SYNOPSIS OF MATERIAL FROM EGA CHAPTER II, §1

1. AFFINE MORPHISMS

1.1. S-preschemes and Og-algebras.

(1.1.1). Given an S-prescheme f: X — S, A(X) denotes the sheaf of Og algebras f.Ox.
Given a sheaf of Ox modules (or Ox algebras) F, A(F) denotes the sheaf of A(X)-modules
(or A(X) algebras) f.(F).

(1.1.2-3). X — A(X) is a contravariant functor from S-preschemes to sheaves of Og
algebras. More generally, there is a contravariant functor (X,F) — (A(X), A(F)) from
pairs consisting of an S-prescheme X and sheaf of Ox modules F to pairs consisting of a
sheaf of Og algebras and a sheaf of modules over it.

1.2. Preschemes affine over a prescheme.

Definition (1.2.1). — An S-prescheme f: X — S is affine over S if S has an affine open
covering (S,) such that each f~1(S,) is affine.

Ezample (1.2.2). — By (I, 4.2.3-4) any closed sub-prescheme of S is affine over S.

Remark (1.2.3). — A prescheme affine over S need not be affine, e.g., X = S. An affine
scheme X that is a prescheme over S need not be affine over S (see (1.3.3)), but if S is

a scheme [i.e., a separated presecheme] then any S-prescheme which is an affine scheme is
affine over S (I, 5.5.10).

Proposition (1.2.4). — Ewvery prescheme affine over S is separated over S, i.e., it is a
scheme over S.

Proposition (1.2.5). — If f: X — S is affine, then for every open U C S, f~1(U) s
affine over U.

Proposition (1.2.6). — If f: X — S is affine, then for every quasi-coherent sheaf of Ox
modules F, f«(F) is quasi coherent.

In particular, A(X) is a quasi-coherent sheaf of Og algebras.

Proposition (1.2.7). — Let X be affine over S. For every S-prescheme Y, the canonical
map Homg(Y, X) — Homeg a;,(A(X), A(Y)) is bijective.

Corollary (1.2.8). — If X and Y are affine over S, then an S-morphism h: X —'Y is
an isomorphism iff it induces an isomorphism A(X) = A(Y).
1.3. Prescheme affine over S associated to an Og algebra.

Proposition (1.3.1). — Given any quasi-coherent sheaf of Og algebra B, there exists a
prescheme X affine over S, unique up to canonical isomorphism, such that A(X) = B.

The prescheme X in the proposition is denoted Spec(B).

Corollary (1.3.2). — Let f: X — S be affine. For every affine U C S, f~Y(U) is an
affine scheme Spec(I'(U, A(X))).
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Ezample (1.3.3). — Let K be a field, S the affine plane with the origin doubled, so
S =Y, UY,, where each Y; & A%. Let f be the open immersion Y; < S. Then f~!(Y3) is
not affine, so Y] is not affine over S, even though Y] is an affine scheme.

Corollary (1.3.4). — Let S be an affine scheme. Then an S-prescheme X is affine over
S iff X s an affine scheme.

Corollary (1.3.5). — Let X be affine over S and let Y be an X-prescheme. Then Y is
affine over X iff Y 1is affine over S.

(1.3.6). Let X be affine over S. To give an S-prescheme Y affine over X, it is equivalent
to give a quasi-coherent sheaf of Og algebras B and a homomorphism A(X) — B; that is,
to give a quasi-coherent sheaf of A(X) algebra on S.

Corollary (1.3.7). — Let X be affine over S. Then X is of finite type over S iff A(X) is
of finite type as a sheaf of Og algebras (I, 9.6.2).

Corollary (1.3.8). — A prescheme X affine over S is reduced iff A(X) is reduced (0,
41.4).

1.4. Quasi-coherent sheaves on a prescheme affine over S.

Proposition (1.4.1). — Let X be affine over S, Y any S-prescheme, F, G quasi-coherent
sheaves of Ox, Oy modules. The functorial correspondence from morphisms (h,u): (Y,G) —
(X, F) to di-homomorphisms (A(h), A(u)): (A(X), A(F)) = (A(Y), A(G)) is bijective.

Corollary (1.4.2). — In (1.4.1), suppose Y is also affine over S. Then (h,u) is an
isomorphism iff (A(h), A(u)) is an isomorphism.

Proposition (1.4.3). — Given quasi-coherent sheaves of Ox algebras B and B modules
M, there exists a prescheme X affine over S and a quasi-coherent sheaf F of Ox modules,
unique up to canonical isomorphism, such that (A(X), A(F)) = (B, M).

The sheaf F in the proposition is denoted M.

Corollary (1.44). — M — M is a covariant exact functor, which commutes with direct
limits and direct sums.

Corollary (1.4.5). — Under the hypotheses of (1.4.3), M is an Ox module of finite type
iff M is a B module of finite type.

Proposition (1.4.6). — Let'Y be affine over S and X, X' affine over Y (hence over S
(1.3.5)). Then X xy X' = Spec(A(X) @) A(X")) is affine over Y (and over S).

Corollary (1.4.7). — If F, F' are quasi-coherent sheaves of Ox, Ox: modules, then
A(F @y F') =2 A(F) @A) A(F).

(1.4.8). In particular, taking X = X’ =Y affine over S, if F, G are quasi-coherent sheaves
of Ox modules, then

(1.4.8.1) A(F @0y G) = A(F) @ax) A(G)-



If F is finitely presented, then (I, 1.6.3 and 1.3.12) imply
(1.4.8.2) A(Hom(F,G)) = Homax)(A(F), A(G)),
up to canonical isomorphism.

Remark (1.4.9). — If X, X’ are affine over S, then so is X [ X".

Proposition (1.4.10). — Let B be a quasi-coherent sheaf of Og algebras, X = Spec(B). If

T C B is a quasi-coherent sheaf of ideals, then Zisa quasi-coherent sheaf of ideals in Oy,
and the closed subscheme Y C X which it defines is canonically isomorphic to Spec(B/Z).

Put another way, if h: B — B’ is a surjective homomorphism of quasi-coherent sheaves of
Og algebras, then the induced morphism Spec(B’) — Spec(B) is a closed immersion.

Proposition (1.4.11). — Let B be a quasi-coherent sheaf of Og algebras, X = Spec(B),
f: X — S the structure morphism. If J C Og s a quasi-coherent sheaf of ideals, then
[X(JT)Ox = (IB)7, canonically.

1.5. Change of base prescheme.

Proposition (1.5.1). — If X is affine over S, then any base change X (s is affine over S'.

Corollary (1.5.2). — Let f: X — S be affine, g: S = S any S-prescheme, X' = X(g,
[ X' =8, ¢ X' — X the projections (note go f' = fog'). For every quasi-coherent
Ox-module, there is a canonical isomorphism
(1.5.2.1) u: 9" (f(F)) = fi(g"(F)).

In particular, A(X') = g*(A(X)).

Remark (1.5.3). — Although (1.5.2) fails if X is not affine over S, a weaker version is
valid for coherent sheaves on X when f is proper and S is Noetherian (III, 4.2.4).

Corollary (1.5.4). — For f: X — S affine and s € S, the fiber f~1(s) is an affine scheme.

Corollary (1.5.5). — If X is an S-prescheme via f: X — S, and S is affine over S,
then X' = X (g is affine over X. Moreover A(X') = f*(A(S")) and for every quasi-coherent
A(S")-module M, f*(M) = A(f*(M)), where ' = fs.

(1.5.6). Let ¢: S” — S be a morphism, B, 5’ quasi-coherent sheaves of Og, Og algebras,
u: B — B’ a g-morphism (i.e. an Og algebra homomorphism B — ¢.(B’)). Then u induces
a morphism

v = Spec(u): X' = Spec(B’) — Spec(B) = X,

such that the following diagram commutes

v

X — X

(1.5.6.1) l l
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(1.5.7). Moreover, if M is a quasi-coherent B-module, then

(1.5.7.1) v (M) = (¢" (M) ®q5) B~

1.6. Affine morphisms.
(1.6.1). A morphism f: X — Y is affine if it makes X affine over Y.

Proposition (1.6.2). — (i) A closed immersion is affine.
(ii) The composite of affine morphisms is affine.

(iii) If f is affine, so is any base change f(s:.

() If f, g are affine, so is f Xgg.

(v) If g o [ is affine and g is separated, then f is affine.
(vi) If f is affine, then freq is affine.

Corollary (1.6.3). — If X is an affine scheme and Y is a [separated] scheme, then any
morphism X —'Y s affine.

Proposition (1.6.4). — Let Y be locally Noetherian and f: X — Y a morphism of finite
type. Then f is affine iff freq is affine.

1.7. Vector bundle associated to a sheaf of modules.

(1.7.1). The symmetric algebra S(E) of an A-module E is the quotient of the tensor algebra
T(FE) by the relations z@y—y®x for x,y € E. It has the universal property that any A-linear
map F — B, where B is a commutative A-algebra, factors uniquely as £ — S(F) — B.
S(—) is a functor from A-modules to commutative A-algebras; it commutes with direct limits
and has S(E® F) = S(F) ®4 S(F). S(E) is graded, with S,,(E) [the n-th symmetric power
of E] the A-linear span of products of n elements of £. We have S(A™) = Aty ..., tn).

(1.7.2). Let ¢: A — B be a ring homomorphism, F' a B-module. F}4 denotes F' regarded
as an A-module. The inclusion Fjy — S(F)4 and the universal property induce a canonical
A-algebra homomorphism S(Fl4) — S(F)ig. Any A-module homomorphism E — Fiy
induces S(E) — S(F)jg. We also have S(E ®4 B) = S(E£) ®4 B.

(1.7.3). Let R C A be a multiplicative set, and B = R™'A. Then S(R™'E) = R™'S(E),
and if R C R, then R™'F — R'"'E commutes with S(R™'F) — S(R'E).

(1.7.4). Given a ringed space (5,.4) and an A-module &£, we have a presheaf of A-algebras
U — S(E(V)). Its associated sheaf is the symmetric algebra of £, denoted S(E) or S4(&). It
is functorial and has the corresponding universal property as for the symmetric algebra of a
module.

We have S(€)s; = S(&;) (because S commutes with direct limits) and S(E & F) = S(€) @4
S(F). S(€) is graded, and S(A) = A[t] = A ®z Z[t] (regarding Z, Z[t] as constant sheaves
on S).

(1.7.5). Given a morphism of ringed spaces f: (S,.4) — (7,B) and a B-module F, we
have S(f*F) = f*S(F), canonically.

Proposition (1.7.6). — Let S = Spec(A), £ = M. Then S(&)=S(M)~
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Corollary (1.7.7). — If € is a quasi-coherent sheaf of Ogs modules on a prescheme S, then
S(€) is a quasi-coherent sheaf of Og algebras. If € is of finite type, then each S, (E) is of
finite type.

Definition (1.7.8). — V(&) = Spec(S(€)) is the vector bundle over S associated to the
quasi-coherent sheaf £.

It is more conventional to use the term ‘vector bundle’ only in the special case when € is
locally free of finite rank.|

Note that S-morphisms X — V(&) correspond bijectively to Og-algebra homomorphisms
S(€) — A(X), and in turn to Og-module homomorphisms € — A(X) [that is, the S-
prescheme V(&) represents the functor X — Home, (€, A(X)) from S-preschemes to sets].

(1.7.9). Taking X above to be an open subscheme U C S, we see that the sheaf U —
Homg (U, V(E)) of sections of the S-scheme V(&) is canonically identified with the dual
EY =Hom(E,Og) of €. In particular, there is a canonical global S-section S — V(&), the
zero section.

(1.7.10). Now let K be a field and take X = Spec(K) = {&}, with f: X — S corre-
sponding to a field extension k(s) — K for s € S, so the S-morphisms {£} — V(&) are the
geometric points of V(&) with values in the extension K of k(s). They are identified with
Os-module homomorphisms £ — f.(Ox), or equivalently with Ox-module (i.e., K-vector
space) homomorphisms f*(€) — K (0, 4.4.3). By definition, f*(£) = £ ®o, K = £° Q) K,
where we put £° = &;/m,E;. So the geometric fiber of V(&) rational over K at the point s is
identified with the dual to the K-vector space £° ®ys) K, or equivalently with (£°)Y @y K,
where (€°) is the dual of the k(s)-vector space E°.

Proposition (1.7.11). — (1) V(=) is a contravariant functor from quasi-coherent sheaves
of Og modules to affine S-schemes.

(i1) If € is of finite type, then V(&) is a scheme of finite type over S.

(1)) V(ED F) =V (E) x5 V(F).

(i) For any g: 8" =S, V(g*(€)) = V(E) sy =V(E) x5 5.

(v) If € — F is surjective, then V(F) — V(E) is a closed immersion.

(1.7.12). Taking £ = Og, we have S(£) = Og|t], and V(E) = S xz Spec(Z]t]). We denote
it S[t] [or, more standardly these days, AL]. The sheaf of S-sections of S[t] is identified with
Os, by (179)

(1.7.13). For any S-prescheme X, we have Homg(X, S[t]) = I'(S, A(X)), which is a ring.
So the functor S[t] from S-preschemes to sets factors through commutative rings. Similarly,
Homg (X, V(E)) is a module over S[t](X). This can be interpreted as saying that S[t] is a
commutative ring scheme over S, and V(&) is an S[t]-module scheme over S.

(1.7.14). From the structure of S[t]-module scheme on V (&), we can recover £, up to
canonical isomorphism. First, we recover S(€) = A(V(E)). For any S-prescheme X, the
S[t]-module scheme structure on V(&) identifies the the set of Og algebra homomorphisms
Hompg a1 (S(E), A(X)) with Og module homomorphisms Homep, (€, A(X)). In particular,
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this set is naturally an A(X)-module. Now & is canonically identified with the sub-Og-
module of S(£) whose sections z on an open set U have the following property: for ev-
ery S-prescheme X, the evaluation map h — h(z) from Homog-a1e(S(E)|U, A(X)|U) to
I'(U, A(X)) is a homomorphism of I'(U, A(X))-modules.

Proposition (1.7.15). — Let Y be a quasi-compact scheme, or a prescheme whose underly-
ing space is Noetherian. Every prescheme X affine and of finite type over'Y is'Y -isomorphic
to a closed sub-Y -scheme of a Y -scheme of the form V(E), where £ is a quasi-coherent Oy -
module of finite type.



