SYNOPSIS OF MATERIAL FROM EGA CHAPTER II, §4

4. PROJECTIVE BUNDLES. AMPLE SHEAVES

4.1. Definition of projective bundles.

Definition (4.1.1). — Let S(&) be the symmetric algebra of a quasi-coherent Oy-module.
The projective bundle over'Y defined by £ is the Y-scheme P(€) = Proj(S(£)). The twisting
sheaf O(1) on P(€) is its fundamental sheaf.

If Y is affine, £ = E, we also write P(E). If £ = O%, we put P! = P(£), also denoted
P" 1 if Y = Spec(A).

(4.1.2). A surjective homomorphism & — F induces a closed immersion j: @ = P(F) —
P(&) = P, such that j*Op(n) = Og(n) [(3.6.2-3)].

(4.1.3). Given a morphism ¢: Y' — Y, we have P’ = P(¢*€) = P(£)®y Y’, and Op/(n) =
Op(n) SQy Oy/ [(35374)]

Proposition (4.1.4). — If L is invertible, we have an isomorphism i: P =P(£) - P(E ®
L)=Q, and i*Og(n) = Op(n) @y L™ [(3.1.8 (i), (3.2.10)].

(4.1.5). Let p: P = P(£) — Y be the structure morphism. Since & = S(€);, we have
canonical homomorphisms «a;: € — p.Op(1) (3.3.2) and [by (0, 4.4.3)]

(4.1.5.1) ol p*(€) = 0p(1).
Proposition (4.1.6). — The canonical homomorphism (4.1.5.1) is surjective [(3.2.4)].

4.2. Morphisms from a prescheme to a projective bundle.

(4.2.1). Keep the notation of (4.1.5). Let ¢: X — Y be a Y-prescheme, 7: X — P a
Y-morphism. Then £, = r*Op(1) is an invertible sheaf on X, and we deduce from (4.1.5.1)
a canonical surjection

(4.2.1.1) Or: ¢ (E) = L.

Suppose Y = Spec(A4), £ = E, f ek sor Y (Dy(f)) = Xy () by (2.6.3), U = Spec(B) C
X¢>E.(f)' On U, r corresponds to a ring homomorphism S5 — B, where S = S(E). We have
¢(E)U = (E®4 B) and L,|U = L,, where L, = S(1)(y) ®s,, B. Then ¢, corresponds to
E®sB— L.givenby x @ 1 — (f/1) ® (x/f).

(4.2.2). Conversely, suppose given ¢: X — Y, an invertible Ox-module £, and a homo-
morphism ¢: ¢*(£) — L. Then we get an Ox-algebra homomorphism v: ¢*(S(€)) — S(L),
inducing a Y-morphism r,: G(¢) — P(€) as in (3.7.1). If ¢ is sujective, then so is ¢, and
Tz 1s defined on all of X.

Proposition (4.2.3). — Givenq: X — Y and a quasi-coherent Oy -module £, Y -morphisms
r: X — P(E) correspond bijectively to equivalence classes of surjective Ox-module homo-
morphisms ¢: ¢*(€) — L with L invertible, where (L, ), (L, ¢") are equivalent if there is an
isomoprhism 7: L — L' such that ¢’ = 70 ¢.
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Theorem (4.2.4). — The set of Y -sections of P(E) corresponds bijectively with the set of
quasi-coherent subsheaves F C & such that €/F is invertible. [Special case of (4.2.3) with
X=Y]

If Y = Spec(k) this identifies the k-points of PZ_I with the set of codimension-1 subspaces
F C k™.

Remark (4.2.5). — Given a quasi-coherent sheaf & on Y, we can assign to each Y-
prescheme X — Y the set of quasi-coherent subsheaves F C ¢*(€) such that ¢*(&)/F is

q
invertible. If ¢: X’ — X is a Y-morphism, then ¢*F is a subsheaf of (qi)*€ with the same
property, making this assignment a functor from Y-preschemes to sets. Proposition (4.2.3)
says that P(€) represents this functor.

[EGA says at this point that we will see later how to define Grassmann schemes in a
similar manner, but no later section covers this.]

Corollary (4.2.6). — Suppose that every invertible Oy -module is trivial. Let A = T'(Y, Oy ),
and V' = Homop, (€, Oy), regarded as an A-module. Let V* be the subset of surjections in
V', A* the group of units in A. Then the set of Y -sections of P(E) is identified with V*/A*.

The hypothesis holds for any local scheme Y (I, 2.4.8). For any extension K of k(y), the
set of K-points of the fiber p~1(y) of P(€) is identified (4.1.3.1) with the projective space of
codimension-1 subspaces in the vector space £(y) @) K, where £(y) = ERo, k(y) = £/m,E.

If Y = Spec(A) and all invertible Oy-modules are trivial [e.g., if A is a UFD], then when
E =0}, we have V = A" in (4.2.6), V* consists of systems (fi, ..., f,) which generate the
unit ideal in A, and two such define the same Y-section of P”;" if they differ by multipication
by a unit of A.

Thus P(€) generalizes the classical concept of projective space.

Remark (4.2.7). — [Promising to give details in a future Chapter V, EGA briefly discusses
here how the Picard group of invertible sheaves on P(€) is related to that of Y, and how it
follows that locally the automorphism group of P(€) over Y looks like Aut(€)/O5 ]

(4.2.8). Keep the notation of (4.2.1). If u: X’ — X is a morphism, and r: X — P
corresponds to ¢: ¢*(£) — L, then r o u corresponds to u*(9).

(4.2.9). Suppose v: £ — F is surjective, and let j: P(F) — P(&) be the correspond-
ing closed immersion (4.1.2). If r: X — P(F) corresponds to ¢: ¢*(F) — L, then jor
corresponds to ¢ o ¢*(v).

(4.2.10). Given ¢: Y" — Y and r: X — P, the base extension ry+: Xy — P’ =P(&'),
where & = ¢*(€), corresponds to ¢y = ¢ ®o, lo,,.

4.3. The Segre morphism.

(4.3.1). Let £, F be quasi-coherent Oy-modules. Set P, = P(E), P, = P(F), with
structure morphisms p;: P, — Y. Let Q = P, xy P, with projections ¢;: Q — P;. Let
L = Op/(1) ®y Op,(1) = ¢;(Op,(1)) ®o, ¢5(Op,(1)), an invertible Og-module. Then r =
P1 O @1 = p2 o @ is the structure morphism @ — Y, and the canonical surjections pf(€) —



Op, (1) give rise to a surjection

(4.3.1.1) s: 1€ ®o, F) = L.

By (4.2.2) this induces a morphism, the Segre morphism

(4.3.1.2) (: P(€) xy P(F) - P(€ ®o, F).

Set P = P(€ ®o, F). Making things explicit for Y affine, £ = E, F = ﬁ, one shows that

C_l(Px@)y) = (P1>:0 Xy (PQ)Z,H

which comes down to the following easy lemma.

Lemma (4.3.2). — Given A-algebras B, B', and elementst € B, t € B’, one has D(t ®
t') = D(t) xy D(t') in Spec(B) x 4 Spec(B’).

Proposition (4.3.3). — The Segre morphism is a closed immersion.

(4.3.4). The Segre morphism is functorial with respect to closed immersions P(&') —
P(&), P(F') — P(F) induced by surjections &€ — &', F — F'.
(4.3.5). The Segre morphism commutes with base extension by ¢: Y — Y.

Remark (4.3.6). — There is also a canonical closed immersion of the disjoint union
P(E)[[P(F) into P(€ @ F).

4.4. Immersions into projective bundles. Very ample sheaves.

Proposition (4.4.1). — LetY be a quasi-compact scheme or a prescheme with Noetherian
underlying space, q: X — 'Y a morphism of finite type, L an invertible Ox-module.

(i) Let S be a graded quasi-coherent Oy-algebra, and : ¢*(S) — S(L) a graded Ox-
algebra homomorphism. Then 1, is an everywhere defined immersion iff there exist n and
a quasi-coherent submodule £ of finite type in S,, such that the induced homomorphism
q*(E) — LB™ is surjective and the corresponding morphism r: X — P(E) is an immersion.

(i1) Let F be a quasi-coherent Oy-module and ¢: ¢*(F) — L a surjection. Then rr 4 is
an immersion if and only if there is a quasi-coherent sub-sheaf &€ C F of finite type such
that ¢': ¢*(€) — L is surjective and rp g is an immersion.

[The proof uses (3.8.5).]

Definition (4.4.2). — Given ¢: X — Y, an invertible O x-module L is very ample (for q)
if there exists a quasi-coherent Oy-module £ and an immersion of Y-schemes i: X — P =
P(&) such that £ =i*Op(1).

Equivalently, there exists a surjection ¢: ¢*(€) — L such that r,, is an immersion. Note
that the existence of a very ample sheaf entails that ¢ must be separated (3.1.3).

Corollary (4.4.3). — If L=i*Op(1) for an immersion i: X — P = Proj(S), where S is
a graded quasi-coherent Oy -algebra generated by S1, then L is very ample.



Proposition (4.4.4). — Suppose q: X — Y quasi-compact, L an invertible Ox-module.
The following are equivalent:

(a) L is very ample for q;

(b) q.(L) is quasi-coherent, the canonical homomorphism o: q*(q.(L)) — L is surjective,
and rz o X — P(q.(L)) is an immersion.

Recall that since ¢ is quasi-compact, ¢.(£) is quasi-coherent if ¢ is separated.

Corollary (4.4.5). — Suppose q quasi-compact. If there exists an open covering (U,) of Y
such that Llqg=1(U,) is very ample relative to Uy, for all o, then L is very ample.

Proposition (4.4.6). — Let Y be a quasi-compact scheme or a prescheme with Noetherian
underlying space, q: X — Y a morphism of finite type, L an invertible Ox-module. Then
the conditions of (4.4.4) are also equivalent to:

(a') There exists an Oy-module € of finite type and a surjection ¢: ¢*(E) — L such that
Tz 1S an tmmersion.

(V') There exists a quasi-coherent sub-Oy -module € C q.(L) of finite type with the property
in (d).

Corollary (4.4.7). — Suppose Y is a quasi-compact scheme or a Noetherian prescheme. If
L is very ample for q, then there exists a graded quasi-coherent Oy -algebra S, such that S;

is of finite type and generates S, and an open, dominant Y -immersion i: X — P = Proj(S)
such that £ = i*Op(1).

Proposition (4.4.8). — Let L be very ample for q: X — Y, L' any invertible Ox-module
such that there ezists a quasi-coherent Oy -module € and a surjection ¢*(E€) — L'. Then
L @0, L is very ample.

Corollary (4.4.9). — Let q: X — Y be a morphism.

(i) Given an invertible Ox-module L and invertible Oy -module M, L is very ample if and
only if L Re, ¢*(M) is.

(i1) If L and L' are very ample, then so is L o, L'; in particular L is very ample for
allmn > 0.

Proposition (4.4.10). — (i) Every invertible Oy -module L is very ample for the identity
map ly: Y =Y.

(7) Given f: X —Y and an immersion j: X' — X, if L is very ample for f, then j*L
1s very ample for f o j.

(ii) Let Z be quasi-compact, f: X — Y a morphism of finite type, g: Y — Z a quasi-
compact morphism, L very ample for f, K very ample for g. Then there exists ng > 0 such
that L @ f*(K®") is very ample for go f, for all n > ny.

(i1i) Given f: X =Y, g: Y' =Y, if L is very ample for f, then L ®y Oy is very ample
for forry.

(iv) Given two S-morphisms fi: X; — Y, (i = 1,2), if L; is very ample for f;, then
L1 Rg Ly is very ample for fi Xg fa.

(v) Given f: X =Y, g:Y — Z, if L is very ample for go f, then L is very ample for f.
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(vi) If L is very ample for f: X — Y, then j*L is very ample for frea, where j: Xieq = X
18 the canonical injection.

[The proof of (ii) uses the following lemma, proved in §4.5]

Lemma (4.4.10.1).— Let Z be a quasi-compact scheme or a prescheme with Noetherian
underlying space, g: Y — Z a quasi-compact morphism, IKC very ample for g, £ a quasi-
coherent Oy -module of finite type. Then there exists mq such that for all m > mg, & is
isomorphic to a quotient of an Oy-module of the form ¢*(F) ®o, K®™, where F is a
quasi-coherent Oz-module of finite type (depending on m).

[Then it is shown that if f*(£) — £ induces an immersion X — P(&), and there is a
quasi-coherent Oz-module F and a surjection ¢*(F) — £ ® K=, then £ ® K®™+Y is very
ample for X — Z.]

Proposition (4.4.11). — Let X" = X || X' be a prescheme disjoint union, f": X" — Y
a morphism restricting to morphisms f: X =Y, f': X' =Y. Let L, L be invertible Ox,
Oxr-modules, L" the invertible Ox»-module restricting to L, L'. Then L" is very ample iff
L and L' are very ample.

4.5. Ample sheaves.

(4.5.1). Let £ be an invertible Ox-module. Then S = @, ., (X, L®") is a positively
graded subring of ', (£) (0, 5.4.6). Let p: X — Spec(Z) be the structure morphism. We have
a canonical graded Ox-algebra homomorphism ¢: p*(S) — S(£) = D, LZ" by adjointness
of p. = I'(X, —) and p*. Then (3.7.1) provides a canonical morphism G(g) — Proj(95).

When £ is understood, define F(n) = F o, LZ" for any Ox-module F.

Theorem (4.5.2). — Let X be a quasi-compact scheme or a prescheme with Noetherian
underlying space, and L, S as above. The following are equivalent:

(a) The sets X for homogeneous f € Sy form a base of the topology on X.

(d) Those Xy which are affine cover X.

(b) The canonical morphism G(g) — Proj(S) is defined on all of X and is a dominant
open 1mmersion.

(V') G(g) — Proj(S) is defined on all of X and is a homeomorphism of X onto a subspace
of Proj(S).

(c) For any quasi-coherent Ox-module F, let F,, be the submodule of F(n) generated by
its global sections on X. Then F is the sum of its sub-Ox-modules of the form F,(—n), as
n ranges over all positive integers.

(c') Property (c) holds for quasi-coherent sheaves of ideals in Ox.

Moreover, given homogeneous elements (f,) in Sy such that Xy, is affine, the canonical
morphism X — Proj(S) restricts to an isomorphism \J, Xy, = U, D+(fa) € Proj(S).

[Proof: The preimage of D, (f) is Xy, and G(¢) is the union of these. On any affine U C X
such that L|U = Oy is trivial we have Xy N U = Up for a section f’ of Oy corresponding
to f. So (b) = (V') = (a) = (a’). By (I, 9.3.1-2) and (3.8.2), (a’) implies the “moreover,”
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which together with (a’) implies (b). (I, 9.3.1) gives (a) = (c), clearly (c) = (¢/), and (c) =
(a) by taking for any open U C X an ideal J such that V(J) is the complement of U]
Condition (b) implies that X is a scheme.
The proof also shows that those X which are affine form a base of the topology.

Definition (4.5.3). — An invertible Ox-module L is called ample if X is a quasi-compact
scheme and the conditions in (4.5.2) hold.
By (a), if £ is ample, then so is £|U for any quasi-compact open subset U C X.

Corollary (4.5.4). — If L is ample, Z C X is a finite subset, and U is a neighborhood of
Z, there exists n and f € T'(X, L®") such that Xy is an affine neighborhood of Z contained
i U.

[This uses a lemma from commutative algebra, that if p; are finitely many homogeneous
prime ideals, not containing an ideal I C S, then there is a homogeneous element of I not
contained in the union of the ideals p;.]

Proposition (4.5.5). — Let X be a quasi-compact scheme or a prescheme with Noetherian
underlying space. The conditions in (4.5.2) are also equivalent to the following:

(d) For every quasi-coherent Ox-module F of finite type, there exists ng such that F(n)
1s generated by its global sections for all n > ny.

(d') Bvery such F is isomorphic to a quotient of an Ox-module of the form L™ @ Ok

(d") Property (d') holds for quasi-coherent ideal sheaves of finite type in Ox.

() = (d) = (d") = (d") are straightforward. (d”) = (a) uses (9.4.9)]

Proposition (4.5.6). — Let X be a quasi-compact scheme, L an inverible Ox-module.

(i) Forn >0, L is ample iff L2 is ample.

(i1) Let L' be invertible and assume that for every x € X there exists n > 0 and s €
(X, L'®™) such that s(x) # 0. Then L ample implies L@ L' ample.

Corollary (4.5.7). — The tensor product of ample Ox-modules is ample.

Corollary (4.5.8). — If L is ample, L' invertible, there exists ng > 0 such that L @ L’
1s ample for all n > nyg.

Remark (4.5.9). — 1In the [Picard group] P = H'(X, O%) of invertible sheaves on X, the
ample sheaves form a subset Pt such that

P++P+QP+, P+—P+:P.

Hence P is a quasi-ordered abelian group with P, U {0} its positive cone.

Proposition (4.5.10). — Let Y be affine, q: X — Y quasi-compact and separated, L an
nwvertible Ox-module.

(i) If L is very ample for q, then L is ample.

(i1) Suppose q is of finite type. Then L is ample iff the following equivalent conditions
hold:

(e) There exists ng > 0 such that L™ is very ample for all n > ny.
(') L™ is very ample for some n > 0.
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(4.5.10.1). Proof of Lemma (4.4.10.1). — Let £(n) = £ ® K®". For large n, we want
to find a quasi-coherent subsheaf F C ¢.(€(n)) of finite type such that the canonical map
g"(F) — &£(n) is surjective. By quasi-compactness and (9.4.7), we can reduce to the case
that Z is affine. Then (4.5.10, (i)) and (4.5.5, (d)) give the result.

Corollary (4.5.11). — IfY is affine, q: X — Y separated and of finite type, L ample, L'
invertible, there exists ng such that L @ L' is very ample for q, for all n > nyg.

Remark (4.5.12). — Tt is not known whether £L&" very ample implies the same for L&"+1),

Proposition (4.5.13). — Let X be quasi-compact, Z C X a closed sub-prescheme defined
by a nilpotent sheaf of ideals, j: Z — X the inclusion. Then L is ample iff L = j*(L) is
ample.

[The proof relies on the following lemma, which in turn is proved using sheaf cohomology.|

Lemma (4.5.13.1). — In (4.5.13), suppose further that J* =0, and let g € T\(Z,L'*™) be
such that Z, is affine. Then there exists m > 0 such that g™ = j*(f) for a global section
[ e (X, Lomm).

Corollary (4.5.14). — Let X be a Noetherian scheme, j: Xieqa — X the inclusion. Then
L is ample if and only if 7*L is ample.

4.6. Relatively ample sheaves.

Definition (4.6.1). — Let f: X — Y be a quasi-compact morphism, £ an invertible O x-
module. We say L is ample relative to f, or f-ample, or ample relative to Y (when f is
understood) if there exists an open affine cover (U,) of Y such that for every o, L|f~1(U,)
is ample.

Note that the existence of a relatively ample sheaf entails that f must be separated (4.5.3).

Proposition (4.6.2). — Let f: X — Y be quasi-compact. If L is very ample for f, then
L is ample relative to f.

Proposition (4.6.3). — Let f: X =Y be quasi-compact, L an invertible Ox-module, and
put S = @, 5 (L"), a graded Oy -algebra. The following are equivalent:

(a) L is f-ample.

(b) S is quasi-coherent and the canonical homomorphism o: f*(S) — S(L) (0, 4.4.3)
induces an everywhere-defined, dominant open immersion vz ,: X — P = Proj(S).

(V') f is separated, and the morphism rr, is everywhere defined and is a homeomorphism
of X onto a subspace of Proj(S).

Moreover, when these conditions hold, the canonical homomorphism 1} ,(Op(n)) — L%"
(8.7.9.1) is an isomorphism. Furthermore, for every quasi-coherent O x-module F, if we put

M =D,z [+«(F @ LE), then 1} (M) — F (3.7.9.2) is an isomorphism.

Corollary (4.6.4). — Let (Uy,) be an open affine covering of Y. Then L is ample relative
to f if and only if L|f~Y(Uy) is ample relative to Uy, for all a.



Corollary (4.6.5). — Let IC be an invertible Oy -module. Then L is f-ample iff L& f*(K)
18.
Corollary (4.6.6). — Suppose Y affine. Then L is Y -ample iff it is ample.

Corollary (4.6.7). — Let f: X — Y be a quasi-compact morphism. Suppose there exists
a quasi-coherent Oy -module £ and a morphism g: X — P = Proj(€) which is a homeomor-
phism of X onto a subspace of P. Then L = g*(Op(1)) is f-ample.

Proposition (4.6.8). — Let X be a quasi-compact scheme or a prescheme with Noetherian
underlying space, f: X — Y a quasi-compact, separated morphism. An invertible Ox-module
L is f-ample if and only if the following equivalent conditions hold:

(c) For every Ox-module F of finite type, there exists ng > 0 such that the canonical
homomorphism o f*(f.(F @ L)) — F @ LZ" is surjective for all n > ny.

(c') Property (c) holds for all F = J C Ox a quasi-coherent ideal sheaf of finite type.

Proposition (4.6.9). — Let f: X — Y be a quasi-compact morphism, L an invertible
Ox-module.

(i) Let n > 0. Then L is f-ample iff L= is.

(ii) Let L' be an invertible Ox-module such that o: f*(f.(L'®")) — L'®"™ for some n > 0.
Then if L is f-ample, so is L& L.

Corollary (4.6.10). — The tensor product of f-ample Ox-module is f-ample.

Proposition (4.6.11). — Let Y be quasi-compact, f: X — Y a morphism of finite type, L
an tnvertible Ox-module. Then L is ample iff the following equivalent conditions hold:

(d) There exists ng > 0 such that LZ" is very ample for f, for all n > ny.

(d') There exists n > 0 such that L™ is very ample for f.

Corollary (4.6.12). — Let Y be quasi-compact, f: X — Y of finite type, L, L' invertible
Ox-modules. If L is f-ample, there exists ng such that L& ® L' is very ample for f, for all
n > ng.

Proposition (4.6.13). — (i) Every invertible Oy -module L is ample relative to the identity
map ly: Y — Y.

(1) Let f: X — Y be quasi-compact, j: X' — X a quasi-compact morphism which is a
homeomorphism of X' onto a subspace of X. If L is f-ample, then j*L is ample relative to
foj.

(ii) Let Z be quasi-compact, f: X =Y, g: Y — Z quasi-compact morphisms, L f-ample,
IC g-ample. Then there exists ng > 0 such that L ® f*(K%") is ample relative to g o f, for
all n > ny.

(11i) Let f: X — Y be quasi-compact g: Y' — Y any morphism. If L is f-ample, then
L @y Oy is ample relative to fiyr).

() Let f;: X; — Y; (i = 1,2) be quasi-compact S-morphisms. If L; is ample relative to
fi, then L1 ®g Ly 1s ample relative to f1 Xg fo.
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(v) Let f: X =Y, g:Y — Z, be such that g o f is quasi-compact. Assume that g is
separated, or that X has locally Noetherian underlying space. If L is ample relative to go f,
then L is f-ample.

(vi) Let f: X — Y be quasi-compact, j: Xieqa — X the inclusion. If L is f-ample, then
J*L is ample relative to freq-

[Assertions (i), (i), (iii) and (iv) imply the rest; (i) is trivial from (4.4.10, (i)) and (4.6.2).
The others are proved using the following lemma.]

Lemma (4.6.13.1). — (1) Let u: Z — S be a morphism L an invertible Og-module,
L =u* (L), sel(S, L), s =u*(s). Then Zy = u*(S,).

(ii) Let Z, Z' be S-preschemes, T = Z xg Z', p, p' the projections, L (resp. L) and
invertible O z-module (resp. Oz -module), t € T'(Z, L), t' e I'(Z', L"), s = p*(t), ' = p™*(t).
Then Tsgse = Zy X5 Z}).

Remark (4.6.14). — 1In (ii) it need not be the case that £L ® f*(K) is ample relative to
g o f. Were this so, one could take £’ = £ ® f*(K~!) in the place of £ and conclude that £
is ample relative to g o f, for any invertible Ox-module £, which is clearly false (suppose g
were the identity!).

Proposition (4.6.15). — Let f: X — Y be quasi-compact, J C Ox a locally nilpotent
quasi-coherent ideal sheaf, j: Z = V(J) < X the inclusion of the closed subscheme defined
by J. Then L is ample for [ if and only if j7*(L) is ample for foj.

Corollary (4.6.16). — Let X be locally Noetherian, f: X — Y quasi-compact, j: Xyeq <
X the inclusion. Then L is ample for f if and only if 7*(L£) is ample for freq.

Proposition (4.6.17). — With the notation and hypotheses of (4.4.11), L" is ample relative
to f" iff L is ample relative to f and L' is ample relative to f’.

Proposition (4.6.18). — LetY be quasi-compact, S a graded quasi-coherent Oy -algebra of
finite type, X = Proj(S), f: X — Y the structure morphism. Then f is of finite type, and
Ox(d) is invertible and f-ample for some d > 0.



