SYNOPSIS OF MATERIAL FROM EGA CHAPTER I, §1.1-1.3

1. AFFINE SCHEMES

1.1. Prime spectrum of a ring. [cf. Liu, 2.1-2.3, Mumford II.1, Eisenbud-Harris 1.1]

(1.1.1). Notation: X = Spec(A) = {prime ideals of A}. We write j, for 2 € X to empha-
size its role as an ideal of A. We have Spec(A) = 0 iff A = 0.

A, = A, = local ring.

m, = j, A, = maximal ideal of A,.

k(x) = A;/m, = residue field of A,, equal to the field of fractions of A/j,.

f(z) = image in k(z) of f € A, so f(z) =0iff f €j(z).

M, = M ®4 A, = localization of an A module M.

V/(E) = radical of the ideal generated by E C A.

V(E)={zeX:ECj}={reX: f(r)=0forall fe E}. Then [cf. Liu, 2.1.6]

(1.1.1.1) VE) = ] i

z€V(E)

V(f)=V{[}) for f € A.

D(f) = X\V(f) ={x e X : f(z) #0}.

Proposition (1.1.2). —

(1) V(0)=X, V(1) = 0.

(ii) EC E' = V(E) D V(E).

(1it) For any collection (Ey), V (U, Ex) =y V(Ey).

(iv) V(EE") =V (E)UV(E").

(v) V(E) = V(/(B)).

The sets V(F) are the closed subsets of a topology, the Zariski topology on X. We
understand X = Spec(A) to have this topology from now on.

(1.1.3). Given Y C X, let j(Y) = {f € A: f(z) = Oforallz € Y} = (), jz. Then
Y CY'=j(Y) Dj(Y’) and we have

(1.1.3.1) iJr) =im)
A A
(1.1.3.2) i({z}) =Ja-

Proposition (1.1.4). —

(i) For any E C A, i(V(E)) = \/(E).

(ii) For any Y C X, V(i(Y)) =Y s the closure of Y.

Corollary (1.1.5). — Closed subsets Y C X and radical ideals a C A correspond bijectively
via Y — j(Y), a— V(a); the union Y1 UY;y corresponding to j(Y1) Ni(Y2) and an arbitrary
intersection [, Y corresponding to />, i(Y).

1



Corollary (1.1.6). — If A is a Noetherian ring, then Spec(A) is a Noetherian space [the
converse does not hold.

Corollary (1.1.7). — The closure of {x} is the set of y € X such thatj, Cj,. Thus {z}
1s closed iff i, is mazimal.

Corollary (1.1.8). — Spec(A) is a Ty space.

(1.1.9). For f,g € A we have

(1.1.9.1) D(fg) = D(f) N D(g).
We also note that D(f) = D(g) iff /(f) = v/(g). In particular this holds if f = ug where
u € A is a unit.

Proposition (1.1.10). — (1) The sets D(f) for f € A form a base of open sets on X.

(i) D(f) is quasi-compact, and in particular, so is X = D(1).

Proposition (1.1.11). — Spec(A/a) is canonically identified with the closed subset V (a) C
Spec(A).

Corollary (1.1.12). — Spec(A) and Spec(A/+/(0)) are canonically homeomorphic.

Proposition (1.1.13). — Spec(A) is an irreducible space iff A/\/(0) is a domain, i.e., 1/(0)
18 prime.

Corollary (1.1.14). — (i) In the correspondence between closed subsets of X and radical
ideals of A, the irreducible closed subsets correspond to the prime ideals. In particular, the
wrreducible components of X correspond to the minimal primes.

(ii) z — {x} is a bijection from points of X to irreducible closed subsets of X, i.e., each
wrreducible closed subset has a unique generic point.

Proposition (1.1.15). — IfZ is an ideal contained in the Jacobson radical R(A), the whole
space X 1is the unique open neighborhood of V(I).

1.2. Functorial properties of the prime spectrum of a ring.
(1.2.1). A ring homomorphism ¢: A" — A induces a map
“¢: X = Spec(A) — X' = Spec(A")

by ¢(x) = ¢ '(j.). We denote by ¢ the injective homomorphism of integral domains
A'J¢7 (jz) — AJj. or its extension to their fraction fields ¢*: k(*¢(z)) — k(z). For any
f' € A’, we then have

(1.2.1.1) ¢"(f'(“o(x))) = (6(f)) ().
Proposition (1.2.2). — (i) For any E' C A, we have
(1.2.2.1) “G6TH(V(E") = V(s(E)),

and in particular, for any f' € A,

(1.2.2.2) "o~ (D(f") = D(([")).



(ii) For any ideal a C A, we have
(1.2.23) V@) = V(o (a).

Corollary (1.2.3). — “¢ is continuous.
In fact, Spec is a contravariant functor from commutative rings to topological spaces.

Corollary (1.2.4). — [cf. Liu, 2.1.7 (b)] Suppose that ¢ is surjective, or more generally,
that every f € A has the form f = ho(f') for some f' € A" and invertible h € A. Then “¢
is a homeomorphism from X onto “¢(X).

(1.2.5). In particular, when ¢ is the canonical homomorphism A — A/a, then %¢ is the
inclusion of Spec(A/a), identified with V' (a), into Spec(A).

Corollary (1.2.6). — [cf. Liu, 2.1.7 (¢)] For any multiplicative set S C A, Spec(S™'A) is
canonically homeomorphic to the subspace {x € X :j, NS =0} of X = Spec(A).

Corollary (1.2.7). — *¢(X) is dense in X' iff ker(¢) consists of nilpotent elements.

1.3. Sheaf associated to a module. [cf. Liu, Section 5.1.2]

(1.3.1). Let M be an A module, f € A, S; = {1, f, f% ...}, A; = S;lA, M; = SJZlM.
Let St = {g € A : g divides f" for some n} be the saturation of Sy, so S}_IA = SJTIA,
S7IM = S;'M canonically (0, 1.4.3).

Lemma (1.3.2). — The following are equivalent: (a) g € Sy, (b) S, € S%, (¢) f €/(9),
(d) V() €V (9). (e) V(g) S V([), (f) D(f) € D(g).

(1.3.3). It D(f) = D(g) it follows that My = M,, and for D(f) O D(g) there is a canonical
homomorphism, functorial in M,

Pg.f: Mf — Mg,
satisfying

(1.3.3.1) Phg © Po.f

for D(f) 2 D(g) 2 D(h). Given x € Spec(A), the localization M, is the direct limit lim M
of the system formed by the modules My and homomorphisms p, ¢, as f varies over A\ j;.
Write

pl: My — M,
for the canonical homomorphism, for f € A\ j, (i.e., for z € D(f)).

Definition (1.3.4). — The structure sheaf of X = Spec(A) (resp. sheaf associated to an A

module M), denoted A or Ox (resp. M) is the sheaf of rings (resp. sheaf of Oy modules)
associated to the presheaf D(f) — Ay (resp. D(f) — Mjy) on the base B of open sets of the
form D(f) (see (1.1.10) and (0, 3.2.1 and 3.5.6)).



By (0, 3.2.1), the stalks A, (resp. ]zj) are just A, (resp. M,), and we have canonical
homomorphisms 0¢: Ay — I'(D(f), A) and similarly for M, such that

(1.3.4.1) (0(m))s = pl(m)
for all m € Mjy.

Proposition (1.3.5). — [cf. Liu, 5.1.5 (b)] M +— M is an exact, contravariant functor
from A modules to sheaves of A modules.

Proposition (1.3.6). — [cf. Liu, 2.3.7] For every f € A, the open set D(f) is canonically
homeomorphic to Spec(Ay), and the sheaf M associated to the Ay module My coincides
under this identification with M|D(f).

Theorem (1.3.7). — [cf. Liu, 2.3.1 (a)] The canonical homomorphism 0: My — I'(D(f), M)
is an isomorphism. In particular, M = T'(X, M).

Corollary (1.3.8). — Given two A modules M, N, the functorial map HomA(M N) —
HomA(M N) is bijective, i.e., the functor M — M s fully faithful. In particular M=0 iff
M =0.

Corollary (1.3.9). — (i) Given u: M — N, the sheaves associated to ker u, imu, coker u
are ker u, imw, cokerw. Thus w is injective (resp. surjective, bijective) iff u is.

(ii) The functor M — M commutes with all inductive limits, in particular with all direct

sums [Liu, 5.1.5 (a)].
Note that the sheaves associated to A modules form an Abelian category, by (1.3.8). If

M is finitely generated, then there is a surjection Ar = M so M is generated by a finite
family of global sections.

(1.3.10). If N C M is a submodule, then the inclusion induces an injective homomorphism
N < M. Hence we can and will identify N ~with a subsheaf of M. With this identifica-
tion, (1.3.9) implies that the functor M — M preserves sums and finite intersections of
submodules.

Corollary (1.3.11). — On the category of sheaves associated to A modules, the global
section functor I' is exact.

Corollary (1.3.12). — (i) M +— M commutes with tensor products [Liu, 5.1.5 (d)].
(ii) For ﬁmtely presented M, the sheaf associated to Hom (M, N) is canonically identified

with ’HomA(]\/[ N).

(1.3. 13) If B is an A algebra, then B is a sheaf of A algebras, and if M is a B module,
then M is a sheaf of B modules, of finite type iff M is a finitely generated B module. The
results in (1.3.8-1.3.12) apply in this setting as well. If B (resp. M) is graded, then so is B
(resp. M) [see (0, 4.1.4)].
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(1.3.14). If B is an A algebra, M C B an A submodule, and C' C B the subalgebra
generated by M, then C' is the A subalgebra of B generated by M [cf. (0, 4.1.3)].



