand

side. The system of arrows ηA′ is compatible with F (qis\A), i.e., for each A′
r→ A′′

in qis\A, we have ηA′ = ηA′′ ◦ F (r). By naturality, the arrows ηA′ induce the map
lim

A
'→
qis
A′

(
HomD(B)(−, F (A′))

)
→ HomD(B)(−, X).

In the opposite direction, to the element 1X on the left-hand side of (3) there corre-
sponds an equivalence class of arrows σA′ : X → F (A′), for some A′ ∈ qis\A. Any two
representatives σA′ factor into a third, and by naturality, the map HomD(B)(−, X) →
lim

A
'→
qis
A′

(
HomD(B)(−, F (A′))

)
is induced by any representative σA′ .

The two maps being inverse means that (i) any representative σA′ is a section of ηA′ , (ii)
the maps ηA′ : F (A′) → X make X the inductive limit X = lim−→F (qis\A) in D(B), and
(iii) for any representative σA′ , the arrow X → Y corresponding to any system of maps
γA′ : F (A′)→ Y , A′ ∈ qis\A by the universal property of lim−→F (qis\A) is given by γA′ ◦ σA′ .
In this case, the system F (qis\A) is said to be essentially constant.

The practical meaning of 4.6 will become clearer in §5, where we will give criteria that one
uses in practice to show that RF (A) is defined. The criteria also have the effect of making
RF (A) concretely computable, often in more than one way. But first we need to remain a
little longer in the abstract context in order to establish the basic properties of RF .

Definition 4.8. The cohomology objects H i(RF ) are denoted RiF and called the classical
right derived functors of F .

Corollary 4.9. Let DF (A) be the full subcategory of D(A) whose objects are those A such
that RF (A) is defined. Then RF is a functor from DF (A) to D(B).
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Corollary 4.10. The subcategory DF (A) is closed under isomorphisms in D(A).

Corollary 4.11. If RF (A) is defined then RF (A[n]) is defined and equal to RF (A)[n].

Corollary 4.12. Suppose F maps quasi-isomorphisms to quasi-isomorphisms (in particular,
if F comes from an exact functor F : A → B). Then RF is defined on all of D(A) and is
just the functor from D(A) to D(B) induced by F , via the universal property of D(A).

Proof. In this case, F (qis\A) is a constant inductive system in D(B) with limit F (A). �

Remark 4.13. Originally, Verdier defined a right derived functor of F (assuming one exists)
to be a functor RF : D(A)→ D(B), together with a natural transformation jB◦F → RF ◦jA,
satisfying the universal property that for any other such functor G : D(A) → D(B), the
transformation jB ◦ F → G ◦ jA factors through θ ◦ jA for a unique natural transformation
θ : RF → G. Verdier’s definition is still the one found most often in the literature.

Historically, it was not always clear how to construct some important derived functors
on all of D(A), so Verdier also allowed derived functors on a subcategory D ⊆ D(A) (for
instance, on D+(A)—see 5.4), defined by the same universal property, restricted to functors
from D to D(B).

By construction, Deligne’s RF has Verdier’s universal property, but now among functors
D(A) → Ind(D(B)). When Deligne’s RF is defined on D ⊆ D(A), it is then immediate
that it is a right derived functor of F in the sense of Verdier.

It is not clear that existence of a Verdier derived functor, say RF , must imply that RF
is defined everywhere (whence RF = RF ). As it turns out, this question is unimportant,
because in practice, the techniques one uses to construct a Verdier derived functor on D
actually show that Deligne’s RF is defined on D.

Theorem 4.14 (Deligne [5]). Let F : K(A) → K(B) be exact (e.g., if F comes from an
additive functor F : A → B). Let A → B → C → A[1] be an exact triangle in D(A). If
RF (A) and RF (B) are defined, then RF (C) is defined, and RF (A)→ RF (B)→ RF (C)→
RF (A)[1] is an exact triangle in D(B).

We need the following lemma for the proof.

Lemma 4.15. Let A → B → C → A[1] be an exact triangle in K(A). There exist mor-
phisms of exact triangles in K(A)

(4)

A −−−→ B −−−→ C −−−→ A[1]

q

y r

y s

y q[1]

y
A′

u−−−→ B′
v−−−→ C ′

w−−−→ A′[1]

with all vertical arrows quasi-isomorphisms, such that A′, B′, C ′ are cofinal in qis\A, qis\B,
qis\C, respectively.

Proof. Given (4) and B′
r′→ B′′ in qis\B, there is an exact triangle A′ → B′′ → C ′′ → A′[1]

on r′u : A′ → B′′, and, by 2.3(iii), a morphism from A′ → B′ → C ′ → A′[1] to A′ → B′′ →
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C ′′ → A′[1], whose component arrows are all quasi-isomorphisms, by 3.12. This shows that
the vertices B′ in (4) are cofinal in qis\B. The corresponding statement holds for the other
vertices by 2.3(ii). �

Proof of Theorem 4.14. Let RF (A) = X, RF (B) = Y . Complete the arrow X → Y to an
exact triangle X → Y → Z → X[1] in D(B). As in 4.7, we can find sections σA′ : X → F (A′),
σB′ : Y → F (B′). Changing A′, B′ if needed, we can fit these into a commutative diagram
in D(B)

X −−−→ Y

σA′

y σB′

y
F (A′)

F (u)−−−→ F (B′)

,

and we can further assume that u : A′ → B′ is part of an exact triangle in the bottom row
of (4). Since F is exact, this extends to a morphism of exact triangles

(5)

X −−−→ Y −−−→ Z −−−→ X[1]y y y y
F (A′) −−−→ F (B′) −−−→ F (C ′) −−−→ F (A′)[1]

.

Now, 4.15 and 3.24 imply that the sequence

(6) · · · → lim−→
A′

HomD(B)(T, F (A′))→ lim−→
B′

HomD(B)(T, F (B′))

→ lim−→
C′

HomD(B)(T, F (C ′))→ lim−→
A′

HomD(B)(T, F (A′)[1])→ · · ·

is exact for every object T of D(B). By definition, this is just the sequence

· · · → RF (A) → RF (B) → RF (C) → RF (A)[1] → · · ·
|| || ||

Hom(−, X) Hom(−, Y ) Hom(−X[1])

in Ind(D(B)), evaluated at T . The morphism in (5) provides a commutative diagram

· · · → Hom(−, X) → Hom(−, Y ) → Hom(−, Z) → Hom(−, X[1]) → · · ·
|| || ↓ ||

· · · → RF (A) → RF (B) → RF (C) → RF (A)[1] → · · ·
.

Evaluated at any T in D(B), we have just seen that the bottom row is exact, and the top
row is exact by 3.24. Hence the vertical arrow is an isomorphism. �

Corollary 4.16. For any triangle A→ B → C → A[1] in D(A), and in particular, for any
exact sequence 0→ A→ B → C → 0 in C(A), if RF (A), RF (B), RF (C) are defined (e.g.,
if any two of them are), there is a long exact sequence of classical derived functors

· · · → R0F (A)→ R0F (B)→ R0F (C)→ R1F (A)→ R1F (B)→ · · · .
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5. Computing derived functors

Definition 5.1. Let F : K(A)→ K(B) be an exact functor. A complex I in K(A) computes1

RF if the canonical natural morphism ηI : F (I)→ RF (I) in 4.7 is an isomorphism in D(B).

A quasi-isomorphism A
q→ I is called a resolution of A. If I computes RF , then RF (A)

exists and is identified with F (I), the natural morphism F (A) → RF (A) being given by
F (q). We will give some criteria for the existence of a resolution of A that computes RF .

Proposition 5.2. If F sends quasi-isomorphisms A → A′ to quasi-isomorphisms, then A
computes RF .

Proof. In this case, F (qis\A) is a constant inductive system (all its maps are isomorphisms
in D(B)), with limit F (A). �

In particular, this gives another way to see 4.12.

Lemma 5.3. Let I ⊆ qis\A be a class of complexes such that

(i) For every resolution A
'→
qis
A′ there is a resolution A′

'→
qis
I with I ∈ I, i.e., I is cofinal

in qis\A, and in particular, A has a resolution A
'→
qis
I with I ∈ I;

(ii) For every quasi-isomorphism q : I
'→
qis
J with I, J ∈ I, F (q) is a quasi-isomorphism.

Then every I ∈ I computes RF . In particular, a resolution A
'→
qis

I induces F (A)
F (q)→

RF (A) = F (I).

Proof. By hypothesis F (I) is cofinal in F (qis\A) and constant with limit F (I). �

Definition 5.4. The bounded-below derived category D+(A) is the full subcategory of D(A)
consisting of objects A such that for some n0, we have H i(A) = 0 for all i < n0. The
bounded-above derived category D−(A) is defined dually. The bounded derived category is
Db(A) = D+(A) ∩D−(A).

Remark 5.5. The truncation functor τ≥n sends a complex A to the complex

τ≥n(A) = · · · → 0→ (An/ im(dn−1))→ An+1 → An+2 → · · · .
Then

H i(τ≥n(A)) =

{
H i(A) if i ≥ n

0 otherwise.

Note that τ≥n preserves quasi-isomorphisms and hence is well-defined as an endo-functor
on any of the categories C(A), K(A), D(A). There is an obvious canonical functorial
surjection A → τ≥n(A). The exact sequence 0 → τ<n(A) → A → τ≥n(A) → 0 defines the

1In Deligne [5], I is déployé pour F , translated by Spaltenstein [8] as unfolded for F , but to my ear that
doesn’t have the right ring in English.
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dual truncation functor τ<n which kills the cohomology H≥n(A). In D(A), this becomes a
triangle

τ<n(A)→ A→ τ≥n(A)→ τ<n(A)[1] = τ<(n−1)(A[1]).

If A is already bounded below at n0, then A → τ≥n0(A) is a quasi-isomorphism. It follows
immediately that D+(A) is equivalent to its full subcategory of strictly bounded-below objects

A, satisfying Ai = 0 for all i less than some n0. Moreover, if A → X
'←
qis

B is a morphism

between objects A,B ∈ D+(A), then necessarily X ∈ D+(A). Truncating all three objects,
we can replace X by a strictly bounded-below complex too. Hence D+(A) can be identified
with the localization C+(A)[Q−1] of the category C+(A) of strictly bounded-below complexes
by the quasi-isomorphisms in C+(A).

Proposition 5.6. Assume F : A → B is left exact. Let A be a class of objects in A such
that

(i) For every A in A there is an injection A→ I with I ∈ A;
(ii) A is closed under finite direct sums, and if 0→ I → J → N → 0 is an exact sequence

with I, J ∈ A, then N ∈ A;
(iii) If 0→ I → A→ B → 0 is an exact sequence with I ∈ A, then 0→ F (I)→ F (A)→

F (B)→ 0 is exact.
Then every A in D+(A) has a resolution A → I•, where I• is a strictly bounded-below

complex of objects in A, and any such I• computes RF , i.e., the resolution induces F (A)→
RF (A) = F (I•).

Proof. We can assume that A is strictly bounded-below, say Ai = 0 for i < 0. Suppose by
induction on k that we have constructed a homomorphism r : A→ I(k) as follows:

0 −−−→ A0 −−−→ A1 −−−→ · · · −−−→ Ak −−−→ Ak+1 −−−→ · · ·y y y y y
0 −−−→ I0 −−−→ I1 −−−→ · · · −−−→ Ik −−−→ 0 −−−→ · · ·

,

where the bottom row is a complex of objects in A, and r induces an isomorphism H i(A)→
H i(I) for i < k and an injection Hk(A)→ coker(dk−1I ) (initially, we have this with k = −1).

By 3.11, the mapping cone C(r) has H i(C(r)) = 0 for i < k. Then C(r)→ J = τ≥k(C(r))
is a quasi-isomorphism, so A → I(k) → J → A[1] is an exact triangle. Now J is strictly
bounded below at k, hence the mapping cone B = C(I(k) → J)[−1] looks like

0→ I0 → I1 → · · · → Ik → Jk → Jk+1 → · · · ,
and there is a quasi-isomorphism A → B, i.e., B is a resolution of A. Choose an injection
i : Jk ↪→ Ik+1 with Ik+1 ∈ A. Consider the homomorphism B → I(k+1) given by

(7)

0 −−−→ I0 −−−→ I1 −−−→ · · · −−−→ Ik
dk−−−→ Jk −−−→ Jk+1 −−−→ · · ·

1

y 1

y 1

y 1

y i

y y
0 −−−→ I0 −−−→ I1 −−−→ · · · −−−→ Ik

d′k=idk−−−−→ Ik+1 −−−→ 0 −−−→ · · ·

,



NOTES ON DERIVED CATEGORIES AND DERIVED FUNCTORS 19

where I(k+1) is the bottom row. Composing with the quasi-isomorphism A → B we get a
homomorphism A→ I(k+1). In (7), dk and d′k have the same kernel, so Hk(A) = Hk(B)→
Hk(I(k+1)) is an isomorphism. Similarly, dk and d′k have the same image, and since i is
injective, this implies that Hk+1(A) = Hk+1(B) ↪→ coker(d′k). So I(k+1) again satisfies the
induction hypothesis. The limit I• = I0 → I1 → · · · is the desired resolution of A.

Let I
q→ J be a quasi-isomorphism between bounded-below complexes of objects in A.

Then C(q) is a bounded-below acyclic complex of objects in A, and from (ii, iii) it follows
easily by induction on the cohomology degree that F (C(q)) = C(F (q)) is acyclic. Hence
F (q) is a quasi-isomorphism. By the first part of the proof, every resolution of I has a
strictly bounded-below resolution J by a complex of objects in A. Then 5.3 shows that I
computes RF . �

Objects A in a class A satisfying 5.6(i–iii) are said to be acyclic for F . It follows from 5.6
that they satisfy RiF (A) = 0 for all i > 0. Conversely, using 4.16, one sees that the class A
of all objects A such that RiF (A) = 0 for all i > 0 satisfies (i–iii). The value of 5.6 is that
it enables us to recognize a class of acyclic objects without knowing how to calculate RF in
advance.

Example 5.7. LetA be the category of (left) R-modules for any (possibly non-commutative)
ring R, or the category of sheaves of OX-modules, where X is a ringed space. Then every
object A of A has an injection A → I into an injective object. Any exact sequence as in
5.6(iii) with I injective splits, and injective objects satisfy 5.6(ii). Hence the injectives satisfy
(i–iii) for any left-exact functor F . We conclude that RF is always defined on D+(A), and
that RF (A) = F (I), where I is a strictly bounded-below injective resolution of A.

Remark 5.8. Spaltenstein [8] defines a complex I to be K-injective if the functor Hom•(−, I)
(1.7) from C(A) to itself is exact. If I consists of a single object, this is equivalent to I being
injective. Spaltenstein shows that certain special inverse limits of K-injective complexes are
again K-injective. In particular, this implies that any bounded-below complex of injectives
is K-injective. But more is true: if A is the category of R-modules or of OX-modules,
Spaltenstein constructs a K-injective resolution of an arbitrary (unbounded) complex.

K-injectivity of I is equivalent to the property that HomK(A)(−, I) = HomD(A)(I) (exer-

cise, using 1.7). In particular, if I
q→ J is a quasi-isomorphism of K-injective complexes,

then q is a homotopy equivalence. For any functor F : K(A) → K(B), it follows that F (q)
is again a homotopy equivalence and hence a quasi-isomorphism. Using 5.3, it follows that
RF is defined on all of D(A) for any F , and RF (A) = F (I) for any K-injective resolution
A→ I.

Example 5.9. Let f : X → Y be a morphism of ringed spaces. A sheaf F on X is called
flasque if the restriction map Γ(X,F) → Γ(U,F) is surjective for every open U ⊆ X. It
is not hard to show that flasque sheaves satisfy 5.6(ii, iii) for the direct image functor f∗.

For any sheaf F , the germ maps define an injective sheaf homomorphism F ↪→ F̂ , where

F̂(U) =
∏

x∈U Fx, with restriction ρUV in F̂ defined by projection on the factors for x ∈ V .
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The sheaf F̂ is clearly flasque, so flasque sheaves satify (i) (one can also verify (i) by proving
that injective sheaves are flasque). Then 5.6 implies that flasque sheaves are acyclic for f∗,
and that for any bounded-below complex of sheaves A on X, we have Rf∗(A) = f∗(J), where
J is a strictly bounded-below flasque resolution.

Proposition 5.10. Given morphisms of ringed spaces f : X → Y , g : Y → Z, there is a
natural isomorphism of functors

(8) Rg∗ ◦Rf∗ ∼= R(gf)∗

from D+(A) to D+(C), where A (resp. C) is the cateogory of sheaves of OX modules (resp.
OZ modules).

Proof. It is immediate from the definition that any direct image f∗F of a flasque sheaf F is
flasque (a property not shared by injective sheaves). Given a complex A of sheaves on X,
the instance of (8) at A follows by taking a flasque resolution A → J and observing that,
since f∗J is then a flasque resolution of Rf∗A, the complex (gf)∗J = g∗f∗J represents both
R(gf)∗A and Rg∗Rf∗A. �

If g is the tautological morphism from Y to the space Z with one point and OZ the
constant sheaf Z, then the functors g∗ and ΓY are essentially the same, and similarly for
(gf)∗ and ΓX . The following corollary is therefore a special case of 5.10.

Corollary 5.11. Given a morphism of ringed spaces f : X → Y , there is a natural isomor-
phism of functors

(9) RΓY ◦Rf∗ ∼= RΓX

from the derived category D+(A), where A is the category of sheaves of OX modules, to the
derived category of sheaves of abelian groups (or, more generally, of R modules, if f is a
morphism of ringed spaces over the one-point ringed space Z with OZ(Z) = R).

The analog of (8) for classical derived functors is a spectral sequence relating the functors
Rpf∗ ◦ Rqg∗ and Rn(gf)∗. The identity Rg∗ ◦ Rf∗ ∼= R(gf)∗ is not only simpler than the
old-fashioned spectral sequence, it is a stronger result. Spaltenstein [8] gave a definition
of K-flasque complex of sheaves. Using this, he proved that 5.10 and 5.11 also hold for
unbounded complexes.

Proposition 5.12. Let f : X → Y be a morphism of ringed spaces. Let B be a base of the
topology on Y in the weak sense, that is, B is a set of open subsets V ⊆ Y such that every
open U ⊆ Y is a union of members of B, but we do not require that B be closed under finite
intersections.

For a sheaf M of OX modules to be acyclic for the direct image functor f∗, it suffices that
M be acylic for RΓf−1(V ) for all V ∈ B.

Proof. Let A be the class of sheaves A on X satisfying the acyclicity condition we require
of M . Explicitly, A belongs to A if for all V ∈ B, the canonical map Γ(f−1(V ), A) →
RΓ(f−1(V ), A) is a quasi-isomorphism, or equivalently, RiΓ(f−1(V ), A) = 0 for all i > 0.
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We verify that A satisfies the conditions in 5.6 for the functor F = f∗. Condition (i) follows
because flasque sheaves belong to A. Condition (ii) follows from the long exact sequence
3.11 for RΓf−1(V ). For condition (iii), suppose 0 → I → A → B → 0 is exact and I ∈ A.
Then 3.11 implies that is (f∗A)(V ) → (f∗B)(V ) surjective for all V ∈ B. Since B contains
a (weak) base of open neighborhoods of every point y ∈ Y , this implies that f∗A → f∗B is
surjective. �

As a final application of 5.6, let (X,OX) be a ringed space, A the category of sheaves
of OX modules, and B the category of sheaves of abelian groups on X. If M is a sheaf
of OX modules, then ΓX(M) is a module for the ring R = OX(X), but we can forget this
structure if we wish and view ΓX as a functor from A to abelian groups. On this view, ΓX
is the composite of of the global section functor on B with the with the forgetful functor
j : A → B. An important basic fact is that either way of viewing ΓX leads to the same
derived functor.

Proposition 5.13. Let j denote the forgetful functor from sheaves of OX modules to sheaves
of abelian groups. Since it is an exact functor, we also denote its derived functor by j. Let
ΓX denote the global section functor on sheaves of abelian groups on X, and Γ′ = ΓX ◦ j the
global section functor from sheaves of OX modules to abelian groups. Then R(Γ′) = (RΓX)◦j
as a functor from D+(OX-Mod) to the derived category of abelian groups.

Proof. Let A be a complex of sheaves of OX modules. Replacing A by a flasque resolution
I, we have Γ′(I) = ΓX(j(I)) and j(I) is a flasque resolution of j(A). �


