
Synopsis of material from EGA Chapter I, §1.1–1.3

1. Affine schemes

1.1. Prime spectrum of a ring. [cf. Liu, 2.1-2.3, Mumford II.1, Eisenbud-Harris I.1]
(1.1.1). Notation: X = Spec(A) = {prime ideals of A}. We write jx for x ∈ X to empha-

size its role as an ideal of A. We have Spec(A) = ∅ iff A = 0.
Ax = Ax = local ring.
mx = jxAx = maximal ideal of Ax.
k(x) = Ax/mx = residue field of Ax, equal to the field of fractions of A/jx.
f(x) = image in k(x) of f ∈ A, so f(x) = 0 iff f ∈ j(x).
Mx = M ⊗A Ax = localization of an A module M .√

(E) = radical of the ideal generated by E ⊆ A.
V (E) = {x ∈ X : E ⊆ jx} = {x ∈ X : f(x) = 0 for all f ∈ E}. Then [cf. Liu, 2.1.6]

(1.1.1.1)
√

(E) =
⋂

x∈V (E)

jx

V (f) = V ({f}) for f ∈ A.
D(f) = X \ V (f) = {x ∈ X : f(x) 6= 0}.
Proposition (1.1.2). —
(i) V (0) = X, V (1) = ∅.
(ii) E ⊆ E ′ ⇒ V (E) ⊇ V (E ′).
(iii) For any collection (Eλ), V (

⋃
λEλ) =

⋂
λ V (Eλ).

(iv) V (EE ′) = V (E) ∪ V (E ′).
(v) V (E) = V (

√
(E)).

The sets V (E) are the closed subsets of a topology, the Zariski topology on X. We
understand X = Spec(A) to have this topology from now on.

(1.1.3). Given Y ⊆ X, let j(Y ) = {f ∈ A : f(x) = 0 for all x ∈ Y } =
⋂
x∈Y jx. Then

Y ⊆ Y ′ ⇒ j(Y ) ⊇ j(Y ′) and we have

j(
⋃
λ

Yλ) =
⋂
λ

j(Yλ)(1.1.3.1)

j({x}) = jx.(1.1.3.2)

Proposition (1.1.4). —
(i) For any E ⊆ A, j(V (E)) =

√
(E).

(ii) For any Y ⊆ X, V (j(Y )) = Y is the closure of Y .

Corollary (1.1.5). — Closed subsets Y ⊆ X and radical ideals a ⊆ A correspond bijectively
via Y 7→ j(Y ), a 7→ V (a); the union Y1 ∪ Y2 corresponding to j(Y1) ∩ j(Y2) and an arbitrary
intersection

⋂
λ Yλ corresponding to

√∑
λ j(Yλ).
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Corollary (1.1.6). — If A is a Noetherian ring, then Spec(A) is a Noetherian space [the
converse does not hold].

Corollary (1.1.7). — The closure of {x} is the set of y ∈ X such that jx ⊆ jy. Thus {x}
is closed iff jx is maximal.

Corollary (1.1.8). — Spec(A) is a T0 space.

(1.1.9). For f, g ∈ A we have

(1.1.9.1) D(fg) = D(f) ∩D(g).

We also note that D(f) = D(g) iff
√

(f) =
√

(g). In particular this holds if f = ug where
u ∈ A is a unit.

Proposition (1.1.10). — (i) The sets D(f) for f ∈ A form a base of open sets on X.
(ii) D(f) is quasi-compact, and in particular, so is X = D(1).

Proposition (1.1.11). — Spec(A/a) is canonically identified with the closed subset V (a) ⊆
Spec(A).

Corollary (1.1.12). — Spec(A) and Spec(A/
√

(0)) are canonically homeomorphic.

Proposition (1.1.13). — Spec(A) is an irreducible space iff A/
√

(0) is a domain, i.e.,
√

(0)
is prime.

Corollary (1.1.14). — (i) In the correspondence between closed subsets of X and radical
ideals of A, the irreducible closed subsets correspond to the prime ideals. In particular, the
irreducible components of X correspond to the minimal primes.

(ii) x 7→ {x} is a bijection from points of X to irreducible closed subsets of X, i.e., each
irreducible closed subset has a unique generic point.

Proposition (1.1.15). — If I is an ideal contained in the Jacobson radical R(A), the whole
space X is the unique open neighborhood of V (I).

1.2. Functorial properties of the prime spectrum of a ring.

(1.2.1). A ring homomorphism φ : A′ → A induces a map
aφ : X = Spec(A)→ X ′ = Spec(A′)

by aφ(x) = φ−1(jx). We denote by φx the injective homomorphism of integral domains
A′/φ−1(jx) → A/jx or its extension to their fraction fields φx : k(aφ(x)) → k(x). For any
f ′ ∈ A′, we then have

(1.2.1.1) φx(f ′(aφ(x))) = (φ(f ′))(x).

Proposition (1.2.2). — (i) For any E ′ ⊆ A′, we have

(1.2.2.1) aφ−1(V (E ′)) = V (φ(E ′)),

and in particular, for any f ′ ∈ A,

(1.2.2.2) aφ−1(D(f ′)) = D(φ(f ′)).
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(ii) For any ideal a ⊆ A, we have

(1.2.2.3) aφ(V (a)) = V (φ−1(a)).

Corollary (1.2.3). — aφ is continuous.
In fact, Spec is a contravariant functor from commutative rings to topological spaces.

Corollary (1.2.4). — [cf. Liu, 2.1.7 (b)] Suppose that φ is surjective, or more generally,
that every f ∈ A has the form f = hφ(f ′) for some f ′ ∈ A′ and invertible h ∈ A. Then aφ
is a homeomorphism from X onto aφ(X).

(1.2.5). In particular, when φ is the canonical homomorphism A → A/a, then aφ is the
inclusion of Spec(A/a), identified with V (a), into Spec(A).

Corollary (1.2.6). — [cf. Liu, 2.1.7 (c)] For any multiplicative set S ⊆ A, Spec(S−1A) is
canonically homeomorphic to the subspace {x ∈ X : jx ∩ S = ∅} of X = Spec(A).

Corollary (1.2.7). — aφ(X) is dense in X ′ iff ker(φ) consists of nilpotent elements.

1.3. Sheaf associated to a module. [cf. Liu, Section 5.1.2]

(1.3.1). Let M be an A module, f ∈ A, Sf = {1, f, f 2, . . .}, Af = S−1f A, Mf = S−1f M .

Let S ′f = {g ∈ A : g divides fn for some n} be the saturation of Sf , so S ′−1f A = S−1f A,

S ′−1f M = S−1f M canonically (0, 1.4.3).

Lemma (1.3.2). — The following are equivalent: (a) g ∈ S ′f , (b) S ′g ⊆ S ′f , (c) f ∈
√

(g),

(d)
√

(f) ⊆
√

(g), (e) V (g) ⊆ V (f), (f) D(f) ⊆ D(g).

(1.3.3). If D(f) = D(g) it follows that Mf = Mg, and for D(f) ⊇ D(g) there is a canonical
homomorphism, functorial in M ,

ρg,f : Mf →Mg,

satisfying

(1.3.3.1) ρh,g ◦ ρg,f

for D(f) ⊇ D(g) ⊇ D(h). Given x ∈ Spec(A), the localization Mx is the direct limit lim−→Mf

of the system formed by the modules Mf and homomorphisms ρg,f , as f varies over A \ jf .
Write

ρfx : Mf →Mx

for the canonical homomorphism, for f ∈ A \ jx (i.e., for x ∈ D(f)).

Definition (1.3.4). — The structure sheaf of X = Spec(A) (resp. sheaf associated to an A

module M), denoted Ã or OX (resp. M̃) is the sheaf of rings (resp. sheaf of OX modules)
associated to the presheaf D(f) 7→ Af (resp. D(f) 7→Mf ) on the base B of open sets of the
form D(f) (see (1.1.10) and (0, 3.2.1 and 3.5.6)).
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By (0, 3.2.1), the stalks Ãx (resp. M̃x) are just Ax (resp. Mx), and we have canonical

homomorphisms θf : Af → Γ(D(f), Ã) and similarly for M , such that

(1.3.4.1) (θf (m))x = ρfx(m)

for all m ∈Mf .

Proposition (1.3.5). — [cf. Liu, 5.1.5 (b)] M 7→ M̃ is an exact, contravariant functor

from A modules to sheaves of Ã modules.

Proposition (1.3.6). — [cf. Liu, 2.3.7] For every f ∈ A, the open set D(f) is canonically

homeomorphic to Spec(Af ), and the sheaf M̃f associated to the Af module Mf coincides

under this identification with M̃ |D(f).

Theorem (1.3.7). — [cf. Liu, 2.3.1 (a)] The canonical homomorphism θf : Mf → Γ(D(f), M̃)

is an isomorphism. In particular, M ∼= Γ(X, M̃).

Corollary (1.3.8). — Given two A modules M , N , the functorial map HomA(M,N) →
HomÃ(M̃, Ñ) is bijective, i.e., the functor M 7→ M̃ is fully faithful. In particular M̃ = 0 iff
M = 0.

Corollary (1.3.9). — (i) Given u : M → N , the sheaves associated to keru, imu, cokeru
are ker ũ, im ũ, coker ũ. Thus ũ is injective (resp. surjective, bijective) iff u is.

(ii) The functor M → M̃ commutes with all inductive limits, in particular with all direct
sums [Liu, 5.1.5 (a)].

Note that the sheaves associated to A modules form an Abelian category, by (1.3.8). If

M is finitely generated, then there is a surjection Ãn → M̃ , so M̃ is generated by a finite
family of global sections.

(1.3.10). If N ⊆M is a submodule, then the inclusion induces an injective homomorphism

Ñ ↪→ M̃ . Hence we can and will identify Ñ with a subsheaf of M̃ . With this identifica-

tion, (1.3.9) implies that the functor M → M̃ preserves sums and finite intersections of
submodules.

Corollary (1.3.11). — On the category of sheaves associated to A modules, the global
section functor Γ is exact.

Corollary (1.3.12). — (i) M 7→ M̃ commutes with tensor products [Liu, 5.1.5 (d)].
(ii) For finitely presented M , the sheaf associated to HomA(M,N) is canonically identified

with HomÃ(M̃, Ñ).

(1.3.13). If B is an A algebra, then B̃ is a sheaf of Ã algebras, and if M is a B module,

then M̃ is a sheaf of B̃ modules, of finite type iff M is a finitely generated B module. The

results in (1.3.8–1.3.12) apply in this setting as well. If B (resp. M) is graded, then so is B̃

(resp. M̃) [see (0, 4.1.4)].
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(1.3.14). If B is an A algebra, M ⊆ B an A submodule, and C ⊆ B the subalgebra

generated by M , then C̃ is the Ã subalgebra of B̃ generated by M̃ [cf. (0, 4.1.3)].


