
Synopsis of material from EGA Chapter I, §6

6. Finiteness conditions

6.1. Noetherian and locally Noetherian preschemes.

Definition (6.1.1). — X is locally Noetherian if it has a covering by open affines Spec(R)
with R Noetherian. X is Noetherian if it has a finite such covering [Liu, 2.3.45].

If X is locally Noetherian, then OX is coherent, a quasi-coherent sheaf of OX modules is
coherent iff it is locally finitely generated, and every quasi-coherent subsheaf of a coherent
sheaf of OX modules is coherent.

Proposition (6.1.2). — X is Noetherian iff it is locally Noetherian and quasi-compact;
then its underlying space is a Noetherian topological space (but not conversely).

Proposition (6.1.3). — The following are equivalent [Liu, Ex. 2.3.16]:
(a) Spec(A) is Noetherian
(b) Spec(A) is locally Noetherian
(c) A is Noetherian.

Proposition (6.1.4). — Any open or closed subscheme of a (locally) Noetherian scheme is
(locally) Noetherian [Liu, 2.3.46].

(6.1.5). Since the tensor product of Noetherian algebras is not necessarily Noetherian, the
product of two Noetherian schemes over a scheme S is not necessarily Noetherian.

Proposition (6.1.6). — If X is Noetherian, the nilradical NX of OX is nilpotent.

Corollary (6.1.7). — If X is Noetherian, then X is affine iff Xred is.

Lemma (6.1.8). — Let X be a topological space. Suppose x ∈ X has an open neighborhood
with finitely many irreducible components. Then x has an open neighborhood V such that
every open W ⊆ V containing x is connected.

Corollary (6.1.9). — A locally Noetherian topological space is locally connected, which
implies that its connected components are open.

Proposition (6.1.10). — If X is a locally Noetherian topological space, the following are
equivalent.

(a) The irreducible components of X are open.
(b) The irreducible components of X are the same as its connected components.
(c) The connected components of X are irreducible.
(d) Distinct irreducible components of X are disjoint.

If X is a prescheme, the above are also equivalent to:
(e) For every x ∈ X, Spec(OX,x) is irreducible, that is, the nilradical of OX,x is prime.

Corollary (6.1.11). — Let X be a locally Noetherian space. Then X is irreducible if and
only it is connected and non-empty, and its distinct irreducible components are disjoint. If X
is a prescheme, the last condition is equivalent to Spec(OX,x) being irreducible for all x ∈ X.
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Corollary (6.1.12). — Let X be a locally Noetherian prescheme. Then X is integral iff X
is connected and OX,x is an integral domain for all x ∈ X [Liu, Ex. 4.4.4].

Proposition (6.1.13). — If X is a locally Noetherian prescheme, and x ∈ X is such that
the nilradical Nx of OX,x is prime (resp. such that OX,x is reduced; is a domain), then x has
a neighborhood U which is irreducible (resp. reduced; integral) [Liu, Ex. 2.4.9].

6.2. Artinian preschemes.

Definition (6.2.1). — A prescheme is Artinian if it is affine and its ring is Artinian.

Proposition (6.2.2). — The following properties of a prescheme X are equivalent:
(a) X is Artinian.
(b) X is Noetherian and its underlying space is discrete.
(c) X is Noetherian and every point of X is closed (X is a T1 space).
When the above hold, the underlying space of X is finite, and the ring A of X is the direct

product of the (Artinian) local rings of the points of X.

6.3. Morphisms of finite type.

Definition (6.3.1). — A morphism f : X → Y is of finite type if Y can be covered by open
affine subsets V ∼= Spec(A) satisfying the property

(P): f−1(V ) is a finite union of affine opens Ui ∼= Spec(Ri) for which Ri is finitely generated
as an A algebra.

One also says that X is a prescheme of finite type over Y , or a Y -prescheme of finite type.
[Liu (Def. 3.2.1) uses a different definition, equivalent to the above by Prop. 3.2.2 in Liu,

plus (6.3.3), (6.6.3) and the fact that for a morphism to be locally of finite type is a local
property on both X and Y—see (6.6.2).]

Proposition (6.3.2). — If f : X → Y is of finite type, then property (P) holds for every
open affine V ⊆ Y .

This implies that the property that f is of finite type is local on Y .

Proposition (6.3.3). — A morphism of affine schemes Spec(B) → Spec(A) is of finite
type if and only if B is a finitely generated A-algebra.

Proposition (6.3.4). — [Liu, 3.2.4] (i) Every closed immersion is of finite type.
(ii) The composite of two morphisms of finite type is of finite type.
(iii) If f : X → X ′ and g : Y → Y ′ are S-morphisms of finite type, then so is f ×S g.
(iv) If f : X → Y is an S-morphism of finite type, then f(S′) is of finite type for any base

extension S ′ → S.
(v) If g ◦ f is of finite type, and g is separated, then f is of finite type.
(vi) If f is of finite type, then so is fred.

Corollary (6.3.5). — [Liu, Ex. 3.2.2] Let f : X → Y be an immersion. If the underlying
space of Y is locally Noetherian, or if that of X is Noetherian, then f is of finite type.
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Corollary (6.3.6). — Given f : X → Y and g : Y → Z, if g ◦ f is of finite type, and if X
is Noetherian, or if X ×Z Y is locally Noetherian, then f is of finite type.

Proposition (6.3.7). — If X is of finite type over Y , and Y is (locally) Noetherian, then
so is X.

Corollary (6.3.8). — If X is of finite type over S, then X(S′) is (locally) Noetherian for
every base extension S ′ → S such that S ′ is (locally) Noetherian.

Corollary (6.3.9). — If X is of finite type over a locally Noetherian prescheme S, then
every S-morphism f : X → Y is of finite type.

[For morphisms locally of finite type, the preceding results hold without the Noetherian
hypotheses—see §6.6.]

Proposition (6.3.10). — A morphism f : X → Y of finite type is surjective if and only if,
for every algebraically closed field k, the map X(k)→ Y (k) induced by f on k-valued points
(3.4.1) is surjective.

[A morphism f satisfying the last condition is said to be geometrically surjective.]

6.4. Algebraic preschemes.

(6.4.1). Let K be a field. A prescheme X of finite type over K is called an algebraic
K-prescheme, K the ground field of X [Liu, 2.3.47, Example 3.2.3].

An algebraic prescheme is automatically Noetherian.

Proposition (6.4.2). — Let X be an algebraic K-prescheme. A point x ∈ X is closed iff
k(x) is a finite algebraic extension of K.

[“If” holds for any K-prescheme X and reduces to the fact that an integral domain finite
dimensional over K is a field. “Only if” is equivalent to the fact, which is a version of
Hilbert’s Nullstellensatz, that if L ⊇ K is a field finitely generated as a K algebra, then L
is finite algebraic over K.]

Corollary (6.4.3). — If K = K and X is an algebraic K-prescheme, then X(K)K → X
is a bijection from the set of K-valued points of X to its closed points, which are also its
K-rational points.

Proposition (6.4.4). — For an algebraic K-prescheme X, the following are equivalent.
(a) X is Artinian.
(b) The underlying space of X is discrete.
(c) The underlying space of X has finitely many closed points.
(c′) The underlying space of X is finite.
(d) Every point of X is closed.
(e) X ∼= Spec(A) where A is finite-dimensional as a K-vector space.
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(6.4.5). When the above hold, we say that X is finite over K, or a finite K-scheme, of
length lK(X) =

def
dimK(A). If X and Y are finite K-schemes, then

(6.4.5.1) lK(X
∐

Y ) = lK(X) + lK(Y ),

(6.4.5.2) lK(X ×K Y ) = lK(X)lK(Y ).

Corollary (6.4.6). — If X is a finite K-scheme and K ′ is a finite extension of K, then
X ⊗K K ′ is finite over K ′, of length equal to lK(X).

Corollary (6.4.7). — Let X be a finite K-scheme and set n =
∑

x∈X [k(x) : K]s. Then for
every algebraically closed extension K ′ of K, the underlying space of X ⊗K K ′ has n points,
identified bijectively with the set X(K ′)K of K ′-valued points of X.

Here [K : L]s denotes the separable degree of the finite extension L ⊆ K, that is, the
degree [K ′ : L], where K ′ is the maximal separable algebraic extension of L inside K.

(6.4.8). The number n in (6.4.7) is the separable degree or the geometric number of points
of X over K. We have

(6.4.8.1) n(X
∐

Y ) = n(X) + n(Y ),

(6.4.8.2) n(X ×K Y ) = n(X)n(Y ).

Proposition (6.4.9). — Let f : X → Y be a K-morphism of algebraic K-preschemes. Let
K ′ be an algebraically closed extension of infinite transcendence degree over K. Then f is
surjective iff X(K ′)K → Y (K ′)K is surjective.

The proof goes by showing that in (6.3.10) it suffices to take k a finitely generated extension
of K, hence isomorphic to a subfield of K ′.

(6.4.10). In Volume IV it will be shown that the infinite transcendence degree hypothesis
is not needed.

Proposition (6.4.11). — If f : X → Y is of finite type, then for every y ∈ Y , the fiber
f−1(y) is algebraic over k(y), and for all closed points x ∈ f−1(y), k(x) is a finite extension
of k(y).

Proposition (6.4.12). — Given morphisms f : X → Y and g : Y ′ → Y , let X ′ = X ×Y Y ′
and f ′ = f(Y ′) : X ′ → Y ′. Let y′ ∈ Y ′, y = g(y′). If the fiber f−1(y) is finite over k(y), then
so is f ′−1(y′) over k(y′), with the same degree and geometric number of points as f−1(y).

(6.4.13). One may understand (6.4.11) as giving the concept of morphism of finite type
f : X → Y a geometric significance: it describes a family of algebraic varieties parametrized
by points of the target scheme Y .

6.5. Local determination of a morphism.
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Proposition (6.5.1). — Let X, Y be S-preschemes, with Y of finite type over S. Suppose
x ∈ X, y ∈ Y lie over the same point s ∈ S.

(i) If f, f ′ : X → Y satisfy f(x) = f ′(x) = y, and they induce the same (local) homomor-
phism of OS,s-algebras f ]x = f ′]x from OY,y to OX,x, then f and f ′ coincide on a neighborhood
of x.

(ii) [Liu, Ex. 3.2.4] Suppose further that S is locally Noetherian. Then every local OS,s
algebra homomorphism φ : OY,y → OX,x is induced by an S-morphism f such that f(x) = y
from a neighborhood U of x to Y .

Corollary (6.5.2). — In (6.5.1, (ii)), if X is of finite type over S, one can take f to be of
finite type.

Corollary (6.5.3). — In (6.5.1, (ii)), if Y is integral and φ is injective, one can take
U ∼= Spec(B) affine, with f(U) contained in an open affine W ∼= Spec(A) ⊆ Y , such that f
corresponds to an injective ring homomorphism γ : A→ B.

Proposition (6.5.4). — Let f : X → Y be a morphism of finite type, x ∈ X, y = f(x).
(i) f is a local immersion at x (4.5.1) iff f ]x : OY,y → OX,x is surjective.
(ii) Suppose further that Y is locally Noetherian. Then f is a local isomorphism at x iff

f ]x is an isomorphism.

Corollary (6.5.5). — Let f : X → Y be of finite type, X irreducible, x its generic point,
and y = f(x).

(i) f is a local immersion at some point of X iff f ]x : OY,y → OX,x is surjective.
(ii) Suppose further that Y is irreducible and locally Noetherian. Then f is a local iso-

morphism at some point of X iff y is the generic point of Y (which by (0, 2.1.4) means f is
dominant), and f ]x is an isomorphism (that is, f is birational (2.2.9)).

6.6. Quasi-compact morphisms and morphisms locally of finite type.

Definition (6.6.1). — [Liu, Ex. 2.3.17] A morphism f : X → Y is quasi-compact if f−1(V )
is quasi-compact for every quasi-compact open V ⊆ Y .

Suppose B is a base of the topology on Y which consists of quasi-compact open sets
(affines, for example). For f to be quasi-compact, it suffices that f−1(V ) be quasi-compact
(equivalently, a finite union of affines) for all V ∈ B. In particular, if X is quasi-compact
and Y is affine, then every morphism f : X → Y is quasi-compact, since for any open affines
V ⊆ Y and U ⊆ X, f−1(U) ∩ V is affine by (5.5.10).

If f is quasi-compact, then so is its restriction f−1(V ) → V for any open V ⊆ Y . Con-
versely, if Y =

⋃
α Uα is an open covering and each restriction f−1(Uα) → Uα is quasi-

compact, then so is f . In other words, the property that f is quasi-compact is local on
Y .

Definition (6.6.2). — A morphism f : X → Y is locally of finite type if for every x ∈ X
there are open sets x ∈ U ⊆ X and f(U) ⊆ V ⊆ Y such that (f |U) : U → V is of finite type.

It is immediate from the definition and (6.3.2) that if f is locally of finite type, then so is
its restriction f−1(V )→ V for every open V ⊆ Y .
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Proposition (6.6.3). — A morphism f is of finite type if and only if it is quasi-compact
and locally of finite type.

Proposition (6.6.4). — [Liu, Ex. 2.3.17(a,b)] (i) Every closed immersion is quasi-compact.
If the underlying space of X is Noetherian, or if that of Y is locally Noetherian, every
immersion X → Y is quasi-compact.

(ii) The composite of two quasi-compact morphisms is quasi-compact.
(iii) If f : X → Y is a quasi-compact S-morphism, so is f(S′), for any base extension

S ′ → S.
(iv) If f : X → X ′ and g : Y → Y ′ are quasi-compact S-morphisms, so is f ×S g.
(v) If the composite g ◦ f of f : X → Y and g : Y → Z is quasi-compact, and if g is

separated or the underlying space of X is locally Noetherian, then f is quasi-compact.
(vi) f is quasi-compact iff fred is.

Proposition (6.6.5). — Let f : X → Y be quasi-compact. Then f is dominant iff for each
generic point y of an irreducible component of Y , f−1(y) contains the generic point of an
irreducible component of X.

Proposition (6.6.6). — (i) Every local immersion is locally of finite type.
(ii) The composite of two morphisms locally of finite type is again so.
(iii) If f : X → Y is an S-morphism locally of finite type, so is f(S′), for any base extension

S ′ → S.
(iv) If f : X → X ′ and g : Y → Y ′ are S-morphisms locally of finite type, so is f ×S g.
(v) If g ◦ f is locally of finite type, then so is f .
(vi) If f is locally of finite type, so is fred.

Corollary (6.6.7). — Let X, Y be S-preschemes locally of finite type. If S is locally
Noetherian, then so is X ×S Y .

Remark (6.6.8). — Proposition (6.3.10) holds if f is only assumed locally of finite type.
Similarly, (6.4.2) and (6.4.9) hold if X, Y are only assumed locally of finite type over K.


