Math 249—Spring 2024 Homework problems on Lectures 16–31

1. Express $m_{\lambda}(1, 1, \ldots, 1)$, with n ones, as a more familiar combinatorial quantity.

2. Prove the formula for complete homogeneous symmetric functions in terms of elementary symmetric functions

$$h_n = \sum_{|\lambda|=n} (-1)^{n-l(\lambda)} \binom{l(\lambda)}{r_1, r_2, \dots, r_k} e_{\lambda},$$

where $\lambda = (1^{r_1}, 2^{r_2}, \dots, k^{r_k}).$

3. Prove the formulas for the n-th power-sum symmetric function

$$p_n = \sum_{k=0}^{n-1} (-1)^k s_{(n-k,1^k)} = \sum_{k=0}^{n-1} (-1)^k (n-k) h_{n-k} e_k = \sum_{k=1}^n (-1)^{k-1} k h_{n-k} e_k.$$

4. In class we defined the skew Schur function

$$s_{\nu}(X) = \sum_{T \in \text{SSYT}(\nu)} x^{T}$$

to be a generating function for semistandard Young tableaux on a skew Young diagram ν . Show that for $\nu = \lambda/\mu$ expressed as a difference of partition diagrams, s_{ν} is characterized by the property

$$s_{\lambda/\mu} = s_{\mu}^{\perp} s_{\lambda}$$
, that is, $\langle s_{\lambda/\mu}, f \rangle = \langle s_{\lambda}, s_{\mu}f \rangle$ for all f ,

where $\langle -, - \rangle$ is the Hall inner product.

5. Let $\lambda = (k, 1^l)$ be a hook shape. Prove the following rule for computing $s_{\lambda}s_{\mu}$, which generalizes the Pieri rules for $s_{(k)}s_{\mu}$ and $s_{(1^k)}s_{\mu}$:

(i) s_{ν} occurs with non-zero coefficient in $s_{\lambda}s_{\mu}$ only if ν/μ is a disjoint union of ribbons (connected skew shapes containing no 2×2 rectangle) of total size k + l,

(ii) in that case, the coefficient is $\binom{r-1}{h-l-1}$, where μ/ν consists of r ribbons, and h is the sum of their heights (interpreting $\binom{r-1}{h-l-1}$ as zero if h-l-1 is negative).

6. Prove that the Frobenius characteristic map is given in terms of monomial symmetric functions by

$$F(\chi_V) = \sum_{\mu} \dim(V^{S_{\mu}}) m_{\mu},$$

where χ_V is the character of an S_n module V, S_μ is the Young subgroup $S_{\mu_1} \times \cdots \times S_{\mu_l} \subseteq S_n$, and $V^{S_\mu} \subseteq V$ denotes the subspace of elements invariant under the action of S_μ .

7. Let V_{λ} be the irreducible representation of S_n whose character corresponds under the Frobenius characteristic map to the Schur function s_{λ} .

(a) Prove that $V_{(n-1,1)}$ is the irreducible submodule of dimension of dimension n-1 in the defining representation of S_n on \mathbb{C}^n , complementary to the one copy of the trivial representation in \mathbb{C}^n .

(b) Prove that $V_{(n-k,1^k)}$ is isomorphic to the k-th exterior power of $V_{(n-1,1)}$.

8. Let T be a standard tableau of straight shape, i.e., the shape is a partition diagram. Schütenzerger's *evacuation* ev(T) is defined as follows: rotate T 180° and renumber the entries $1, \ldots, n$ to $n, \ldots, 1$, to obtain a standard tableau of 'anti-straight' shape, then rectify.

Let $w \mapsto (P(w), Q(w))$ be the RSK correspondence restricted to permutations w, so both P(w) and Q(w) are standard tableaux.

(a) Show that the reversed permutation w'(i) = w(n+1-i) goes under RSK to $P(w') = P(w)^*$, $Q(w') = ev(Q(w)^*) = (ev Q(w))^*$, where S^* denotes the transpose of a standard tableau.

(b) Show that the permutation with reversed values w''(i) = n + 1 - w(i) goes to $P(w'') = ev(P(w)^*), Q(w'') = Q(w)^*.$

(c) Show that the inverse permutation w^{-1} goes to $P(w^{-1}) = Q(w)$, $Q(w^{-1}) = P(w)$. [N.B.: this part is more challenging, and implies that parts (a) and (b) are equivalent.]