Math 252 Fall 2012 Homework Problems

Lecture 1

1. The dihedral group D, of order 2n acts naturally on R? by reflections and rotations.
Find the matrices of two generating reflections s, ¢ in the corresponding matrix representa-
tion, and verify by computation the relation sts--- = tst--- (n factors on each side). Hint:
regard this as a complex matrix representation, and diagonalize the matrix of st.

2. The symmetric group S; is isomorphic to the dihedral group Dg. Identifying these two
groups, construct an isomorphism between the natural representation of Dg on R?, and the 2-
dimensional real representation of S3 on V/U, where V = R3 is the standard representation,
and U is the submodule spanned by the invariant vector (1,1,1).

3. The quaternion group is the 8-element subgroup @ = {+£1,+i,+j, £k} of the mul-
tiplicative group of non-zero quaternions. Find a faithful 2-dimensional complex matrix
representation of (). Hint: if you define scalar multiplication by C on the quaternions H to
be right multiplication, then left multiplication by any = € H is C-linear.

4. Are the quaternion group () and the dihedral group Dg isomorphic?

Lecture 2

In this course, a k-algebra A means an associative but not necessarily commutative ring
with unit, equipped with a unital ring homomorphism from & to the center Z(A) of A, where
k is a commutative ring with unit (often a field). By A-module we always mean unital left
A-module. Right A-modules are then A°? modules, where A°® = A as a k-module and has
the opposite multiplication as an algebra.

1. Given rings with unit A and k, where k is commutative, show that to give a k-alebra
structure on A, i.e., a homomorphism k — Z(A), it is equivalent to give a k-module structure
on A such that multiplication in A is k-bilinear. (In the language of multilinear algebra, this
means that the multiplication in A is given by a k-module homomorphism A ®; A — A.)

2. Let A be a k-algebra, and let G be a group acting on A by k-algebra automorphisms
(thus, acting trivially on the image of k in A). Define the twisted group algebra, or ‘smash
product,” A x G to be the free A-module with basis G, with multiplication defined by
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(a) Verify that AxG is an associative k-algebra with unit 14, and that its given A-module
structure coincides with the one in which scalar multiplication is left multiplication in A *x G
by the subalgebra A - 15 = A.

(b) A G-equivariant A-module is an A-module V' with a k-linear G action, such that scalar
multiplication A x V' — V' is G-invariant (i.e., intertwines the G actions on A x V and V).
Show that every G-equivariant A-module V' has a canonical structure of A * G-module, and



vice versa, in such a way that G-invariant A-module homomorphisms between equivariant
A-modules are the same as A * G-module homomorphisms.

(c) In the case A = k (in particular, G acting trivially on A), show that A x G reduces
to the usual group algebra kG, and (b) gives the identification of G-modules over k with
kG-modules.

3. Let G = Z/nZ be the cyclic group of order n. Let X = {0,...,n — 1} and let CX be
the C-algebra of C-valued functions on X. Show that there is an isomorphism CG = CX
(called discrete Fourier transform) sending a generator of G to the function f(z) = e*m@/,
More generally, if k is a field and w € k is a primitive n-th root of unity, construct a similar
isomorphism kG = kX,

4. With G = Z/nZ again, describe the group algebra kG when k is an algebraically
closed field of characteristic p dividing n (so all roots of unity have order coprime to p and
hence not equal to n). Begin by showing that in the case n = p, we have kG = k[t]/(t?).

Lecture 3

1. Let V = k™ be the standard representation of S, over a field k& of characteristic p
dividing n, let U be the submodule generated by the vector (1,1,...,1), and let W be the
submodule consisting of all vectors z such that ), z; = 0. Prove that W/U is irreducible,
and deduce that
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is a composition series for V. Describe the composition factors.

2. With notation as in the previous problem, prove that U and W are the only proper
non-zero submodules of V. In particular, V' is indecomposable.

Lecture 4

1. Let A = M, (k) = Endg(k™), where k is a field (or, more generally, a division ring, if
you want to work a little harder).

(a) Prove that the natural A-module V' = k" is simple.

(b) Construct a composition series for A as a left A-module.

(c) Use (b) to deduce that V' is the unique simple A-module, up to isomorphism.

(d) Prove that End4 (V) is isomorphic to k, or, in the case that k is a non-commutative
division ring, to k°P.

2. Let k be a field and let A be the (commutative) algebra of functions k%, where X
is an infinite set. Show that the Jacobson radical J(A) is zero. Prove that if I,J C A are
ideals such that A = I & J, then there is a subset Y C X such that I consists of all functions
vanishing on Y and J consists of all functions vanishing on X \ Y. Deduce that A is not
semisimple as an A-module. Hint: the functions of finite support form an ideal. Or you can
use the fact that A is not Artinian.



3. Let k be a field and let A be the endomorphism algebra of an infinite-dimensional
vector space V over k. Prove that V' is a simple module and hence J(A) = 0. Prove that A
is not Artinian and hence not semisimple as an A-module.

4. Let H denote the algebra of quaternions. Prove that H ®@g H is semisimple, hence
isomorphic to a direct product of matrix algebras over division rings over R. Construct such
an isomorphism explicitly.

Lectures 5-8

1. [Fulton-Harris, 1.3] (a) Show that if V is a G-module, the exterior powers A"V have
natural G actions such that g(vy A -+ Avg) = g(vy) A+ A g(vg).

(b) Suppose that every g € G acts on V by an endomorphism p(g) of determinant 1,
i.e., the action p: G — GL(V) factors through SL(V). Show that A"V is isomorphic to
A5 (V*), where n = dim V.

2. Let V = C" be the standard representation of S, and W = V/V5» its irreducible
quotient of dimension n — 1. Show that the exterior powers A\"(W) are irreducible and
mutually non-isomorphic. What is a simple description of A"~ (1W)?

3. [Fulton-Harris, 1.14] Let V be a finite-dimensional complex representation of a finite
group G. Prove that there exists a G-invariant non-degenerate Hermitian form on V; equiv-
alently there exists a basis of V in which G acts by unitary matrices. Prove that if V is
irreducible, the invariant form is unique up to a scalar factor.

4. [Fulton-Harris, 2.35] Recall that for k = C, the algebraic inner product of characters
coincides with the Hermitian inner product
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on the space of functions C%. Suppose that we choose one irreducible G-module V; from each
isomorphism class, and in each of these we choose a basis in which GG acts by unitary matrices
A;(g) (see the previous problem). Prove that the rescaled matrix entries v/dim V; A;(g); k.
for all 7, j, k, form an orthonormal basis of CY.

5. [Fulton-Harris, 2.1-2.2] Show that the characters of the second symmetric and exterior
powers of V' are given in terms of the character of V' by

Xpzv(9) = (xv(9)® — xv(g?))/2
xs2v(9) = (xv(9)® + xv(9%))/2

6. Assume k = k and chark = 0. The reqular representation of G is kG, regarded as a
kG-module. Show in two ways that each irreducible G-module V' occurs with multiplicity
dim(V') in kG: (i) using the structure of semisimple algebras; (ii) using characters.



7. Assume k = k and char k = 0. Prove that if V is a faithful G-module, then every simple
G-module occurs in some symmetric power of V. Hint: think of the symmetric algebra S(V)
as the algebra of polynomial functions on V*, and show that there is a quotient S(V')/I,
where [ is a G-invariant ideal, such that S(V')/I is isomorphic to kG as a G-module.

8. [Fulton-Harris, 2.39]. Show that if V' is irreducible and dim(V) > 1 then xy(g) =0
for some g € G.

9. Prove that if A and B are finite-dimensional semisimple algebras over an algebraically
closed field k, and V', W are simple A and B modules, respectively, then V ®; W is a simple
A ®;, B module. Prove, moreover, that as V' and W range over isomorphism types of simple
modules, V ®; W gives all the distinct simple A ®; B modules up to isomorphism.

Deduce (for k algebraically closed and char & = 0) that the irreducible characters of G x H
are given by x; (g, h) = ¢;(g)¥;(h), where ¢; and ¢; are the irreducible characters of G and
H | respectively.

10. In this problem we take characters over the complex numbers C.

(a) Prove that, for every character xy of G, the set {g € G|x(g) = x(1)} is the kernel of
the action G — GL(V). In particular, it is a normal subgroup of G.

(b) Prove that every normal subgroup of G is an intersection of kernels of actions of G
on irreducible representations.

(¢) Deduce that G is simple if and only if x(g) # x(1), for every 1 # g € G and every
irreducible character x # 1.

11. Goodman and Wallach Ex. 4.4 #2 (p. 223). Note: the Goodman and Wallach text
is available online through the UC library.

12. Goodman and Wallach Ex. 4.4 #3 (p. 223).

Lectures 9-10

1. Calculate the character table of the quaternion group @ = {+£1,+i,+j, +k}. Hint:
four of the characters factor through a homomorphism Q — (Z/27Z)>.

2. Calculate the character table of the dihedral group Dg of order 8. See hint for the
preceding problem.

3. Show that the real group algebra R(Q) has four irreducible representations of dimension
1 and one of dimension 4, the last being the 2-dimensional representation of C@), which
remains irreducible when restricted to R, and which can also be described as the action of
@ by left multiplication in H.

4. Show that the real group algebra RDg has four irreducible representation of dimension
1 and one of dimension 2, that inducing these from R Dg to CDyg gives the irreducible complex
representations of Dg, each of which restricts to two copies of an irreducible representation
of RDg

5. Let Ds, be the dihedral group of order 2n, and assume n > 2 (since Dy and Dy are
abelian).



(a) Show that the defining representation of Dy, by reflections and rotations in R?, when
complexified, gives a 2-dimensional irreducible representation V' of D,, over C.

(b) Show that if n = 2k, then Dy, has four 1-dimensional irreducible representations and
k —1 2-dimensional ones; while if n = 2k 41, then D,,, has two 1-dimesional irreducibles and
k 2-dimensional ones. In either case, show that all the 2-dimensional representations can be
obtained from V or V* by composing the action p: Do, — GL(V) or p: Dy, — GL(V*)
with an endomorphism of D,,.

(c) Construct the character table of Dy, (it helps to do this simultaneously with part

(b))
Lecture 11

1. Let G be a finite group and H C G a subgroup of index 2 (in particular, H is normal).
Then G/H = 7Z/27Z has a nontrivial 1-dimensional character € with values +1, which we
may regard as a character of G. Note that G/H acts on the set of conjugacy classes of H
and therefore on the set of class functions on H.

(a) Prove that the action of G/H on class functions on H sends irreducible characters
to irreducible characters. (More generally, for any normal subgroup H of a finite group G,
G acts on H by automorphisms, and so acts on the characters of H. Since H fixes its own
characters, G/H acts.)

(b) Prove that each conjugacy class C' of G which is contained in H is either a conjugacy
class of H or a union of two conjugacy classes of H, with the latter occurring if and only if
the centralizer in G' of any element of C' is contained in H. Also verify that the action of
G/H on the set of conjugacy classes of H fixes those which are classes of GG, and switches
the two classes of H in each class of G which is not a class of H.

(b) Let x be an irreducible character of G' such that x ® e = x. Prove that Resg X is a
sum of two irreducible characters of H which are exchanged by the action of G/H.

(c) Let x be an irreducible character of G such that ' = y ® € # x. Prove that
Resg X = Resg X', and that this is an irreducible character of H.

(d) Let x be an irreducible character of H fixed by G/H. Prove that Ind$ y is a sum of
two distinct irreducible characters ¢, ¢’ = ¢ ® € of G.

(e) Let x, X’ be two irreducible characters of H exchanged by G/H. Prove that Ind% y =
Indg X', and that this is an irreducible character of G.

(f) Prove that parts (b) through (e) set up a 1-1 corresponsdence between G/H orbits on
the set of irreducible characters of H, and orbits of tensoring with € on the set of irreducible
characters of G (note that € ® e = 1), such that orbits with 2 elements on either side
correspond to fixed points on the other side.

2. Use the preceding problem to classify the conjugacy classes and irreducible characters
of the alternating groups A,,, and express the character values in terms of characters of the
symmetric group S,. Specifically, work out the character table of As.

3. Let p(n) denote the number of partitions of n, k(n) the number of self-conjugate
partitions, and e(n) the number of partitions with an even number of even parts.
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(a) Show that the number of partitions of n with distinct odd parts is equal to k(n).

(b) Prove that e(n) + k(n) = (p(n) + 3k(n))/2. Explain why I wrote the identity this
way instead of as e(n) = (p(n) + k(n))/2.

Lectures 12-18

1. Identify the partitions A\ for which the irreducible representation V) in the standard
classification of irreducible representations of S,, is isomorphic to the k-th exterior power of
the n — 1 dimensional irreducible submodule of the defining representation C".

2. Let S, act on the polynomial ring R = C[zy,...,x,] by permuting the variables. Let
R4 denote the subspace consisting of homogeneous polynomials of degree d.

(a) Use the fact that S,, permutes monomials to express the Frobenius image Fx(R4) of
the character of R, in terms of complete homogeneous symmetric functions.

(b) Prove that the generating function for these characters is given by the formula

Y Fx(Ba)g' =) s\(1/(1—a)si(x),

[Al=n

where sy(1/(1—q)) is shorthand for s,(1, g, ¢, ...), a formal power series in ¢ (which happens
to be rational function of ¢; see the next problem).

3. If f(z) is a symmetric function, let f(z/(1 — ¢)) denote the symmetric function with
coefficients in Q(q) which results by writing f in terms of power-sums and substituting
pe/ (1 = ¢*) for py, for all k.

(a) Show that f evaluated on the alphabet {z;q’} for all i and all j > 0, regarded as
a symmetric function in the x; with coefficients in the ring of formal power series in ¢, has
the property that its coefficients are actually rational functions of ¢, and as such it coincides
with f(z/(1 — q))

(b) Show that the formula in the previous problem for the generating for the characters
of Ry can also be written as h,(z/(1 — q)).

(c¢) More generally, show that if V' is an \S,, module, and f(x) = F'x(V) is the Frobenius
image of its character, then the Frobenius image of the character of the V ® Ry is given by

Y Fx(V®Ry) ¢ = fz/(1-q)),

4. If f(x) is a symmetric function, let f(x(1 — ¢q)) denote the symmetric function with
coefficients in Q(g) which results by writing f in terms of power-sums and substituting
(1 — ¢*)py, for py, for all k.

(a) Show that if V is an S,, module, and f(z) = Fx(V) is the Frobenius image of its
character, then the Frobenius image of the character of the V ® /\d C™ is given by

> Fx(Vve \CY¢' = fz(1—-q)).
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5. Calculate the matrices of the transpositions s; = (4, i+1) in the irreducible representa-
tion V(39 of S5, with respect to the basis corresponding to standard Young tableaux. Check
your answer by verifying that your matrices satisfy the relations s;s; = s;s; for |i — j| > 1,
5;5;5; = 5j5;8; for j =i+ 1.

6. (a) Let p denote a power-sum symmetric function and s, a Schur function. Prove
that ppsy is a sum of Schur functions s,, each with coefficient £1, where p ranges over
partitions of |A| + k such that the diagram of x contains that of A\, and the skew diagram
(/X is a connected ribbon of size k: “ribbon” means it contains no 2 x 2 square. Show that
the coefficient is (—1)"~! where h is the number of rows occupied by the ribbon.

Hint: calculate pray,s in terms of antisymmetric functions.

(b) Define a ribbon tableau R of shape A to be a filling of the diagram of A with positive
integers, weakly increasing on each row and column, such that the set of boxes occupied by @
is a ribbon for each i. Define the sign e¢(R) to be the product of (—1)"~! over these ribbons.
Deduce from part (a) that the character x, of S, evaluated on a permutation of cycle type
7, is the sum of €(R) over ribbon tableaux R of shape A and weight 7. This combinatorial
formula for the characters of .S, is known as the Murgnahan-Nakayama rule.

Lectures 19-2/

1. Recall that O(GL,) is generated by the matrix entries of X € GL, together with
1/det(X). An algebraic representation p: GL, — GL,, is called polynomial if the matrix
entries of p(X) are polynomials in the matrix entries of X, i.e., they can be written without
using 1/ det(X).

(a) Show that every submodule of a tensor power of the defining representation C" of
G L, is a polynomial representation.

(b) Show that every algebraic representation of G L, is the tensor product of a polynomial
representation and some power of the 1-dimensional represenation X — 1/det(X).

(¢) [for Lecture 38] Prove the converse to (a), i.e., every irreducible polynomial represen-
tation of GL,, occurs in a tensor power of the defining representation.

2. For any integer m we can make the group G,, = C* act on group G, = (C,+), with
t acting as scalar multiplication by t™. Let G be their semidirect product, identified as an
algebraic variety with the product, i.e., O(G) = Clx, t*!], where z is the coordinate on G,
and t is the coordinate on G,,.

(a) Show that G is an algebraic group, and write down the comultipication and antipode
(corresponding to the inverse map) on O(G).

(b) Show that for m = 2, G is isomorphic to the subgroup of upper triangular matrices
in SL2

(c) Show that an algebraic representation of G is the same thing as a finite-dimensional
vector space V' equipped with a Z-grading and an endomorphism a € End¢(V') homogeneous
of degree m. More generally and precisely, show that the category of of O(G) comodules
is equivalent to the category of Z-graded vector spaces with a locally nilpotent degree m
endomorphism.



3. What are the unipotent radical and reductive quotient of the group G in the preceding
problem?

4. Let positive integers r; be given such that r; +--- 4+ r, = n. Let P C GL, be the
subgroup consisting of matrices which are block upper-triangular with block sizes 71, ..., 7.
Describe the unipotent radical and reductive quotient of the algebraic group P.

5. Let p: G x X — X be an algebraic action of an algebraic group G on a variety X. For
simplicity, assume X is affine. Let p: O(X) — O(X) ® O(G) be the ring homomorphism
corresponding to the action. Given £ € Lie(G) C O(G)*, we get a linear map L = (1®¢) o
pf O(X) = O(X).

Prove that: (i) L¢ is a derivation of O(X), i.e., a vector field on X; (ii) denoting by
L¢(x) the tangent vector at z € X given by the vector field to L¢ at x, the map & — L¢(z)
is the differential at 1 of the orbit map G — X, g — gz; and (iii) { — —L¢ is a Lie
algebra homomorphism, where we regard Der(O(X)) as a Lie algebra under commutator of
derivations.

Hint: the minus sign in (iii) comes from the conventional identification of the Lie bracket
in Lie(G) with the commutator of left invariant vector fields. If we instead identify Lie(G)
with the set of right invariant vector fields, it reverses the Lie bracket. For the left action of
G on itself, L is the right invariant vector field on G such that L¢(1) = &.



