
Synopsis of material from EGA Chapter IV, §1.1–1.7

1. Relative finiteness condtions. Constructible subsets of preschemes.

Some of the concepts to follow were introduced in Chapter I, §6, but are given a more
compete treatment here.

1.1. Quasi-compact morphisms.

Definition (1.1.1). — A morphism f : X → Y is quasi-compact if f−1(U) is quasi-compact
for every quasi-compact open subset U ∈ Y .

If B is a base of the topology on Y consisting of open affines, then f is quasi-compact if
and only if f−1(V ) has a finite covering by open affines for all V ∈ B.

If f is quasi-compact, then so is its restriction to f−1(V ), for every open V ⊆ Y . Con-
versely, if Y has a covering by open sets Uα such that each restriction f−1(Uα) → Uα is
quasi-compact, then f is quasi-compact.

Proposition (1.1.2). — (i) Every closed immersion X → Y is quasi-compact. If the
underlying space of Y is locally Noetherian, or that of X is Noetherian, then every immersion
is quasi-compact. [Actually, if the underlying space of X is Noetheian, then every open subset
of X is quasi-compact, hence every morphism X → Y is quasi-compact.]

(ii) A composite of quasi-compact morphisms is quasi-compact.
(iii) Every base extension of a quasi-compact morphism is quasi-compact.
(iv) The produc f ×S g of quasi-compact S-morphisms is quasi-compact.
(v) Given f : X → Y and g : Y → Z, if g ◦ f is quasi-compact, and either g is separated

or the underlying space of X is locally Noetherian, then f is quasi-compact.
(vi) f is quasi-compact if and only if fred is.

Proposition (1.1.3). — Given f : X → Y and g : Y → Z, if g ◦ f is quasi-compact, and f
is surjective, then g is quasi-compact.

This generalizes (1.1.2, vi).

Corollary (1.1.4). — Given f : X → Y and g : Y ′ → Y , let X ′ = X ×Y Y ′ and f ′ =
f(Y ′) : X ′ → Y ′. If g is quasi-compact and surjective, then f ′ quasi-compact implies f quasi-
compact. If g is surjective, then f ′ dominant implies f dominant.

A generic point of an irreducible component of X (minimal prime of R in the case X =
Spec(R)) is called a maximal point of X.

Proposition (1.1.5). — Suppose f : X → Y is quasi-compact. The following are equivalent:
a) f is dominant;
b) for every maximal point y ∈ Y , f−1(y) 6= ∅;
c) for every maximal point y ∈ Y , f−1(y) contains a maximal point of X.

Proposition (1.1.6). — Given f ′ : X ′ → Y and f ′′ : X ′′ → Y , let X = X ′ t X ′′ and let
f : X → Y be the morphism which is f ′ on X ′ and f ′′ on X ′′. Then f is quasi-compact if
and only if both f ′ and f ′′ are.
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1.2. Quasi-separated morphisms.

Definition (1.2.1). — A morphism f : X → Y is quasi-separated, or the prescheme X is
quasi-separated over Y , if the diagonal morphisms ∆f : X → X ×Y X is quasi-compact. A
prescheme is called quasi-separated if it is quasi-separated over Spec(Z).

By (1.1.2, (i)), separated morphisms are quasi-separated and schemes [in EGA this means
separated preschemes] are quasi-separated.

Proposition (1.2.2). — (i) Every monomorphism of preschemes, and in particular every
immersion, is quasi-separated.

(ii) A composite of quasi-separated morphisms is quasi-separated.
(iii) Every base extension of a quasi-separated morphism is quasi-separated.
(iv) The product f ×S g of quasi-separated S-morphisms is quasi-separated.
(v) If g ◦ f is quasi-separated, then so is f .
(vi) If f is quasi-separated, then so is fred.

Corollary (1.2.3). — (i) If X is quasi-separated then every morphism f : X → Y is quasi-
separated.

(ii) If Y is quasi separated, then f : X → Y is quasi-separated if and only if X is quasi-
separated.

Proposition (1.2.4). — Given f : X → Y and g : Y → Z, if g is quasi-separated and g ◦ f
is quasi-compact, then f is quasi-compact.

Proposition (1.2.5). — Given f : X → Y and g : Y ′ → Y , let X ′ = X ×Y Y ′ and f ′ =
f(Y ′) : X ′ → Y ′. If g is quasi-compact and surjective, and f ′ is quasi-separated, then so is f .

Proposition (1.2.6). — Let Y be covered by quasi-separated open sub-preschemes Uα. Then
f : X → Y is quasi-separated if and only if each open prescheme f−1(Uα) → Uα is quasi-
separated.

Proposition (1.2.7). — Let X be covered by quasi-compact open subsets Uα. The following
are equivalent:

a) X is quasi-separated;
b) for every quasi-compact open subset U ⊆ X, the inclusion U → X is quasi-separated;
b’) every intersection of two quasi-compact open subsets of X is quasi-compact;
c) each Uα ∩ Uβ is quasi-compact.

Corollary (1.2.8). — If the underlying space of X is locally Noetherian then X is quasi-
separated, and every morphism X → Y is quasi-separated.

Proposition (1.2.9). — Given f ′ : X ′ → Y and f ′′ : X ′′ → Y , let X = X ′ t X ′′ and let
f : X → Y be the morphism which is f ′ on X ′ and f ′′ on X ′′. Then f is quasi-separated if
and only if both f ′ and f ′′ are.

1.3. Morphisms locally of finite type.
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(1.3.1). Let B be a finitely generated A algebra. Recall that for any A algebra A′, B⊗AA′
is a finitely generated A′ algebra, and if C is a finitely generated B algebra then C is a
finitely generated A algebra.

For an affine scheme X = Spec(A), we write A(X) = Γ(X,OX) ∼= A.

Definition (1.3.2). — A morphism f : X → Y is of finite type at x ∈ X if there exist open
affine neighborhoods x ∈ U ∈ X and f(x) ∈ V ⊆ Y such that A(U) is a finitely generated
A(V ) algebra. We say f is locally of finite type if f is of finite type at every x ∈ X.

Proposition (1.3.3). — If Y is locally Noetherian and f : X → Y is locally of finite type,
then X is locally Noetherian.

Propsition (1.3.4). — (i) Every immersion is locally of finite type.
(ii) A composite of morphisms locally of finite type is locally of finite type.
(iii) Every base extension of a morphism locally of finite type is locally of finite type.
(iv) The product f ×S g of S-morphisms locally of finite type is locally of finite type.
(v) If g ◦ f is locally of finite type, then so is f .
(vi) If f is locally of finite type, then so is fred.

Corollary (1.3.5). — If f : X → Y is locally of finite type, and Y ′ → Y is a morphism
with Y ′ locally Noetherian, then X ×Y Y ′ is locally Noetherian.

Proposition (1.3.6). — The morphism Spec(B) → Spec(A) corresponding to a ring ho-
momorphism φ : A → B is locally of finite type if and only if B is a finitely generated A
algebra.

[“If” is obvious, but “only if” has algebraic content.]

Proposition (1.3.7). — A morphism f : X → Y locally of finite type is surjective if and
only if it induces a surjective map of geometric points X(K)→ Y (K) for every algebraically
closed field K.

(1.3.8). An A algebra B is called essentially of finite type if it is a localization B = S−1C
of a finitely generated A algebra C.

Proposition (1.3.9). — (i) If C is a B algebra essentially of finite type and B is an A
algebra essentially of finite type, then C is an A algebra essentially of finite type.

(ii) If B is an A algebra essentially of finite type and A′ is any A algebra, then B′ = B⊗AA′
is an A′ algebra essentially of finite type.

(1.3.10). A local A algebra B essentially of finite type is always of the form Cq for a finitely
generated A algebra C and prime ideal q ⊆ C. Let p be the preimage of q in A and set
S = A \ p. Then Cq is also the local ring at a prime ideal of S−1C, which is a finitely
generated algebra over Ap = S−1A. We get a local homomorphism of local rings Ap → B,
making B an Ap algebra essentially of finite type.

Proposition (1.3.11). — In the preceding, one can take C to be a polynomial ring A[t1, . . . , tn].

1.4. Morphisms locally of finite presentation.
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(1.4.1). A (commutative) A algebra B is finitely presented if it is a quotient of a polynomial
ring B = A[t1, . . . , tn]/I, where I is a finitely generated ideal. If this holds, then B ⊗A A′ is
a finitely presented A′ algebra, for any A algebra A′. If B is a finitely presented A algebra
and C is a finitely presented B algebra, then C is a finitely presented B algebra. If A is
Noetherian, then every finitely generated A algebra is finitely presented.

Definition (1.4.2). — A morphism f : X → Y is of finite presentation at x ∈ X if there
exist open affine neighborhoods x ∈ U ∈ X and f(x) ∈ V ⊆ Y such that A(U) is a finitely
presented A(V ) algebra. We say f is locally of finite presentation if f is of finite presentation
at every x ∈ X.

If Y is locally Noetherian, then f is locally of finite presentation if and only if it is locally
of finite type.

Proposition (1.4.3). — (i) Every local isomorphism is locally of finite presentation.
(ii) A composite of morphisms locally of finite presentation is locally of finite presentation.
(iii) Every base extension of a morphism locally of finite presentation is locally of finite

presentation.
(iv) The product f ×S g of S-morphisms locally of finite presentation is locally of finite

presentation.
(v) If g ◦ f is locally of finite presentation and g is locally of finite type, then f is locally

of finite presentation.

Proposition (1.4.4). — Let B be an A algebra of the form A[t1, . . . , tn]/I. Then B is a
finitely presented A algebra if and only if I is finitely generated.

[“If” is obvious, but “only if” has algebraic content.]

Corollary (1.4.5). — Let j : X → Y be an immersion, U ⊆ Y an open subset such that
j(X) is closed in U , and J ⊆ OU the quasi-coherent ideal sheaf which defines j(X) as a
closed subscheme of U . Then j is locally of finite presentation if and only if J is locally a
finitely generated OU module.

Proposition (1.4.6). — The morphism Spec(B)→ Spec(A) corresponding to a ring homo-
morphism φ : A → B is locally of finite presentation if and only if B is a finitely presented
A algebra.

Proposition (1.4.7). — let B be an A algebra finitely generated as an A module. Then B
is a finitely presented A algebra if and only if it is a finitely presented A module.

1.5. Morphisms of finite type.

Proposition (1.5.1). — Given a morphism f : X → Y and a covering of Y by open affines
Uα, the following are equivalent:

a) f is locally of finite type and quasi-compact;
b) each f−1(Uα) is a finite union of affines Vβ such that A(Vβ) is a finitely generated A(Uα)

algebra;
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c) for every open affine U ⊆ Y , f−1(U) is a finite union of affines Vβ such that A(Vβ) is
a finitely generated A(U) algebra;

Definition (1.5.2). — A morphism satisfying the conditions in (1.5.1) is of finite type.

Proposition (1.5.3). — If Y is Noetherian and f : X → Y is of finite type, then X is
Noetherian.

Propsition (1.5.4). — (i) Every quasi-compact immersion j : X → Y is of finite type. In
particular, this holds if j is a closed immersion, or the underlying space of X is Noetherian,
of that of Y is locally Noetherian.

(ii) A composite of morphisms finite type is of finite type.
(iii) Every base extension of a morphism locally of finite type is locally of finite type.
(iv) The product f ×S g of S-morphisms locally of finite type is locally of finite type.
(v) Given f : X → Y and g : Y → Z, if g◦f is of finite type, and either g is quasi-separated

or the underlying space of X is locally Noetherian, then f is of finite type.
(vi) If f is of finite type, then so is fred.
[EGA has “X Noetherian” in (v), but “locally Noetherian” suffices, by (1.1.2, v) and

(1.3.4, v).]

Corollary (1.5.5). — If f : X → Y is of finite type, and Y ′ → Y is a morphism with Y ′

Noetherian, then X ×Y Y ′ is Noetherian.

Corollary (1.5.6). — If X is of finite type over a locally Noetherian prescheme S then
every S-morphism f : X → Y is of finite type.

Proposition (1.5.7). — The morphism Spec(B) → Spec(A) corresponding to a ring ho-
momorphism φ : A→ B is of finite type if and only if B is a finitely generated A algebra.

1.6. Morphisms of finite presentation.

Definition (1.6.1). — A morphism f : X → Y is of finite presentation, or X is of finite
presentation over Y , if the following conditions hold:

(i) f is locally of finite presentation;
(ii) f is quasi-compact (or equivalently, given (i), of finite type);
(iii) f is quasi-separated.
Condition (iii) follows if f is separated orX is locally Noetherian. If Y is locally Noetherian

then X is of finite presentation if and only if it is of finite type.

Proposition (1.6.2). — (i) Every quasi-compact immersion locally of finite presentation
(in particular, every quasi-compact open immersion) is of finite presentation.

(ii) A composite of morphisms of finite presentation is of finite presentation.
(iii) Every base extension of a morphism of finite presentation is of finite presentation.
(iv) The product f ×S g of S-morphisms of finite presentation is of finite presentation.
(v) If g◦f is of finite presentation and g is quasi-separated and locally of finite presentation,

then f is of finite presentation.
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If f is of finite presentation, then so is its restriction to f−1(V ), for every open V ⊆ Y .
Conversely, if Y has a covering by open sets Uα such that each restriction f−1(Uα)→ Uα is
of finite presentation, then f is of finite presentation. In other words, this condition is local
on Y .

Corollary (1.6.3). — The morphism Spec(B) → Spec(A) corresponding to a ring ho-
momorphism φ : A → B is of finite presentation if and only if B is a finitely presented A
algebra.

Remark (1.6.4). — Condition (iii) in the definition (1.6.1) is not superfluous. Consider
for example an affine scheme Y whose underlying space is not Noetherian and a non-quasi-
compact open U ⊆ Y . Let X be the gluing of two copies of Y along U , with the map
f : X → Y that restricts to the identity map on each copy of Y . Then f is quasi-compact
(as one can see directly) and locally of finite presentation (being a local isomorphism), but
not quasi-separated.

Proposition (1.6.5). — Given f ′ : X ′ → Y and f ′′ : X ′′ → Y , let X = X ′ t X ′′ and let
f : X → Y be the morphism which is f ′ on X ′ and f ′′ on X ′′. Then f is of finite presentation
if and only if both f ′ and f ′′ are.

1.7. Improvements of earlier results.

A number of results appearing earlier in EGA can be improved by weakening the hy-
potheses, for example by replacing “separated” with “quasi-separated” or “of finite type”
with “locally of finite type.”

I will not reproduce the full list here, except to note that one particularly important result
(I, 9.2.1) can be restated more simply as follows. If f is quasi-compact and quasi-separated,
then the direct image functor f∗ preserves quasi-coherent sheaves.


