
Math 249 Problem Set 3

Problems from Stanley (Volume 2).

5.11, 5.13(a,b), 5.20, 5.23

Additional problems.

1. Prove that the Eulerian polynomials An(x) satisfy the the following more symmetrical
recurrence than the one in the proof of Stanley, Prop. 1.4.4:

An(x) = xA′n−1(x) + xnA′n−1(x
−1).

Use this to compute An(x) for n ≤ 5.

2. One way to define a q-analog of the Eulerian polynomial An(x) is

An(x, q) =
∑
σ∈Sn

xd(σ)+1qmaj(σ).

(a) Show that with this definition we have∑
r

[r]nqx
r =

An(x, q)

(1− x)(1− qx) · · · (1− qnx)

(b) Deduce the formula

An(x, q) =
∑
k

[k]q!Sq(n, k)xk
n∏

i=k+1

(1− xqi),

where Sq(n, k) is the q-analog of a Stirling number defined in Problem Set 1, Problem 11.

3. Show that the coefficients en,d(q) = 〈xd+1〉An(x, q) (q-analogs of Eulerian numbers)

satisfy en,d(q) = qnden,d(1/q) and en,n−1−d(q) = q(
n
2)en,d(1/q).

4. Define the q-derivative (d/dx)q by

(d/dx)qf(x) =
f(x)− f(qx)

x(1− q)
,

so that (d/dx)qx
n = [n]qx

n−1, for example. Note that if f is a polynomial, the numerator
vanishes both at x = 0 and q = 1, so it is divisible by the denominaor.

(a) Verify the product rule for q-derivatives

(d/dx)qf(x)g(x) = ((d/dx)qf(x)) · g(x) + f(qx) · (d/dx)qg(x).

(b) Show that the q-Eulerian polynomials An(x, q) defined above satisfy the following
q-analog of the recurrence in Problem 1:

An(x, q) = x(d/dx)qAn−1(x, q) + q(
n
2)xn ((d/dx)qAn−1(x, q))x 7→x−1, q 7→q−1 .
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5. Define the descent set of a word w ∈ Nn to be D(w) = {i ∈ [n− 1] : w(i) > w(i+ 1)},
just as one does for permutations. Similarly, define maj(w) =

∑
d∈D(w) d.

(a) Show that if w ∈ [r]n and w(n) = s, then w′ = (1 2 · · · r)r−s ◦ w has maj(w′) =
maj(w)− (ks+1 + · · ·+ kr), where ki is the number of occurences of i in the word w.

(b) Use (a) and the recurrence for q-multinomial coefficients in Problem Set 2, Problem
4 to prove that ∑

w∈Sn·(1k1 , 2k2 , ..., rkr )

tmaj(w) =
∑

w∈Sn·(1k1 , 2k2 , ..., rkr )

tinv(w),

for all k1 + · · ·+ kr = n.

(c) Use (b) to prove that for all D ⊆ [n− 1],∑
π∈Sn

D(π−1)=D

tmaj(π) =
∑
π∈Sn

D(π−1)=D

tinv(π),

that is, inv and maj are equidistributed on inverse descent classes.

(d) Deduce that ∑
π∈Sn

qinv(π)tmaj(π) =
∑
π∈Sn

qmaj(π−1)tmaj(π).

Deduce in particular that the left-hand side is symmetric in q and t.

Remark: part (c) implies that
∑

π∈Sn
xd(π)+1qmaj(π−1) =

∑
π∈Sn

xd(π)+1qinv(π), which sug-
gests that the common value of these two expressions might be a ‘better’ q-analog of An(x)
than the one in the problems above. However, I don’t know of nice identities like those above
which hold for this alternative q-Eulerian polynomial.

6. A binary tree is an ordered rooted tree in which every non-leaf node has exactly two
children. Note that every binary tree has an odd number of vertices. Show that the number
of binary trees with 2n+ 1 vertices is equal to the Catalan number Cn =

(
2n
n

)
/(n+ 1) in two

ways:

(a) By finding the ordinary generating function counting such trees.

(b) By using Cayley’s formula.

7. Prove that the number of ordered rooted trees with n+1 vertices and j leaves is equal
to

1

n+ 1

(
n+ 1

j

)(
n− 1

n− j

)
.

8. Prove that the number of ways to subdivide an n-gon into k polygons by introducing
k − 1 diagonals that do not intersect except at their endpoints is equal to the number of
ordered rooted trees with n + k − 1 vertices, n− 1 leaves, and no vertices with exactly one
child. Derive the formula

1

n+ k − 1

(
n+ k − 1

n− 1

)(
n− 3

n− k − 2

)
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for this number. In particular, taking k = n − 2, deduce that the number of triangulations
of an n-gon is the Catalan number Cn−2. In this problem the n-gon is regarded as fixed
in place, so for example the two triangulations of a square count as different even though
they are the same up to symmetry. See Stanley, Exercise 6.19 for 65 more combinatorial
interpretations of Catalan numbers.

9. (a) Let X be an m×n matrix and Y an n×m matrix. Given a subset I ⊆ {1, . . . , n},
let XI be the submatrix formed by the columns of X with indices i ∈ I and let YI be the
submatrix formed similarly by rows of Y . Prove or find a reference for the identity

detXY =
∑
|I|=m

det(XI) det(YI)

(b) Let E be the n ×
(
n+1
2

)
matrix constructed as follows: n of the columns are unit

vectors ei, and the remaining
(
n
2

)
columns are differences ei − ej for i < j. Show that an

n × n square submatrix EI of E is non-singular if and only if there is a rooted forest F on
the vertex set {1, . . . , n} such that the columns of EI which are unit vectors ei correspond
to the roots i of F and the and the columns which are difference vectors ei − ej correspond
to the edges {i, j}. Show in addition that in this case, det(EI) = ±1.

(c) Let Y = Et and let X be the matrix obtained from E by multiplying each unit
vector column ei by a scalar zi, and each difference column ei− ej by a scalar −xij. Use the
formula in part (a) to deduce an alternate proof of the symmetric version of the Matrix-Tree
Theorem, that is, its specialization with xji = xij.

10. The product G×H of two simple graphs (graphs without loops or multiple edges) is
the graph on vertex set V (G)× V (H) with edges {(v, w), (v′, w′)} for v = v′ and {w,w′} ∈
E(H) or w = w′ and {v, v′} ∈ E(G). The adjacency matrix AG of a graph G on n vertices
is the n× n matrix with rows and columns labelled by the vertices, and entries (AG)v,w = 1
if {v, w} ∈ E(G), zero otherwise. Let DG be the diagonal matrix whose (v, v) entry is the
degree of v.

(a) Let fG(r) be the number of rooted spanning forests of G with r roots, and let FG(z) =∑
r fG(r)zr be the corresponding generating function. Show that FG(z) =

∏
i(z+αi), where

the αi’s are the eigenvalues of DG − AG.

(b) Show that FG×H(z) =
∏

i,j(z + αi + βj), where FG(z) =
∏

i(z + αi) and FH(z) =∏
j(z+βj). In particular, the numbers fG(r) and fH(r) for all r determine the corresponding

numbers fG×H(r).

(c) Show that if Qn is the graph formed by the vertices and edges of the n-cube, that is,
the product of n copies of the complete graph on 2 vertices, then

FQn(z) =
n∏
k=0

(z + 2k)(
n
k).

This generalizes Stanley, Exercise 5.6.10, which follows by taking the coefficient of z.
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11. Two species F and G are equivalent if they are naturally isomorphic as functors. More
precisely, this means that one can give for each finite set S a bijection ψS : F (S) → G(S)
such that the triple (F (S), G(S), ψS) is functorial in S, in the category whose objects are
triples consisting of two finite sets and and arrow between them, and whose arrows between
two such triples are commutive squares with the given triples as left and right sides.

(a) If L is the species of linear orderings, and P is the species of permutations, show that
L and P are not equivalent.

(b) The Hadamard product F ∗G of two species is the species (F ∗G)(S) = F (S)×G(S).
Show that the species L ∗ L and P ∗ L are equivalent. This can be understood as an
explanation of the fact that the inequivalent species L and P have the same exponential
generating function.

12. A distribution is a function together with a linear ordering on the preimage of each
element of the codomain. Recall that the number of surjective distributions from a set n
labelled objects to a set of k labelled places is given by(

n

k

)
(n− 1)n−k.

We obtained this formula by direct counting. Derive it another way by using exponential
generating functions.

13. Find the exponential generating function D(x) =
∑

nDnx
n/n!, where Dn is the

number of permutations σ ∈ Sn with no fixed points. Deduce an explicit formula for Dn.
[Permutations without fixed points are also called derangements. Compare Stanley, Example
2.2.1, where they are counted using the principle of inclusion and exclusion.]

14. An unordered binary tree is a rooted tree in which each non-leaf node has two children,
but we do not order the children. Find the exponential generating function which counts
unordered binary trees on n labelled nodes.

15. An at most binary tree is an unordered rooted tree in which each node has at most
two children. Find the exponential generating function which counts at most binary trees
on n labelled nodes.

16. A perfect matching on a set S of 2n elements is a partition of S into n blocks of two
elements each. Perfect matchings form a species M , with M(S) = ∅ if |S| is odd.

(a) Find the exponential generating function for the species of perfect matchings.

(b) Deduce algebraically that the number of perfect matchings on a set of 2n elements is
n!!. Here and below the ‘double factorial’ notation n!! stands for the product (2n− 1)(2n−
3) · · · 3 · 1 of the first n odd numbers.

(c) Give a direct counting argument for the result in (b).

17. Let e(2n) be the number of permutations σ of a set of 2n elements with the property
that every cycle of σ has even length.

(a) Find the exponential generating function
∑

n e(2n)x2n/(2n)!.
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(b) Deduce that e(2n) = (n!!)2.

18. (a) From the preceding problems it follows that the number of permutations of a 2n
element set S with only even cycles is equal to the number of pairs of perfect matchings on
S. Construct a direct bijection between the two (to do this you will probably need to fix the
set S to be [2n] and use the numerical values of its elements to make some auxiliary choices).

(b) Show that the species of permutations with even-length cycles and the species of pairs
of perfect matchings are not equivalent. This can be understood as explaining the need for
auxiliary choices in part (a).

19. (a) Find the exponential generating function
∑

n rnx
n/n!, where rn is the number of

permutations of odd order of an n element set.

(b) Deduce that r2n = (n!!)2 and r2n+1 = (2n+ 1)(n!!)2.

20. A map f : S → S is idempotent if f 2 = f . Find the exponential generating function
for the species of idempotent maps.

21. (a) Show that the exponential generating function for the species of labelled unrooted
forests is given by

F (x) = exp
∞∑
n=1

nn−2
xn

n!
.

22. Let g(n, k) denote the number of connected simple graphs (i.e., without loops or
multiple edges) on n labelled vertices with k edges. Derive the mixed ordinary/exponential
generating function

∞∑
n=1

∑
k

g(n, k)qkxn/n! = log
∞∑
n=0

(1 + q)(
n
2)xn/n!

and use it to compute
∑

k g(n, k)qk for all n ≤ 4. As a check, count the graphs in question
by hand and compare answers.

23. Let g+(n), g−(n) denote the number of connected simple graphs on the vertex set
[n] with an even or an odd number of edges, respectively. Prove that g+(n) − g−(n) =
(−1)n(n− 1)!.

(b) Use (a) to calculate the number of labelled unrooted forests on [n] for n ≤ 6.

(c) Modify (a) to get a mixed ordinary/exponential generating function F (t, x) for the
species of labelled unrooted forests, in which the coefficient of tk forest with k components.
Use this to refine your answer to (b) to count forests by number of components.

24. (a) Stanley, Exercise 5.5. A proper n-coloring of a graph G = (V,E) is a function
c : V → [n] such that c(v) 6= c(w) whenever v, w are the endpoints of an edge e ∈ E. A
graph G is bipartite if there exists a proper 2-coloring of G.

(b) Let B be the species B(S) = {bipartite graphs with vertex set S} and let G2 be
the species G2(S) = {graphs G with vertex set S, together with a proper 2-coloring of G}.
Part (a) implies that G2 and B2 have the same exponential generating function, and indeed
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the same mixed generating function weighted by number of edges. Are the species B2 and
G2 equivalent?

(c) Derive the mixed ordinary/exponential generating function for the species of connected
bipartite graphs, weighted by qnumber of edges. Use it to calculate the number of connected
labelled bipartite graphs with k edges on n vertices for n ≤ 5 and all k.

25. (a) From Cayley’s tree generating function derive the identity

∑
F

n∏
i=1

x
cF (i)
i =

(
n− 1

k − 1

)
(x1 + · · ·xn)n−k,

where the sum is over rooted forests F with k components on vertices {1, . . . , n}, and cF (i)
denotes the number of children of vertex i in F .

(b) Deduce the identity

∑
F

n∏
i=1

hcF (i) =

(
n− 1

k − 1

)
〈 xn−k

(n− k)!
〉H(x)n,

where H(x) =
∑

m hmx
m/m! is a generic formal power series written in exponential form

and 〈·〉 denotes taking a coefficient.

(c) Let H be the ‘generic species’ with exponential generating function H(x), that is, the
trivial species, but enumerated by assigning weight hn to the one structure on any set with
n elements. Let F (x) be the solution of the formal functional equation

F (x) = xH(F (x))

(that is, assuming h0 invertible, the functional composition inverse of x/H(x)). Using (b)
and a species interpretation of F (x), obtain the generalized Lagrange inversion formula

〈x
n

n!
〉F (x)k/k! =

(
n− 1

k − 1

)
〈 xn−k

(n− k)!
〉H(x)n,

or equivalently,

〈xn〉F (x)k =
k

n
〈xn−k〉H(x)n.

26. A leaf-labelled tree T is a rooted tree whose leaves are the elements of a given set
S, and whose other nodes are unlabelled. Let us require each non-leaf node of T to have at
least two children; then there are finitely many leaf-labelled trees on a given finite leaf set S.

Introduce indeterminates a2, a3, . . . and assign each leaf-labelled tree the weight w(T ) =∏
i a

ri
i , where ri is the number of non-leaf nodes in T with i children. Then show that the

mixed ordinary/exponential generating function enumerating leaf-labelled trees with these
weights is the functional composition inverse of x− A(x), where A(x) =

∑
n≥2 anx

n/n!.
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