Math 249-Spring 2024

Homework problems on Lectures 16-31

1. Express $m_{\lambda}(1,1, \ldots, 1)$, with n ones, as a more familiar combinatorial quantity.
2. Prove the formula for complete homogeneous symmetric functions in terms of elementary symmetric functions

$$
h_{n}=\sum_{|\lambda|=n}(-1)^{n-l(\lambda)}\binom{l(\lambda)}{r_{1}, r_{2}, \ldots, r_{k}} e_{\lambda}
$$

where $\lambda=\left(1^{r_{1}}, 2^{r_{2}}, \ldots, k^{r_{k}}\right)$.
3 . Prove the formulas for the n-th power-sum symmetric function

$$
p_{n}=\sum_{k=0}^{n-1}(-1)^{k} s_{\left(n-k, 1^{k}\right)}=\sum_{k=0}^{n-1}(-1)^{k}(n-k) h_{n-k} e_{k}=\sum_{k=1}^{n}(-1)^{k-1} k h_{n-k} e_{k} .
$$

4. In class we defined the skew Schur function

$$
s_{\nu}(X)=\sum_{T \in \operatorname{SSYT}(\nu)} x^{T}
$$

to be a generating function for semistandard Young tableaux on a skew Young diagram ν. Show that for $\nu=\lambda / \mu$ expressed as a difference of partition diagrams, s_{ν} is characterized by the property

$$
s_{\lambda / \mu}=s_{\mu}^{\perp} s_{\lambda}, \quad \text { that is, } \quad\left\langle s_{\lambda / \mu}, f\right\rangle=\left\langle s_{\lambda}, s_{\mu} f\right\rangle \quad \text { for all } f
$$

where $\langle-,-\rangle$ is the Hall inner product.
5. Let $\lambda=\left(k, 1^{l}\right)$ be a hook shape. Prove the following rule for computing $s_{\lambda} s_{\mu}$, which generalizes the Pieri rules for $s_{(k)} s_{\mu}$ and $s_{\left(1^{k}\right)} s_{\mu}$:
(i) s_{ν} occurs with non-zero coefficient in $s_{\lambda} s_{\mu}$ only if ν / μ is a disjoint union of ribbons (connected skew shapes containing no 2×2 rectangle) of total size $k+l$,
(ii) in that case, the coefficient is $\binom{r-1}{h-l-1}$, where μ / ν consists of r ribbons, and h is the sum of their heights (interpreting $\binom{r-1}{h-l-1}$ as zero if $h-l-1$ is negative).
6. Prove that the Frobenius characteristic map is given in terms of monomial symmetric functions by

$$
F\left(\chi_{V}\right)=\sum_{\mu} \operatorname{dim}\left(V^{S_{\mu}}\right) m_{\mu}
$$

where χ_{V} is the character of an S_{n} module V, S_{μ} is the Young subgroup $S_{\mu_{1}} \times \cdots \times S_{\mu_{l}} \subseteq S_{n}$, and $V^{S_{\mu}} \subseteq V$ denotes the subspace of elements invariant under the action of S_{μ}.
7. Let V_{λ} be the irreducible representation of S_{n} whose character corresponds under the Frobenius characteristic map to the Schur function s_{λ}.
(a) Prove that $V_{(n-1,1)}$ is the irreducible submodule of dimension of dimension $n-1$ in the defining representation of S_{n} on \mathbb{C}^{n}, complementary to the one copy of the trivial representation in \mathbb{C}^{n}.
(b) Prove that $V_{\left(n-k, 1^{k}\right)}$ is isomorphic to the k-th exterior power of $V_{(n-1,1)}$.
8. Let T be a standard tableau of straight shape, i.e., the shape is a partition diagram. Schütenzerger's evacuation $\mathrm{ev}(T)$ is defined as follows: rotate $T 180^{\circ}$ and renumber the entries $1, \ldots, n$ to $n, \ldots, 1$, to obtain a standard tableau of 'anti-straight' shape, then rectify.

Let $w \mapsto(P(w), Q(w))$ be the RSK correspondence restricted to permutations w, so both $P(w)$ and $Q(w)$ are standard tableaux.
(a) Show that the reversed permutation $w^{\prime}(i)=w(n+1-i)$ goes under RSK to $P\left(w^{\prime}\right)=$ $P(w)^{*}, Q\left(w^{\prime}\right)=\operatorname{ev}\left(Q(w)^{*}\right)=(\operatorname{ev} Q(w))^{*}$, where S^{*} denotes the transpose of a standard tableau.
(b) Show that the permutation with reversed values $w^{\prime \prime}(i)=n+1-w(i)$ goes to $P\left(w^{\prime \prime}\right)=$ $\operatorname{ev}\left(P(w)^{*}\right), Q\left(w^{\prime \prime}\right)=Q(w)^{*}$.
(c) Show that the inverse permutation w^{-1} goes to $P\left(w^{-1}\right)=Q(w), Q\left(w^{-1}\right)=P(w)$. [N.B.: this part is more challenging, and implies that parts (a) and (b) are equivalent.]

