
Synopsis of material from EGA Chapter I, §4

4. Sub-preschemes and immersion morphisms

4.1. Sub-preschemes.
(4.1.1). On a preschemeX, a sheaf ofOX-modules F is quasi-coherent iff for all open affines

U ⊆ X, F|U is isomorphic to the sheaf associated to a Γ(U,OX)-module. In particular, OX
itself is quasi-coherent, and quasi-coherence is preserved by kernels, cokernels and images of
homomorphisms, as well as inductive limits and direct sums (1.3.7, 1.3.9).

Proposition (4.1.2). — Let X be a prescheme, I ⊆ OX a quasi-coherent sheaf of ideals.
The support Y of OX/I is closed, and if OY denotes the restriction of OX/I to Y , then
(Y,OY ) is a prescheme.

We say that (Y,OY ) as above is the sub-prescheme of (X,OX) defined by the sheaf of
ideals I.

Definition (4.1.3). — (Y,OY ) is a sub-prescheme of a prescheme (X,OX) if:
(1) Y is a locally closed subspace of X;
(2) If U is the largest open set containing Y and in which Y is closed, then (Y,OY ) is the

sub-prescheme of (U,OX |U) defined by a quasi-coherent sheaf of ideals in OX |U .
If Y is closed (i.e., U = X), Y is a closed sub-prescheme. Closed sub-preschemes are in

one-to-one correspondence with quasi-coherent sheaves of ideals. If Y = (U,OX |U), Y is an
open sub-prescheme.

(4.1.4). With Y , U as above, if V ⊆ U is an open subset, then (Y ∩ V,OY |(Y ∩ V )) is
again a subscheme of X. Conversely:

Proposition (4.1.5). — Let (Y,OY ) be a ringed space with Y a subspace of X. If there is
a covering of Y by open subsets Vα of X such that each (Y ∩ Vα,OY |(Y ∩ Vα)) is a closed
sub-prescheme of Vα, then Y is a sub-prescheme of X.

Proposition (4.1.6). — A sub-prescheme of a sub-prescheme is (canonically identified with)
a sub-prescheme. Likewise for closed sub-preschemes.

(4.1.7). Let Y be a sub-prescheme of X, j : Y ↪→ X the inclusion of Y as a subspace, so
j−1(OX) is the restriction of OX to Y . We have a canonical surjective sheaf homomorphism
φ] : j−1(OX) → OY , and thus a monomorphism (j, φ) : Y ↪→ X of preschemes, called the
canonical injection.

Given any morphism f : X → Z, we call f ◦ j : Y → Z the restriction of f to Y .
(4.1.8). A morphism f : Z → X is said to be majorized by the inclusion j : Y ↪→ X of a

sub-prescheme if f factors as Z →
g
Y →

j
X. Here g is unique, because j is a monomorphism.

Proposition (4.1.9). — For f : Z → X to be majorized by j : Y → X it is necessary and
sufficient that f(Z) ⊆ Y , and that for every z ∈ Z, setting y = f(z), the kernel of the
homomorphism OX,y → OZ,z given by f contains the kernel of OX,y → OY,y.
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Corollary (4.1.10). — The inclusion of a sub-prescheme Z ↪→ X is majorized by the
inclusion of another sub-prescheme Y ↪→ X if and only if Z is a sub-prescheme of Y .

In this case we write Z ≤ Y .

4.2. Immersion morphisms.

Definition (4.2.1). — An immersion is a morphism f : Y → X which factors as Y →
g

Z →
j
X, where g is an isomorphism, and j : Z → X is the inclusion of a sub-prescheme. An

immersion is closed (resp. open) if Z is a closed (resp. open) sub-prescheme.
The factorization is unique, and an immersion is a monomorphism, hence universally

injective (3.5.4).

Proposition (4.2.2). — (a) (f, φ) : Y → X is an open immersion iff f is a homeomorphism
onto an open subset of X, and for every y ∈ Y , φ]y : OX,f(y) → OY,y is an isomorphism.

(b) (f, φ) : Y → X is an immersion (resp. closed immersion) iff f is a homeomorphism
onto a locally closed (resp. closed) subset of X, and for every y ∈ Y , φ]y : OX,f(y) → OY,y is
surjective.

Corollary (4.2.3). — Let X be an affine scheme. Then f : Y → X is a closed immersion
iff Y is affine and Γ(OX)→ Γ(OY ) is surjective.

Corollary (4.2.4). — (a) Let f : Y → X be a morphism and let (Vα) be a covering of f(Y )
by open subsets of X. Then f is an (open) immersion iff every f−1(Vα)→ Vα is an (open)
immersion.

(b) Assume that (Vα) is a covering of X. Then f is a closed immersion iff every f−1(Vα)→
Vα is a closed immersion.

Proposition (4.2.5). — The composite of two immersions is an immersion; likewise for
open or closed immersions.

4.3. Products of immersions.

Proposition (4.3.1). — If S-morphisms α : X ′ → X, β : Y ′ → Y are immersions, then so
is α×S β. Moreover, identifying X ′, Y ′ with sub-preschemes of X, Y , the underlying space
of X ′ ×S Y ′ is identified with the subspace p−1(X ′) ∩ q−1(Y ′) ⊆ X ×S Y , where p, q are the
projections. Likewise for open or closed immersions.

Corollary (4.3.2). — If f : X → Y is an immersion, then so is any base change f(S′).
Likewise for open or closed immersions.

4.4. Preimage of a sub-prescheme.

Proposition (4.4.1). — Let f : X → Y be a morphism, j : Y ′ → Y the inclusion of a
sub-prescheme. Then the projection p : X ×Y Y ′ → X is an immersion, whose image is a
sub-prescheme with underlying space f−1(Y ′). Moreover, letting j′ denote the inclusion of
this sub-prescheme, a morphism h : Z → X is majorized by j′ if and only if f ◦ h : Z → Y is
majorized by j. Likewise for open or closed sub-preschemes and immersions.
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From now on, we regard f−1(Y ′) as endowed with the structure of sub-prescheme of X
provided by the proposition.

We have f−1(Y ′) = X (as a sub-prescheme) if and only if f is majorized by j : Y ′ → Y .
If y ∈ Y is a closed point, and Y ′ = Spec k(y), then f−1(Y ′) is the fiber f−1(y), with the

prescheme structure defined in (3.6.2).

Corollary (4.4.2). — Given f : X → Y , g : Y → Z, set h = g ◦ f . For any sub-prescheme
Z ′ ⊆ Z, we have f−1(g−1(Z ′)) = h−1(Z ′) as sub-preschemes of X.

Corollary (4.4.3). — Let j′ : X ′ → X, j′′ : X ′′ → X be inclusions of sub-preschemes. Then
j′−1(X ′′) ∼= j′′−1(X ′) ∼= X ′ ×X X ′′ is the greatest lower bound inf(X ′, X ′′) in the ordering ≤
on sub-preschemes of X.

[These days it is usual to write X ′ ∩ X ′′ for inf(X ′, X ′′), and refer to it as the scheme-
theoretic intersection of the two subschemes.]

Corollary (4.4.4). — Given f : X → Y and two sub-preschemes Y ′, Y ′′ ⊆ Y , we have
f−1(inf(Y ′, Y ′′)) = inf(f−1(Y ′), f−1(Y ′′)).

Corollary (4.4.5). — Given f : X → Y and a closed sub-prescheme Y ′ ⊆ Y defined by a
quasi-coherent ideal sheaf I ⊆ OY , the sub-prescheme f−1(Y ′) is defined by the ideal sheaf
f−1(I)OX ⊆ OX .

Corollary (4.4.6). — Let j : X ′ → X be a closed sub-prescheme defined by a quasi-coherent
ideal sheaf J ⊆ OX . Then the restriction of f : X → Y to X ′ is majorized by j′ : Y ′ → Y if
and only if f−1(I)OX ⊆ J .

4.5. Local immersions and local isomorphisms.

Definition (4.5.1). — f : X → Y is a local immersion at x ∈ X if there are open neigh-
borhoods U of x and V of f(x) such that the restriction of f to U is a closed immersion
U ↪→ V . We say that f is a local immersion if it is a local immersion at every point.

Definition (4.5.2). — f : X → Y is a local isomorphism at x ∈ X if there is an open
neighborhood U of x such that the restriction of f to U is an open immersion into Y . We
say that f is a local isomorphism if it is a local isomorphism at every point.

(4.5.3). A (closed) immersion can then be characterized as a local immersion f : X → Y
such that f is a homeomorphism of X onto a (closed) subspace of Y ; an open immersion
can be characterized as an injective local isomorphism.

Proposition (4.5.4). — Let X be irreducible, and f : X → Y a dominant, injective mor-
phism. If f is a local immersion, then f is an immersion and f(X) is open in Y .

Proposition (4.5.5). — (i) A composite of local immersions (resp. local isomorphisms) is
a local immersion (resp. local isomorphism).

(ii) If S-morphisms f , g are local immersions (resp. local isomorphisms), then so is f×S g.
(iii) Any base change f(S′) of a local immersion (resp. local isomorphism) is a local im-

mersion (resp. local isomorphism).


