9. Supplement on quasi-coherent sheaves

Proposition (9.1.1). — If \mathcal{F} and \mathcal{G} are quasi-coherent (resp. coherent) sheaves on a prescheme (resp. locally Noetherian prescheme) X, then so is $\mathcal{F} \otimes \mathcal{G}$, and it is of finite type if \mathcal{F} and \mathcal{G} are. If \mathcal{F} is finitely presented and \mathcal{G} is quasi-coherent (resp. coherent) then $\text{Hom}_{\mathcal{O}_X}(\mathcal{F}, \mathcal{G})$ is quasi-coherent (resp. coherent).

Definition (9.1.2). — Given S-preschemes X, Y and sheaves \mathcal{F}, \mathcal{G} of \mathcal{O}_X (resp. \mathcal{O}_Y) modules, we denote the tensor product $p_1^*(\mathcal{F}) \otimes_{\mathcal{O}_{X \times S Y}} p_2^*(\mathcal{G})$ on $X \times_S Y$ by $\mathcal{F} \otimes_S \mathcal{G}$ or $\mathcal{F} \otimes_S \mathcal{G}$.

Similar notation applies for products of more than two preschemes.

In the case $X = Y = S$, $\mathcal{F} \otimes_S \mathcal{G}$ reduces to the tensor product of \mathcal{O}_S module sheaves. We have $p_1^*(\mathcal{F}) \cong \mathcal{F} \otimes_S \mathcal{O}_Y$ canonically, and likewise for p_2. In particular, if $Y = S$ and $f : X \rightarrow Y$ is the structure morphism of X as a scheme over Y, then $\mathcal{O}_X \otimes_Y \mathcal{G} = f^*(\mathcal{G})$.

Thus the tensor product of sheaves on X and the inverse image f^* are both special cases of the general construction $\mathcal{F} \otimes_S \mathcal{G}$.

The tensor product $\mathcal{F} \otimes_S \mathcal{G}$ is a right exact covariant functor in each variable.

Proposition (9.1.3). — If $S = \text{Spec}(A)$, $X = \text{Spec}(B)$, $Y = \text{Spec}(C)$, $\mathcal{F} = \tilde{M}$, $\mathcal{G} = \tilde{N}$, then $\mathcal{F} \times_S \mathcal{G}$ is the sheaf associated to the $B \otimes_A C$-module $M \otimes_A N$.

Proposition (9.1.4). — Given S-morphisms $f : T \rightarrow X$, $g : T \rightarrow Y$, we have $(f, g)^*(\mathcal{F} \otimes_S \mathcal{G}) = f^*(\mathcal{F}) \otimes_{\mathcal{O}_T} g^*(\mathcal{G})$.

Corollary (9.1.5). — Given S-morphisms $f : X \rightarrow X'$, $g : Y \rightarrow Y'$, we have $(f \times_S g)^*(\mathcal{F}' \otimes_S \mathcal{G}') = f^*(\mathcal{F}') \otimes_{\mathcal{O}_X} g^*(\mathcal{G}')$.

Corollary (9.1.6). — The canonical isomorphism $X \times_S Y \times_S Z \cong (X \times_S Y) \times_S Z$ identifies $\mathcal{F} \otimes_S \mathcal{G} \otimes_S \mathcal{H}$ with $\mathcal{F} \otimes_S (\mathcal{G} \otimes_S \mathcal{H})$.

Corollary (9.1.7). — The canonical isomorphism $X \times_S S \cong X$ identifies $\mathcal{F} \otimes_S \mathcal{O}_S$ with \mathcal{F}.

(9.1.8). Given a quasi-coherent sheaf of \mathcal{O}_X modules on an S prescheme X and a morphism $\phi : S' \rightarrow S$ we denote by $\mathcal{F}^{(\phi)}$ or $\mathcal{F}^{(S')}$ the sheaf $\mathcal{F} \otimes_S OS'$ on $X^{(S')} = X \times_S S'$; thus $\mathcal{F}^{S'} = p^*\mathcal{F}$, where $p : X^{(S')} \rightarrow X$ is the projection.

Proposition (9.1.9). — Given $S'' \rightarrow S' \rightarrow S$, we have $(\mathcal{F}^{(\phi)})^{(\phi')}(p') = \mathcal{F}^{(\phi \circ \phi')}$.

Proposition (9.1.10). — Let $f : X \rightarrow Y$ be an S-morphism, \mathcal{G} an \mathcal{O}_Y-module, and $S' \rightarrow S$ an S-prescheme. Then $f^{(S')}_*(\mathcal{G}^{(S')}) = (f^*(\mathcal{G}))^{(S')}$.

Corollary (9.1.11). — Given S-preschemes X, Y and S', the canonical isomorphism $X^{(S')} \times_{S'} Y^{(S')} \cong (X \times_S Y)^{(S')}$ identifies $\mathcal{F}^{(S')} \otimes_{S'} \mathcal{G}^{(S')}$ with $(\mathcal{F} \otimes_S \mathcal{G})^{(S')}$.

Synopsis of material from EGA Chapter I, §9
Proposition (9.1.12). — With the notation of (9.1.2), let z be a point of $X \times_S Y$, $x = p_1(z)$, $y = p_2(z)$. The stalk $(\mathcal{F} \otimes_S \mathcal{G})_z$ is isomorphic to $(\mathcal{F}_x \otimes_{\mathcal{O}_x} \mathcal{O}_z) \otimes_{\mathcal{O}_z} (\mathcal{G}_y \otimes_{\mathcal{O}_y} \mathcal{O}_z) = \mathcal{F}_x \otimes_{\mathcal{O}_x} \mathcal{O}_z \otimes_{\mathcal{O}_y} \mathcal{G}_y$.

Corollary (9.1.13). — If \mathcal{F}, \mathcal{G} are of finite type, then $\text{Supp}(\mathcal{F} \otimes_S \mathcal{G}) = p_1^{-1}(\text{Supp}(\mathcal{F})) \cap p_2^{-1}(\text{Supp}(\mathcal{G}))$.

9.2. Direct image of a quasi-coherent sheaf.

Proposition (9.2.1). — Let $f : X \to Y$ be a morphism of preschemes. Suppose Y has an open affine covering (Y_α) such that each $f^{-1}(Y_\alpha)$ admits a finite affine covering (X_α), and each $X_\alpha \cap X_\beta$ admits a finite affine covering. If \mathcal{F} is a quasi-coherent sheaf of \mathcal{O}_X-modules, then $f_* \mathcal{O}_X$ is quasi-coherent.

Corollary (9.2.2). — The conclusion of (9.2.1) holds under any of the conditions
(a) f is separated and quasi-compact,
(b) f is separated and of finite type,
(c) f is quasi-compact and the underlying space of X is locally Noetherian.

[The hypothesis in (9.2.1) is equivalent to f being quasi-compact and quasi-separated (IV, 1.7.4).]

9.3. Extending sections of quasi-coherent sheaves.

Theorem (9.3.1). — Let X be a prescheme. Assume either that the underlying space of X is Noetherian or that X is quasi-compact and separated. Let \mathcal{L} be an invertible sheaf of \mathcal{O}_X modules (0, 5.4.1), $f \in \mathcal{L}(X)$ a global section, X_f the open set $\{x \in X \mid f(x) \neq 0\}$ (0, 5.5.1), and \mathcal{F} a quasi-coherent sheaf.

(i) If $s \in \Gamma(X, \mathcal{F})$ has $s|_{X_f} = 0$, then $s \otimes f^n = 0$ for some $n > 0$.

(ii) For every $s \in \Gamma(X_f, \mathcal{F})$ there is an $n > 0$ such that $s \otimes f^n$ extends to a global section of $\mathcal{F} \otimes \mathcal{L}^\otimes n$.

[Remark: either of the hypotheses on X implies that X is quasi-compact and quasi-separated. The theorem actually holds under this more general hypothesis (IV, 1.7.5).]

Corollary (9.3.2). — In the situation of (9.3.1), consider the graded ring $A_* = \Gamma_*(\mathcal{L})$ and graded A_* module $M_* = \Gamma_*(\mathcal{L}, \mathcal{F})$ (0,5.4.6). For any integer n and $f \in A_n$, $\Gamma(X_f, \mathcal{F})$ is canonically isomorphic to the degree zero component $(M_*)_0$ of $(M_*)_f$, as a module over $A_0 \cong \Gamma(X_f, \mathcal{O})$.

Corollary (9.3.3). — In the situation of (9.3.1), suppose $\mathcal{L} = \mathcal{O}_X$. Setting $A = \Gamma(X, \mathcal{O}_X)$ and $M = \mathcal{F}(X)$, the A_f module $\mathcal{F}(X_f)$ is canonically isomorphic to M_f.

Proposition (9.3.4). — Let X be a Noetherian prescheme, \mathcal{F} a coherent sheaf of \mathcal{O}_X modules on X, and $\mathcal{J} \subseteq \mathcal{O}_X$ a coherent ideal sheaf. If $\text{Supp}(\mathcal{F}) \subseteq \text{Supp}(\mathcal{O}_X/\mathcal{J})$, there is an $n > 0$ such that $\mathcal{J}^n \mathcal{F} = 0$.

9.4. Extending quasi-coherent sheaves.
(9.4.1). Let \(X \) be a topological space and \(j: U \to X \) the inclusion of an open subset. Let \(\mathcal{F} \) be a sheaf (of sets, groups, rings...) on \(X \) and \(\mathcal{G} \) a subsheaf of \(\mathcal{F}|_U = j^{-1}\mathcal{F} \). Then \(j_*\mathcal{G} \) is a subsheaf of \(j_*j^{-1}\mathcal{F} \), and the canonical homomorphism \(\rho: \mathcal{F} \to j_*j^{-1}\mathcal{F} \) gives us a subsheaf \(\overline{\mathcal{G}} = \rho^{-1}(\mathcal{G}) \subseteq \mathcal{F} \). For any open \(V \subseteq X \), \(\mathcal{G}(V) \) is the set of sections \(s \in \mathcal{F}(V) \) such that \(s|_{(V \cap U)} \) belongs to \(\mathcal{G}(V \cap U) \). In other words, \(\overline{\mathcal{G}} \) is the largest subsheaf of \(\mathcal{F} \) such that \(\overline{\mathcal{G}}|_U = \mathcal{G} \). The subsheaf \(\mathcal{G} \) is called the canonical extension of the subsheaf \(\mathcal{G} \subseteq \mathcal{F}|_U \) to a subsheaf of \(\mathcal{F} \).

Proposition (9.4.2). — Let \(X \) be a prescheme and \(U \subseteq X \) an open subset such that the inclusion \(j: U \to X \) is a quasi-compact morphism.

(i) For every quasi-coherent sheaf \(\mathcal{G} \) of \(\mathcal{O}_X|U \) modules, \(j_*\mathcal{G} \) is quasi-coherent and \(\mathcal{G} = j^{-1}j_*(\mathcal{G})|_U \).

(ii) For every quasi-coherent sheaf \(\mathcal{F} \) of \(\mathcal{O}_X \) modules and quasi-coherent submodule sheaf \(\mathcal{G} \subseteq \mathcal{F}|_U \), the canonical extension \(\overline{\mathcal{G}} \subseteq \mathcal{F} \) is quasi-coherent.

The hypothesis that \(j: U \to X \) is quasi-compact holds automatically either if the underlying space of \(X \) is locally Noetherian (6.6.4 (i)), or if \(U \) is quasi-compact and \(X \) is separated, by (5.5.6) [this can be weakened to \(U \) quasi-compact and \(X \) quasi-separated by (IV, 1.2.7)].

Corollary (9.4.3). — Let \(X \) be a prescheme and \(U \) a quasi-compact open subset such that \(j: U \to X \) is quasi-compact [for instance, if \(X \) is quasi-separated]. Suppose further that every quasi-coherent sheaf of \(\mathcal{O}_X \) modules is a direct limit of subsheaves of \(\mathcal{O}_X \) modules of finite type (for instance, if \(X \) is affine). Let \(\mathcal{F} \) be a quasi-coherent sheaf of \(\mathcal{O}_X \) modules and \(\mathcal{G} \subseteq \mathcal{F}|_U \) a quasi-coherent submodule sheaf of finite type. Then there exists a quasi-coherent submodule sheaf \(\mathcal{G}' \subseteq \mathcal{F} \) of \(\mathcal{O}_X \) modules of finite type such that \(\mathcal{G}'|_U = \mathcal{G} \).

Remark (9.4.4). — Suppose \(X \) has the property that the inclusion \(U \to X \) is quasi-compact for every open \(U \subseteq X \). Then the hypothesis in (9.4.3) that every quasi-coherent sheaf of \(\mathcal{O}_X \) modules is a direct limit of subsheaves of \(\mathcal{O}_X \) modules of finite type is valid if the conclusion of (9.4.3) holds for every affine open \(U \subseteq X \), quasi-coherent sheaf \(\mathcal{F} \) of \(\mathcal{O}_X \) modules, and quasi-coherent submodule sheaf \(\mathcal{G} \subseteq \mathcal{F}|_U \) of finite type.

Corollary (9.4.5). — Under the hypotheses of (9.4.3), every quasi-coherent sheaf \(\mathcal{G} \) of \(\mathcal{O}_X|U \) modules of finite type is the restriction \(\mathcal{G} = \mathcal{G}'|_U \) of a quasi-coherent sheaf of \(\mathcal{O}_X \) modules of finite type.

Lemma (9.4.6). — Let \(X \) be a prescheme, \((V_\lambda)_{\lambda \in L} \) an open affine covering of \(X \) indexed by a well-ordered set \(L \), and \(U \subseteq X \) an open subset. For each \(\lambda \in L \), put \(W_\lambda = \bigcup_{\mu < \lambda} V_\mu \). Suppose that (i) for each \(\lambda \in L \), \(V_\lambda \cap W_\lambda \) is quasi-compact and (ii) the immersion morphism \(U \to X \) is quasi-compact. Then for every quasi-coherent sheaf \(\mathcal{F} \) of \(\mathcal{O}_X \) modules and quasi-coherent submodule sheaf \(\mathcal{G} \subseteq \mathcal{F}|_U \) of finite type, there exists a quasi-coherent submodule sheaf \(\mathcal{G}' \subseteq \mathcal{F} \) of finite type such that \(\mathcal{G} = \mathcal{G}'|_U \).

Theorem (9.4.7). — Let \(U \) be an open subset of a prescheme \(X \). Suppose that either of the following conditions holds:

(a) the underlying space of \(X \) is locally Noetherian, or
(b) X is separated and quasi-compact and U is quasi-compact.

Then for every quasi-coherent sheaf \mathcal{F} of \mathcal{O}_X modules and quasi-coherent submodule sheaf $\mathcal{G} \subseteq \mathcal{F}|_U$ of finite type, there exists a quasi-coherent submodule sheaf $\mathcal{G}' \subseteq \mathcal{F}$ of finite type such that $\mathcal{G} = \mathcal{G}'|_U$.

Corollary (9.4.8). — Under the hypotheses of (9.4.7), every quasi-coherent sheaf \mathcal{G} of $\mathcal{O}_X|_U$ modules of finite type is the restriction $\mathcal{G} = \mathcal{G}'|_U$ of a quasi-coherent sheaf \mathcal{G} of \mathcal{O}_X modules of finite type.

Corollary (9.4.9). — If the underlying space of X is locally Noetherian, or if X is separated and quasi-compact, then every quasi-coherent sheaf of \mathcal{O}_X modules is a direct limit of submodule sheaves of finite type.

Corollary (9.4.10). — Under the hypotheses of (9.4.9), if \mathcal{F} is a quasi-coherent sheaf of \mathcal{O}_X modules such that every quasi-coherent submodule sheaf of finite type of \mathcal{F} is generated by global sections, then \mathcal{F} is generated by global sections.

[In (9.4.7 (b)) and the subsequent corollaries one can weaken ‘separated’ to ‘quasi-separated’ (IV, 1.7.7).]

9.5. Closed image of a prescheme; closure of a sub-prescheme.

Proposition (9.5.1). — Let $f : X \to Y$ be a morphism of preschemes such that $f_*\mathcal{O}_X$ is quasi-coherent (which holds if f is quasi-compact, and either f is separated or the underlying space of X is locally Noetherian or more generally if f is quasi-compact and quasi-separated). Then there is a smallest closed sub-prescheme $Y' \subseteq Y$ such that f factors through the inclusion $j : Y' \to Y$, or equivalently (4.4.1), such that the sub-prescheme $f^{-1}(Y') \subseteq X$ is equal to X.

Corollary (9.5.2). — More precisely, the kernel \mathcal{I} of $f^* : \mathcal{O}_Y \to f_*\mathcal{O}_X$ is quasi-coherent and the closed sub-prescheme Y' defined by \mathcal{I} has the property in (9.5.1).

Definition (9.5.3). — Y' with the property in (9.5.1) is called the closed image of X under the morphism f.

[Remark: the closed image Y' actually exists for every morphism f. Since a sum of quasi-coherent ideal sheaves is quasi-coherent (4.1.1), every ideal sheaf $\mathcal{I} \subseteq \mathcal{O}_Y$ contains a unique largest quasi-coherent ideal sheaf \mathcal{I}'. If we take $\mathcal{I} = \ker(f^*)$, then the closed subscheme Y' defined by \mathcal{I}' has the property in (9.5.1), even if \mathcal{I} is not quasi-coherent. Moreover, for \mathcal{I} to be quasi-coherent it is not necessary that $f_*\mathcal{O}_X$ be quasi-coherent. For instance, it suffices that f be quasi-compact.]

Proposition (9.5.4). — If $f_*\mathcal{O}_X$ is quasi-coherent, then the underlying space of Y' is the closure of $f(X)$ in X.

[The weaker condition that $\ker(f^*)$ be quasi-coherent suffices.]
Proposition (9.5.5). — (transitivity of closed image) Given $X \to Y \to Z$, let Y' be the closed image of X under f. Then the closed image of X under $g \circ f$ is equal to the closed image of Y' under the restriction $g': Y' \to Z$ of g.

Corollary (9.5.6). — Let $f: X \to Y$ be an S-morphism such that the closed image of X under f is equal to Y. Let Z be a separated prescheme over S. If g_1, g_2 are morphisms $Y \to Z$ such that $g_1 \circ f = g_2 \circ f$, then $g_1 = g_2$.

Remark (9.5.7). — If we also suppose X, Y separated, the conclusion of (9.5.6) says that f is an epimorphism in the category of separated preschemes over S.

Proposition (9.5.8). — Under the hypotheses of (9.5.1), if $V \subseteq Y$ is open, then $V \cap Y'$ is the closed image of $f^{-1}(V)$ under $f|f^{-1}(V)$.

[Again the weaker condition that $\text{ker}(f^\circ)$ be quasi-coherent suffices.]

Proposition (9.5.9). — Let Y' be the closed image of X under $f: X \to Y$.

(i) If X is reduced, then so is Y'.

(ii) If $f_*\mathcal{O}_X$ is quasi-coherent and X is irreducible (resp. integral), then so is Y'.

[In (ii), the weaker condition that $\text{ker}(f^\circ)$ be quasi-coherent suffices.]

Proposition (9.5.10). — Let Y be a sub-prescheme of X such that the inclusion $i: Y \to X$ is quasi-compact. Then there is a smallest closed subscheme \overline{Y} majorizing Y, its underlying space is the closure of Y, Y is open in its closure, and Y is equal to the restriction of \overline{Y} to this open subset.

Corollary (9.5.11). — Under the hypotheses of (9.5.10), if the restriction of a section $s \in \mathcal{O}_{\overline{Y}}(V)$ to $V \cap Y$ is zero, then $s = 0$.

9.6. Quasi-coherent sheaves of algebras; change of stucture sheaf.

Proposition (9.6.1). — Let X be a prescheme, \mathcal{B} a quasi-coherent sheaf of \mathcal{O}_X-algebras (0, 5.1.3). A \mathcal{B}-module sheaf \mathcal{F} is quasi-coherent as a sheaf of modules on the ringed space (X, \mathcal{B}) if and only if \mathcal{F} is quasi-coherent as a sheaf of \mathcal{O}_X modules.

[This result, which is proved by reduction to affines, is specific to preschemes and does not hold on a general ringed space.]

(9.6.2). A quasi-coherent sheaf of \mathcal{O}_X algebras \mathcal{B} is of finite type if every $x \in X$ has an affine neighborhood $U = \text{Spec}(A)$ such that $B = \mathcal{B}(U)$ is a finitely-generated A-algebra. Then the same thing holds on $U_f = \text{Spec}(A_f)$ for $f \in A$. It follows that if \mathcal{B} is of finite type, then $\mathcal{B}|V$ is of finite type for every open $V \subseteq X$.

Proposition (9.6.3). — If X is locally Noetherian, then every \mathcal{O}_X-algebra \mathcal{B} of finite type is a coherent sheaf of rings (0, 5.3.7).

Corollary (9.6.4). — Under the hypotheses of (9.6.3) a sheaf of \mathcal{B} modules \mathcal{F} is coherent if and only if \mathcal{F} is of finite type as a sheaf of \mathcal{B} modules and quasi-coherent as a sheaf of \mathcal{O}_X modules.
modules. In this case, if \(\mathcal{G} \) is a submodule sheaf or quotient sheaf of \(\mathcal{F} \), then \(\mathcal{G} \) is a coherent sheaf of \(\mathcal{B} \) modules if and only if \(\mathcal{G} \) is quasi-coherent as a sheaf of \(\mathcal{O}_X \) modules.

Proposition (9.6.5). — Let \(X \) be a quasi-compact scheme, or a prescheme whose underlying space is Noetherian. Then every quasi-coherent \(\mathcal{O}_X \)-algebra \(\mathcal{B} \) of finite type contains an \(\mathcal{O}_X \)-submodule of finite type which generates \(\mathcal{B} \) as an \(\mathcal{O}_X \)-algebra.

[The proposition holds if \(X \) is quasi-compact and quasi-separated (IV, 1.7.9), a condition weaker than each of the two specified hypotheses.]

Proposition (9.6.6). — Let \(X \) be a quasi-compact scheme, or a prescheme whose underlying space is locally Noetherian. Then every quasi-coherent sheaf of \(\mathcal{O}_X \) algebras \(\mathcal{B} \) is the inductive limit of its quasi-coherent subalgebra sheaves of finite type.

[One can weaken ‘quasi-compact scheme’ to ‘quasi-compact and quasi-separated prescheme’ (IV, 1.7.9).]