SYNOPSIS OF MATERIAL FROM EGA CHAPTER IV, §1.1-1.7

1. RELATIVE FINITENESS CONDTIONS. CONSTRUCTIBLE SUBSETS OF PRESCHEMES.

Some of the concepts to follow were introduced in Chapter I, §6, but are given a more
compete treatment here.

1.1. Quasi-compact morphisms.

Definition (1.1.1). — A morphism f: X — Y is quasi-compact if f~1(U) is quasi-compact
for every quasi-compact open subset U € Y.

If B is a base of the topology on Y consisting of open affines, then f is quasi-compact if
and only if f~1(V) has a finite covering by open affines for all V' € B.

If f is quasi-compact, then so is its restriction to f~1(V), for every open V C Y. Con-
versely, if Y has a covering by open sets U, such that each restriction f~}(U,) — U, is
quasi-compact, then f is quasi-compact.

Proposition (1.1.2). — (i) Every closed immersion X — Y is quasi-compact. If the
underlying space of Y is locally Noetherian, or that of X is Noetherian, then every immersion
is quasi-compact. [Actually, if the underlying space of X is Noetheian, then every open subset
of X is quasi-compact, hence every morphism X — Y is quasi-compact.]

(ii) A composite of quasi-compact morphisms is quasi-compact.

(i1i) Every base extension of a quasi-compact morphism is quasi-compact.

(iv) The produc f Xg g of quasi-compact S-morphisms is quasi-compact.

(v) Given f: X - Y and g: Y — Z, if go f is quasi-compact, and either g is separated
or the underlying space of X is locally Noetherian, then f is quasi-compact.

(vi) [ is quasi-compact if and only if freq is.

Proposition (1.1.3). — Given f: X - Y and g: Y — Z, if go f is quasi-compact, and f
18 surjective, then g is quasi-compact.
This generalizes (1.1.2, vi).

Corollary (1.14). — Given f: X = Y and g: Y = Y, let X' = X Xy Y’ and f' =
fory: X' =Y’ If g is quasi-compact and surjective, then [’ quasi-compact implies f quasi-
compact. If g is surjective, then f' dominant implies f dominant.

A generic point of an irreducible component of X (minimal prime of R in the case X =
Spec(R)) is called a mazimal point of X.

Proposition (1.1.5). — Suppose f: X — Y is quasi-compact. The following are equivalent:
a) f is dominant;

b) for every mazimal point y € Y, f~1(y) # 0;

c) for every mazimal point y € Y, f~1(y) contains a mazimal point of X.

Proposition (1.1.6). — Given f': X' =Y and f": X" = Y, let X = X' U X" and let
f: X — Y be the morphism which is f' on X' and f" on X". Then f is quasi-compact if

and only if both f' and " are.
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1.2. Quasi-separated morphisms.

Definition (1.2.1). — A morphism f: X — Y is quasi-separated, or the prescheme X is
quasi-separated over Y, if the diagonal morphisms Ay: X — X xy X is quasi-compact. A
prescheme is called quasi-separated if it is quasi-separated over Spec(Z).

By (1.1.2, (i)), separated morphisms are quasi-separated and schemes [in EGA this means
separated preschemes| are quasi-separated.

Proposition (1.2.2). — (i) Every monomorphism of preschemes, and in particular every
immersion, s quasi-separated.

(ii) A composite of quasi-separated morphisms is quasi-separated.

(111) Every base extension of a quasi-separated morphism is quasi-separated.

(iv) The product f X g of quasi-separated S-morphisms is quasi-separated.

(v) If g o f is quasi-separated, then so is f.

(vi) If f is quasi-separated, then $o s freq.

Corollary (1.2.3). — (i) If X is quasi-separated then every morphism f: X — Y is quasi-
separated.

(1) If Y is quasi separated, then f: X — Y is quasi-separated if and only if X is quasi-
separated.

Proposition (1.2.4). — Given f: X =Y and g: Y — Z, if g is quasi-separated and g o f
s quasi-compact, then [ is quasi-compact.

Proposition (1.2.5). — Gwen f: X - Y and g: Y' = Y, let X' = X Xy Y and f' =
fory: X' =Y’ If g is quasi-compact and surjective, and f' is quasi-separated, then so is f.

Proposition (1.2.6). — LetY be covered by quasi-separated open sub-preschemes U,. Then
f: X — Y is quasi-separated if and only if each open prescheme f~Y(U,) — U, 1is quasi-
separated.

Proposition (1.2.7). — Let X be covered by quasi-compact open subsets U,. The following
are equivalent:

a) X is quasi-separated;

b) for every quasi-compact open subset U C X, the inclusion U — X is quasi-separated;

b’) every intersection of two quasi-compact open subsets of X is quasi-compact;

¢) each U, NUg is quasi-compact.

Corollary (1.2.8). — If the underlying space of X is locally Noetherian then X is quasi-
separated, and every morphism X — Y is quasi-separated.

Proposition (1.2.9). — Given f': X' = Y and f": X" = Y, let X = X' U X" and let
f: X =Y be the morphism which is f" on X' and f" on X". Then f is quasi-separated if
and only if both f' and " are.

1.3. Morphisms locally of finite type.
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(1.3.1). Let B be a finitely generated A algebra. Recall that for any A algebra A’, B4 A’
is a finitely generated A’ algebra, and if C is a finitely generated B algebra then C is a
finitely generated A algebra.

For an affine scheme X = Spec(A), we write A(X) =I'(X,0x) = A.

Definition (1.3.2). — A morphism f: X — Y is of finite type at v € X if there exist open
affine neighborhoods z € U € X and f(z) € V C Y such that A(U) is a finitely generated
A(V) algebra. We say f is locally of finite type if f is of finite type at every z € X.

Proposition (1.3.3). — IfY is locally Noetherian and f: X —'Y is locally of finite type,
then X 1is locally Noetherian.

Propsition (1.3.4). — (i) Every immersion is locally of finite type.

(ii) A composite of morphisms locally of finite type is locally of finite type.

(11i) Every base extension of a morphism locally of finite type is locally of finite type.
(iv) The product f xgs g of S-morphisms locally of finite type is locally of finite type.
(v) If g o f is locally of finite type, then so is f.

(vi) If f is locally of finite type, then o0 is freqd-

Corollary (1.3.5). — If f: X — Y s locally of finite type, and Y' — Y is a morphism
with Y’ locally Noetherian, then X Xy Y’ is locally Noetherian.

Proposition (1.3.6). — The morphism Spec(B) — Spec(A) corresponding to a ring ho-
momorphism ¢: A — B s locally of finite type if and only if B is a finitely generated A
algebra.

[“If” is obvious, but “only if” has algebraic content.]

Proposition (1.3.7). — A morphism f: X — Y locally of finite type is surjective if and
only if it induces a surjective map of geometric points X (K) — Y (K) for every algebraically
closed field K.

(1.3.8). An A algebra B is called essentially of finite type if it is a localization B = S~1C
of a finitely generated A algebra C.

Proposition (1.3.9). — (1) If C is a B algebra essentially of finite type and B is an A
algebra essentially of finite type, then C is an A algebra essentially of finite type.

(i1) If B is an A algebra essentially of finite type and A’ is any A algebra, then B = B4 A’
is an A" algebra essentially of finite type.

(1.3.10). A local A algebra B essentially of finite type is always of the form C; for a finitely
generated A algebra C' and prime ideal ¢ C C. Let p be the preimage of q in A and set
S = A\ p. Then C; is also the local ring at a prime ideal of S™'C, which is a finitely
generated algebra over A, = S7'A. We get a local homomorphism of local rings A, — B,
making B an A, algebra essentially of finite type.

Proposition (1.3.11). — In the preceding, one can take C' to be a polynomial ring Alty, ..., t,].

1.4. Morphisms locally of finite presentation.



(1.4.1). A (commutative) A algebra B is finitely presented if it is a quotient of a polynomial
ring B = Alty,...,t,]/I, where I is a finitely generated ideal. If this holds, then B ®4 A’ is
a finitely presented A’ algebra, for any A algebra A’. If B is a finitely presented A algebra
and C' is a finitely presented B algebra, then C' is a finitely presented B algebra. If A is
Noetherian, then every finitely generated A algebra is finitely presented.

Definition (1.4.2). — A morphism f: X — Y is of finite presentation at v € X if there
exist open affine neighborhoods x € U € X and f(z) € V C Y such that A(U) is a finitely
presented A(V') algebra. We say f is locally of finite presentation if f is of finite presentation
at every r € X.

If Y is locally Noetherian, then f is locally of finite presentation if and only if it is locally
of finite type.

Proposition (1.4.3). — (i) Every local isomorphism is locally of finite presentation.

(i1) A composite of morphisms locally of finite presentation is locally of finite presentation.

(11i) Every base extension of a morphism locally of finite presentation is locally of finite
presentation.

(iv) The product f Xg g of S-morphisms locally of finite presentation is locally of finite
presentation.

(v) If g o f is locally of finite presentation and g is locally of finite type, then f is locally
of finite presentation.

Proposition (1.4.4). — Let B be an A algebra of the form Alty,...,t,]/I. Then B is a
finitely presented A algebra if and only if I is finitely generated.
[“If” is obvious, but “only if” has algebraic content.]

Corollary (1.4.5). — Let j: X — Y be an immersion, U CY an open subset such that
J(X) is closed in U, and J C Oy the quasi-coherent ideal sheaf which defines j(X) as a
closed subscheme of U. Then j is locally of finite presentation if and only if J is locally a
finitely generated Oy module.

Proposition (1.4.6). — The morphism Spec(B) — Spec(A) corresponding to a ring homo-
morphism ¢: A — B is locally of finite presentation if and only if B is a finitely presented
A algebra.

Proposition (1.4.7). — let B be an A algebra finitely generated as an A module. Then B
1s a finitely presented A algebra if and only if it is a finitely presented A module.

1.5. Morphisms of finite type.

Proposition (1.5.1). — Given a morphism f: X — Y and a covering of Y by open affines
U,, the following are equivalent:

a) f is locally of finite type and quasi-compact;

b) each f~1(U,) is a finite union of affines Vi such that A(Vy) is a finitely generated A(U,)

algebra;
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c) for every open affine U CY, f~HU) is a finite union of affines Vg such that A(Vj) is
a finitely generated A(U) algebra;

Definition (1.5.2). — A morphism satisfying the conditions in (1.5.1) is of finite type.

Proposition (1.5.3). — If Y is Noetherian and f: X — Y is of finite type, then X is
Noetherian.

Propsition (1.5.4). — (i) Every quasi-compact immersion j: X — Y is of finite type. In
particular, this holds if j is a closed immersion, or the underlying space of X is Noetherian,
of that of Y s locally Noetherian.

(ii) A composite of morphisms finite type is of finite type.

(11i) Every base extension of a morphism locally of finite type is locally of finite type.

(iv) The product f xg g of S-morphisms locally of finite type is locally of finite type.

(v) Given f: X =Y and g: Y — Z, if gof is of finite type, and either g is quasi-separated
or the underlying space of X is locally Noetherian, then f is of finite type.

(vi) If f is of finite type, then $o0 is freq-

[EGA has “X Noetherian” in (v), but “locally Noetherian” suffices, by (1.1.2, v) and
(1.3.4, v).]

Corollary (1.5.5). — If f: X = Y is of finite type, and Y' — Y is a morphism with Y’
Noetherian, then X xy Y’ is Noetherian.

Corollary (1.5.6). — If X is of finite type over a locally Noetherian prescheme S then
every S-morphism f: X — Y is of finite type.

Proposition (1.5.7). — The morphism Spec(B) — Spec(A) corresponding to a ring ho-
momorphism ¢: A — B is of finite type if and only if B is a finitely generated A algebra.

1.6. Morphisms of finite presentation.

Definition (1.6.1). — A morphism f: X — Y is of finite presentation, or X is of finite
presentation over Y, if the following conditions hold:

(i) f is locally of finite presentation;

(i) f is quasi-compact (or equivalently, given (i), of finite type);

(iii) f is quasi-separated.

Condition (iii) follows if f is separated or X is locally Noetherian. If Y is locally Noetherian
then X is of finite presentation if and only if it is of finite type.

Proposition (1.6.2). — (i) Every quasi-compact immersion locally of finite presentation
(in particular, every quasi-compact open immersion) is of finite presentation.

(ii) A composite of morphisms of finite presentation is of finite presentation.

(11i) Every base extension of a morphism of finite presentation is of finite presentation.

(iv) The product f Xg g of S-morphisms of finite presentation is of finite presentation.

(v) If go f is of finite presentation and g is quasi-separated and locally of finite presentation,
then f s of finite presentation.



If f is of finite presentation, then so is its restriction to f~1(V), for every open V C Y.
Conversely, if Y has a covering by open sets U,, such that each restriction f~*(U,) — U, is
of finite presentation, then f is of finite presentation. In other words, this condition is local
onY.

Corollary (1.6.3). — The morphism Spec(B) — Spec(A) corresponding to a ring ho-
momorphism ¢: A — B is of finite presentation if and only if B is a finitely presented A
algebra.

Remark (1.6.4). — Condition (iii) in the definition (1.6.1) is not superfluous. Consider
for example an affine scheme Y whose underlying space is not Noetherian and a non-quasi-
compact open U C Y. Let X be the gluing of two copies of Y along U, with the map
f: X — Y that restricts to the identity map on each copy of Y. Then f is quasi-compact
(as one can see directly) and locally of finite presentation (being a local isomorphism), but
not quasi-separated.

Proposition (1.6.5). — Given f': X' =Y and f": X" = Y, let X = X' U X" and let
f: X =Y be the morphism which is f" on X' and " on X”. Then f is of finite presentation
if and only if both f' and f" are.

1.7. Improvements of earlier results.

A number of results appearing earlier in EGA can be improved by weakening the hy-
potheses, for example by replacing “separated” with “quasi-separated” or “of finite type”
with “locally of finite type.”

I will not reproduce the full list here, except to note that one particularly important result
(I, 9.2.1) can be restated more simply as follows. If f is quasi-compact and quasi-separated,
then the direct image functor f, preserves quasi-coherent sheaves.



