
Math 249—Spring 2024
Homework problems on Lectures 7–15

1. The Hadamard product F ∗G of two species is the species (F ∗G)(S) = F (S)×G(S).
Show that the species L ∗ L and P ∗ L are equivalent. This can be understood as an
explanation of the fact that the inequivalent species L and P have the same exponential
generating function.

2. Given a species F , define F ′(S) to be the set of F structures on the set S
∐
{∗} given

by adjoining a new distinguished element to S. For example, if F is the species of unrooted
trees, then F ′ is the species of rooted forests.

(a) Show that the exponential generating function for F ′ is the derivative F (x)′ of the
exponential generating function for F .

(b) Describe F ′ when F is the species L of linear orderings, find both exponential gener-
ating functions from other principles, and check part (a) in this case.

3. A distribution is a function together with a linear ordering on the preimage of each
element of the codomain. Let Jk be the species such that Jk(S) is the set of distributions
from S to {1, . . . , k}.

(a) Find the exponential generating function for Jk, and from it obtain the formula
(n+ k − 1)n for the number of distributions from an n element set to a k element set.

(b) Do the same for the species of surjective distributions, obtaining the formula

(n)k(n− 1)n−k

for the number of them.

4. An unordered binary tree is a rooted tree in which each non-leaf node has two children,
but we do not order the children. Find the exponential generating function which counts
unordered binary trees on n labelled nodes.

5. A perfect matching on a set S of 2n elements is a partition of S into n blocks of two
elements each. Perfect matchings form a species M , with M(S) = ∅ if |S| is odd.

(a) Find the exponential generating function for the species of perfect matchings.

(b) Deduce algebraically that the number of perfect matchings on a set of 2n elements is
n!!. Here and below the ‘double factorial’ notation n!! stands for the product (2n− 1)(2n−
3) · · · 3 · 1 of the first n odd numbers.

(c) Give a direct counting argument for the result in (b).

6. Let e(2n) be the number of permutations σ of a set of 2n elements with the property
that every cycle of σ has even length.

(a) Find the exponential generating function
∑

n e(2n)x2n/(2n)!.

(b) Deduce that e(2n) = (n!!)2.

7. (a) From the preceding problems it follows that the number of permutations of a 2n
element set S with only even cycles is equal to the number of pairs of perfect matchings on
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S. Construct a direct bijection between the two (to do this you will probably need to fix the
set S to be [2n] and use the numerical values of its elements to make some auxiliary choices).

(b) Show that the species of permutations with even-length cycles and the species of pairs
of perfect matchings are not equivalent. This can be understood as explaining the need for
auxiliary choices in part (a).

8. (a) Find the exponential generating function
∑

n rnx
n/n!, where rn is the number of

permutations of odd order of an n element set.

(b) Deduce that r2n = (n!!)2 and r2n+1 = (2n+ 1)(n!!)2.

9. Let g(n, k) denote the number of connected simple graphs (i.e., without loops or
multiple edges) on n labelled vertices with k edges. Derive the mixed ordinary/exponential
generating function

∞∑
n=1

∑
k

g(n, k)qkxn/n! = log
∞∑
n=0

(1 + q)(
n
2)xn/n!

and use it to compute
∑

k g(n, k)qk for all n ≤ 4. As a check, count the graphs in question
by hand and compare answers.

10. Let g+(n), g−(n) denote the number of connected simple graphs on the vertex set
[n] with an even or an odd number of edges, respectively. Prove that g+(n) − g−(n) =
(−1)n−1(n− 1)!.

11. (a) The diameter d of a tree T is the maximum length of a path in T (a path of
length n has n edges and n + 1 vertices). Prove that if d is even then all paths of length d
have the same middle vertex, called the center of T , and if d is odd, then all paths of length
d have the same middle edge, called the bicenter of T .

(b) Show that if d is even, the species of labelled unrooted trees of diameter d is equivalent
to the species of labelled rooted trees of height d/2 with the property that at least two children
of the root are roots of subtrees of height d/2− 1.

(c) Show that if d is odd, the species of labelled unrooted trees of diameter d is equivalent
to the species of unordered pairs of disjoint rooted trees of height (d− 1)/2.

(d) Let Th be the species of labelled rooted trees of height h, and let T≤h = T0 + · · ·+Th.
Show that these are given by the recurrence

T0 = X

Th = X((E − 1) ◦ Th−1)(E ◦ T≤h−2) for h > 0.

(e) Use (a), (b) and (c) to express the species Ud of labelled unrooted trees of diameter
d in terms the species Th.

(f) Use (d) and (e) to calculate the number of labelled unrooted trees of diameter d on n
vertices, for n ≤ 5 and all d. Check that your answers summed over d agree with the known
formula nn−2.
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(g) Use (d) and (e) to calculate the number of unlabelled unrooted trees of diameter d
on n vertices, for n ≤ 5 and all d. Check your answers by listing the trees.

12. (a) Find an explicit formula for the cycle index ZI of the species of involutions,
I(S) = {σ ∈ SS : σ2 = 1}.

(b) Evaluate ZI [x] and verify that it agrees with the obvious ordinary generating function
counting involutions up to conjugacy.

13. In the lecture we proved the following version of Cayley’s formula:∑
T

∏
j

x
cT (j)
j = (x1 + · · ·+ xn)n−1,

where T ranges over rooted trees on [n], and cT (j) is the number of children of vertex j in
T .

(a) Prove the following variant of Cayley’s formula:∑
T

∏
j

x
dT (j)
j = x1 · · ·xn(x1 + · · ·+ xn)n−2,

where T ranges over unrooted trees on [n], and dT (j) is the degree (i.e., number of neighboring
vertices) of vertex j in T .

(b) Show that (a) implies that the sum
∑

T

∏
j x

cT (j)
j over trees with root i is equal to

xi(x1 + · · ·+ xn)n−2, which implies the version of Cayley’s formula we proved in the lecture.

14. (a) From Cayley’s tree generating function derive the identity

∑
F

n∏
i=1

x
cF (i)
i =

(
n− 1

k − 1

)
(x1 + · · ·+ xn)n−k,

where the sum is over rooted forests F with k components on vertices {1, . . . , n}, and cF (i)
denotes the number of children of vertex i in F .

(b) Deduce the identity

∑
F

n∏
i=1

hcF (i) =

(
n− 1

k − 1

)
〈 xn−k

(n− k)!
〉H(x)n,

where H(x) =
∑

m hmx
m/m! is a generic formal power series written in exponential form

and 〈·〉 denotes taking a coefficient.

(c) Let H be the ‘generic species’ with exponential generating function H(x), that is, the
trivial species, but enumerated by assigning weight hn to the one structure on any set with
n elements. Let F (x) be the solution of the formal functional equation

F (x) = xH(F (x))
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(that is, assuming h0 invertible, the functional composition inverse of x/H(x)). Using (b)
and a species interpretation of F (x), obtain the generalized Lagrange inversion formula

〈x
n

n!
〉F (x)k/k! =

(
n− 1

k − 1

)
〈 xn−k

(n− k)!
〉H(x)n,

or equivalently,

〈xn〉F (x)k =
k

n
〈xn−k〉H(x)n.

4


