
Math 249 Spring 2012 Homework Problems

Lecture 1

1. Stanley, Ch 1, Ex. 1.2(a)

2. Stanley Ex. 1.7

3. Stanley Ex. 1.9

4. Stanley Ex. 1.12

5. Stanley Ex. 1.13

6. Stanley Ex. 1.29

7. Find a recurrence similar to Pascal’s triangle for the signless Stirling numbers c(n, k)
of the first kind (i.e., the number of permutations π ∈ Sn with k cycles), and use it to
compute a table of c(n, k) for k, n ≤ 5.

Lecture 2

1. Stanley Ex. 1.8(a,b)

2. Stanley Ex. 1.16

3. Stanley Ex. 1.19

4. Stanley Ex. 1.24

5. Find a simple expression for the ordinary generating function in two variables∑
n,k≥0

(
n

k

)
xnyk,

and use it to deduce the identity∑
r

(
r

k

)
xr =

xk

(1− x)k+1
.

6. Prove the ordinary generating function identity for signless Stirling numbers of the
first kind ∑

k

c(n, k)yk = y(y + 1) · · · (y + n− 1).

7. A perfect matching on a set S of 2n elements is a partition of S into n blocks of 2
elements each. Taking S = [2n] = {1, 2, · · · , 2n}, and thinking of the blocks in a matching
as the edges of a graph, call edges of the form {i, i+ 1} short, and all other edges long.

(a) Show that the number of perfect matchings on a 2n-element set is

(2n− 1)(2n− 3) · · · 3 · 1.
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(b) Let Mn(x) be the ordinary generating function that counts perfect matchings on [2n]
with weight xs, where s is the number of short edges, so for instance M2(x) = 1 + x + x2.
Prove the recurrence

Mn(x) = (x+ 2n− 2)Mn−1(x) + (1− x)
d

dx
Mn−1(x).

8. Let md(q) be the number of irreducible monic polynomials f(x) of degree d, over the
finite field F(q) with q elements. Note that the number of all monic polynomials of degree d
(irreducible or not) is just qd.

(a) Use unique factorization of polynomials to prove the generating function identity∏
d≥1

1

(1− xd)md(q)
=

1

1− qx
.

(b) By taking logarithms on both sides, derive the identity∑
d|n

dmd(q) = qn

for all n, the sum ranging over the divisors of n. Equivalently,

md(q) =
1

d

∑
m|d

µ(d/m)qm,

where µ(n) is the Möbius function from number theory, i.e., µ(n) = (−1)k if n is a product
of k distinct primes, and µ(n) = 0 if n is divisible by a square.

(c) Use (b) to prove that the product of all monic irreducible polynomials of degree
dividing n is equal to xq

n − x. [Hint: every element of F(qn) is a root of xq
n − x.]

(d) A necklace is an equivalence class of words up to rotation. A necklace of length n
is primitive if the corresponding rotation class consists of n distinct words, i.e., it is not
periodic with period d a proper divisor of n. (Example: 1122 is primitive; 1212 is not.) Note
that every word of length n consists of n/d repetitions of a primitive necklace of length d
dividing n. (Example: 1212 and 2121 both repeat the primitive necklace 12 = 21.) Let pd(q)
be the number of primitive necklaces of length d on an alphabet of q symbols. Prove that∑

d|n

dpd(q) = qn,

and hence
md(q) = pd(q)

when q is a power of a prime.

(e) (For those familiar with Lie algebras.) Let Lq = L(x1, . . . , xq) be the free Lie algebra
with q generators. Lq is graded if we consider each generator to be homogeneous of degree 1.
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Let ld(q) be the dimension of the homogeneous part of degree d in Lq. In other words, ld(q)
is the number of linearly independent expressions that can be formed by bracketing together
d of the generators xi. The universal enveloping algebra of Lq is the free tensor algebra
T (x1, . . . , xq). Using this and the Poincaré-Birkhoff-Witt theorem, derive the identity∏

d≥1

1

(1− xd)ld(q)
=

1

1− qx
.

Deduce that ld(q) = pd(q).

Remark: This enumerative result suggests that Lq should have a basis whose elements in
degree d are indexed in some natural way by primitive necklaces of length d. Such a basis
has been constructed by R. Lyndon.

Lecture 3
1. Stanley 1.25

2. Stanley 1.26

3. Stanley 1.32 (a nice example of a combinatorially meaningful application of formal
power series with radius of convergence zero).

4. Stanley 1.39

5. Stanley 1.40, but show that the an and fn can be expresed as polynomials in each
other over the integers, so that the identity holds between formal power series in x over any
commutative ring R when the an and fn are elements of R.

6. Let 〈xn〉F (x) denote the coefficient of xn in a formal power series F (x). A sequence
(Fk(x)) in R[[x]] is said to converge to G(x) if, for each n, the sequence (〈xn〉Fk(x)) converges
to 〈xn〉G(x) in the discrete topology on R; that is, if 〈xn〉Fk(x) = 〈xn〉G(x) for all sufficiently
large k. The definition adapts in an obvious way to formal power series in several variables.

(a) Show that the partial sums f0 + f1x+ · · ·+ fkx
k of F (x) converge to F (x).

(b) Show that a sum
∑∞

k=1 Fk(x) converges if and only if (Fk(x)) converges to 0. Show
that rearranging the terms does not change the property of convergence, nor the value of
the limit.

(c) Show that a product
∏∞

k=1 Fk(x) converges if (Fk(x)) converges to 1; if R is an
integral domain, show that this is if and only if. Again show that the limit and the property
of convergence are independent of rearranging the terms.

(d) Show that a sum or product of limits of convergent sequences is the limit of the
sums or products term by term. Show that this also holds for convergent infinite sums and
products.

7. If F (x) and G(x) are formal power series, and F (0) = 0 (where F (0) is defined to be
the constant term of F (x)), their formal composition is defined by

(G ◦ F )(x) =
∞∑
k=0

gkF (x)k,
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where G(x) =
∑∞

k=0 gkx
k. Note that the sum converges by part (b) of the preceding problem.

We also write G(F (x)) for (G ◦ F )(x).

(a) Show that composition is associative, i.e., if F (0) = 0 and G(0) = 0, then (H◦G)◦F =
H ◦ (G ◦ F ).

(b) Show that composition with a fixed F , considered as a function of G, is a ring
homomorphism.

(c) Show that F (x) ∈ R[[x]] such that F (0) = 0 has a formal compositional inverse if
and only if the coefficient 〈x〉F (x) has a multiplicative inverse in R.

8. Show that F (x) ∈ R[[x]] has a multiplicative inverse if and only if its constant term
F (0) has a multiplicative inverse in R.

9. Assume we are working in a formal power series ring R[[x]] over a coefficient ring R
containing Q. Define exp(x) and log(1 + x) by their usual Taylor series.

(a) Given F (x), G(x) ∈ R[[x]] such that F (0) = 1, show that there is a well-defined
formal power series

F (x)G(x) =
def

exp(G(x) logF (x)).

(b) Show that the above definition satisfies the usual laws of exponents, namely,
F (x)G(x)+H(x) = F (x)G(x)F (x)H(x), F (x)G(x)H(x) = (F (x)G(x))H(x), F (x)0 = 1, F (x)1 = F (x).

10. Defining the derivative d
dx
F (x) of a formal power series in the obvious formal way,

show that the usual sum and product rules and the chain rule hold. If the coefficient ring
contains Q, show that Taylor’s formula holds.

11. (a) Prove that the number of partitions of n with no parts divisible by d is equal to
the number of partitions of n with no part repeated d or more times, for all n and d.

(b) Prove that the number of partitions of n in which each part j is repeated less than j
times is equal to the number of partitions of n in which no part is a square.

12. Let p+(n) be the the number of partitions of n with an even number of parts and
p−(n) the number with an odd number of parts. Let pDO(n) be the number of partitions of
n with distinct odd parts, and let k(n) be the number of partitions of n which are conjugate
to themselves. Prove that

k(n) = pDO(n) = (−1)n(p+(n)− p−(n))

13. The Durfee square of a partition λ is the largest k × k square that fits inside its
Young diagram. Use Durfee squares to prove the identities in Stanley, Ch. 1, Ex. 23(b,d).

Lecture 4

1. The group of signed permutations Bn is a Coxeter group which acts on Rn with Coxeter
generators the transpositions σi = (i i + 1) ∈ Sn and the sign change τ(x1, x2, . . . , xn) =
(−x1, x2 . . . , xn). Its elements may be represented by their actions on the vector (1, 2, . . . , n)
as words w in the signed alphabet {±1, . . . ,±n} such that the absolute values |wi| form a
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permutation. Define inv(w) = |{i < j : w(i) > w(j)}| + |{i < j : w(i) + w(j) < 0}| + |{i :
w(i) < 0}|.

(a) Show that inv(w) is the equal to the minimum length of an expression for w as a
product of the Coxeter generators.

(b) Prove the identity ∑
w∈Bn

qinv(w) = (2n)q(2n− 2)q · · · (2)q.

2. Prove that the q-multinomial coefficients satisfy the recurrence(
n

k1, k2, . . . , kr

)
q

=

(
n− 1

k1 − 1, k2, . . . , kr

)
q

+ qk1
(

n− 1

k1, k2 − 1, . . . , kr

)
q

+ · · ·+ qk1+···+kr−1

(
n− 1

k1, k2, . . . , kr − 1

)
q

.

3. Prove the following q-analog of the convolution formula for binomial coefficients.(
m+ n

k

)
q

=
∑
i+j=k

q(m−i)j
(
m

i

)
q

(
n

j

)
q

4. Let l divide n. Show that the primitive l-th roots of unity are roots of the polynomial(
n
k

)
q

in q if and only if l does not divide k.

5. Regarding
(
x
k

)
as a polynomial of degree k in the variable x, prove that a polynomial

f ∈ Q[x] has the property that f(n) is an integer for all integers n if and only if the coefficients
of f with respect to the basis {

(
x
k

)
: k ∈ N} are integers.

Hint: one direction is easy. For the other, use the fact that 0, 1, . . . , k − 1 are roots of(
x
k

)
, and

(
k
k

)
= 1.

6. (a) Show that for each k there is a unique polynomial Qk(x) of degree k, with coeffi-
cients in the field of rational functions Q(q), such that Qk(q

n) =
(
n
k

)
q

for all n.

(b) Prove that a polynomial f ∈ Q(q)[x] has the property that f(qn) ∈ Z[q, q−1] for all n
if and only if the coefficients of f with respect to the basis {Qk : k ∈ N} belong to Z[q, q−1].

7. Prove Cauchy’s identity:∏
i≥0

1− axqi

1− xqi
=
∑
n≥0

(1− a)(1− aq) · · · (1− aqn−1)
(1− q)(1− q2) · · · (1− qn)

xn,

by showing that it reduces to the q-binomial theorem upon setting a = qm for an integer m
(note that you get either form of the q-binomial theorem by taking m positive or negative).
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8. From the q-binomial theorem

m−1∏
i=0

(1 + xqi) =
m∑
j=0

(
m

j

)
q

q(
j
2)xj,

deduce
s∏
i=1

(1 + x−1qi)
t−1∏
i=0

(1 + xqi) =
t∑

j=−s

(
s+ t

s+ j

)
q

q(
j
2)xj.

By letting s and t go to infinity, prove Jacobi’s triple product identity:∑
j∈Z

(−1)ja(j2)xj =
∏
i≥0

(1− xai)(1− x−1ai+1)(1− ai+1)

9. The following two identities are due to Gauss:∑
n∈Z

(−1)nqn
2

=
∏
i≥1

1− qi

1 + qi
;

∑
n≥0

q(
n+1
2 ) =

∏
i≥1

1− q2i

1− q2i−1
.

(a) Interpret them combinatorially as partition identities.

(b) Prove them, either combinatorially (not so easy) or using Jacobi’s triple product
identity.

10. Let Q(q)〈x, y〉 be the algebra of polynomials in non-commuting variables x, y, over
the field of rational functions Q(q), and let Qq[x, y] = Q(q)〈x, y〉/J , where J is the two-sided
ideal generated by yx−qxy. Thus Qq[x, y] is the ‘quantum polynomial ring’ whose generators
satisfy the q-commutation relation yx = qxy. Prove the ‘quantum q-binomial theorem’ that

(x+ y)n =
∑
k

(
n

k

)
q

xkyn−k

holds as an identity in Qq[x, y].

Lecture 5

1. Stanley, 1.33. The definition of ordered set partition should be formulated less am-
biguously: a set partition together with a linear ordering on its set of blocks.

2. Prove that the Eulerian polynomials An(x) =
∑

σ∈Sn x
d(σ)+1 satisfy the recurrence

An(x) = nxAn−1(x) + x(1− x)A′n−1(x).

3. Prove that the Eulerian polynomials An(x) satisfy the more symmetrical recurrence

An(x) = xA′n−1(x) + xnA′n−1(x
−1)
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for n > 1, and use it to compute An(x) for n ≤ 5.

Lecture 6

1. Show that the Stirling numbers of the second kind S(n, k) have a q-analog Sq(n, k)
characterized by the following properties:

(a) They satisfy the recurrence

Sq(n, k) = (k)qSq(n− 1, k) + qk−1Sq(n− 1, k − 1),

with inital conditions Sq(0, k) = δ0,k and Sq(n, 0) = δn,0.

(b) They satisfy the following q-analog of the classical formula xn =
∑

k S(n, k)(x)k:

((r)q)
n =

∑
k

Sq(n, k)(r)q(r − 1)q · · · (r − k + 1)q

(c) They are given by the ordinary generating function (for each k)

∑
n

Sq(n, k)xn =
q(

k
2)xk

(1− x)(1− (2)qx) · · · (1− (k)qx)
.

(d) Given a partition π = {B1, . . . , Bk} of [n], with the blocks numbered so that
min(Bi) < min(Bj) for i < j, define ν(π) =

∑
i(i − 1)|Bi|. Then Sq(n, k) =

∑
π q

ν(π),
where the sum is over partitions of [n] into k blocks.

2. One way to define a t-analog of the Eulerian polynomials An(x) is

An(x, t) =
∑
σ∈Sn

xd(σ)+1tmaj(σ).

(a) Show (generalizing what we did in the lecture) that with this definition we have∑
r

(r)nt x
r =

An(x; t)

(1− x)(1− tx) · · · (1− tnx)

(b) Deduce the formula

An(x, t) =
∑
k

(k)t!St(n, k)xk
n∏

i=k+1

(1− xti).

3. Show that the coefficients en,d(t) = 〈xd+1〉An(x, t) satisfy en,d(t) = tnden,d(1/t) and

en,n−1−d(t) = t(
n
2)en,d(1/t).

4. Define the descent set of a word w ∈ Nn to be D(w) = {i ∈ [n− 1] : w(i) > w(i+ 1)},
just as one does for permutations. Similarly, define maj(w) =

∑
d∈D(w) d.
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(a) Show that if w ∈ [r]n and w(n) = s, then w′ = (1 2 · · · r)r−s ◦ w has maj(w′) =
maj(w)− (ks+1 + · · ·+ kr), where ki is the number of occurences of i in the word w.

(b) Use (a) and the recurrence in Lecture 4, problem 2 to prove that∑
w∈Sn·(1k1 , 2k2 , ..., rkr )

tmaj(w) =
∑

w∈Sn·(1k1 , 2k2 , ..., rkr )

tinv(w),

for all k1 + · · ·+ kr = n.

(c) Use (b) to prove that for all D ⊆ [n− 1],∑
π∈Sn

D(π−1)=D

tmaj(π) =
∑
π∈Sn

D(π−1)=D

tinv(π),

that is, inv and maj are equidistributed on inverse descent classes.

(d) Deduce that ∑
π∈Sn

qinv(π)tmaj(π) =
∑
π∈Sn

qmaj(π−1)tmaj(π).

Deduce in particular that the left-hand side is symmetric in q and t.

Remark: part (c) implies that
∑

π∈Sn x
d(π)+1qmaj(π−1) =

∑
π∈Sn x

d(π)+1qinv(π), which sug-
gests that the common value of these two expressions might be a ‘better’ q-analog of An(x)
than the one in Problem 2. However, I don’t know of nice identities like those in Problems
2 and 3 which hold for this alternative q-Eulerian polynomial.

Lecture 7

1. Two species F and G are equivalent if they are naturally isomorphic as functors. More
precisely, this means that one can give for each finite set S a bijection ψS : F (S) → G(S)
such that the triple (F (S), G(S), ψS) is functorial in S, in the category whose objects are
triples consisting of two finite sets and and arrow between them, and whose arrows between
two such triples are commutive squares with the given triples as left and right sides.

(a) If L is the species of linear orderings, and P is the species of permutations, show that
L and P are not equivalent.

(b) The Hadamard product F ∗G of two species is the species (F ∗G)(S) = F (S)×G(S).
Show that the species L ∗ L and P ∗ L are equivalent. This can be understood as an
explanation of the fact that the inequivalent species L and P have the same exponential
generating function.

2. Prove that the operations of sum and product of species are commutative and asso-
ciative with two-sided identities, up to equivalence of species.

3. A distribution is a function together with a linear ordering on the preimage of each
element of the codomain. Recall that the number of surjective distributions from a set n
labelled objects to a set of k labelled places is given by(

n

k

)
(n− 1)n−k.
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We obtained this formula in our discussion of the 12-fold way table by direct counting. Derive
it another way by using exponential generating functions.

4. Find the exponential generating function D(x) =
∑

nDnx
n/n!, where Dn is the

number of permutations σ ∈ Sn with no fixed points. Deduce an explicit formula for Dn.
[Permutations without fixed points are also called derangements. Compare Stanley, Example
2.2.1, where they are counted using the principle of inclusion and exclusion.]

Lecture 8

1. An unordered binary tree is a rooted tree in which each non-leaf node has two children,
but we do not order the children. Find the exponential generating function which counts
unordered binary trees on n labelled nodes.

2. An at most binary tree is an unordered rooted tree in which each node has at most
two children. Find the exponential generating function which counts at most binary trees
on n labelled nodes.

3. A perfect matching on a set S of 2n elements is a partition of S into n blocks of two
elements each. Perfect matchings form a species M , with M(S) = ∅ if |S| is odd.

(a) Find the exponential generating function for the species of perfect matchings.

(b) Deduce algebraically that the number of perfect matchings on a set of 2n elements is
n!!. Here and below the ‘double factorial’ notation n!! stands for the product (2n− 1)(2n−
3) · · · 3 · 1 of the first n odd numbers.

(c) Give a direct counting argument for the result in (b).

4. An involution of S is a permutation τ of S such that τ 2 = 1.

(a) Find the exponential generating function
∑

n tnx
n/n!, where tn is the number of

involutions of an n element set.

(b) Show that tn =
∑bn/2c

k=0

(
n
2k

)
k!!.

5. Let e(2n) be the number of permutations σ of a set of 2n elements with the property
that every cycle of σ has even length.

(a) Find the exponential generating function
∑

n e(2n)x2n/(2n)!.

(b) Deduce that e(2n) = (n!!)2.

6. (a) From the preceding problems it follows that the number of permtutations of a 2n
element set S with only even cycles is equal to the number of pairs of perfect matchings on
S. Construct a direct bijection between the two (to do this you will probably need to fix the
set S to be [2n] and use the numerical values of its elements to make some auxiliary choices).

(b) Show that the species of permutations with even-length cycles and the species of pairs
of perfect matchings are not equivalent. This can be understood as explaining the need for
auxiliary choices in part (a).

7. (a) Find the exponential generating function
∑

n rnx
n/n!, where rn is the number of

permutations of odd order of an n element set.

(b) Deduce that r2n = (n!!)2 and r2n+1 = (2n+ 1)(n!!)2.
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8. Let g(n, k) denote the number of connected simple graphs (i.e., without loops or
multiple edges) on n labelled vertices with k edges. Derive the mixed ordinary/exponential
generating function

∞∑
n=1

∑
k

g(n, k)qkxn/n! = log
∞∑
n=0

(1 + q)(
n
2)xn/n!

and use it to compute
∑

k g(n, k)qk for all n ≤ 4. As a check, count the graphs in question
by hand and compare answers.

9. Let g+(n), g−(n) denote the number of connected simple graphs on the vertex set
[n] with an even or an odd number of edges, respectively. Prove that g+(n) − g−(n) =
(−1)n(n− 1)!.

10. (a) Stanley, Exercise 5.5. A proper n-coloring of a graph G = (V,E) is a function
c : V → [n] such that c(v) 6= c(w) whenever v, w are the endpoints of an edge e ∈ E. A
graph G is bipartite if there exists a proper 2-coloring of G.

(b) Let B be the species B(S) = {bipartite graphs with vertex set S} and let G2 be
the species G2(S) = {graphs G with vertex set S, together with a proper 2-coloring of G}.
Part (a) implies that G2 and B2 have the same exponential generating function, and indeed
the same mixed generating function weighted by number of edges. Are the species B2 and
G2 equivalent?

(c) Derive the mixed ordinary/exponential generating function for the species of connected
bipartite graphs, weighted by qnumber of edges. Use it to calculate the number of connected
labelled bipartite graphs with k edges on n vertices for n ≤ 5 and all k.

11. (a) The diameter d of a tree T is the maximum length of a path in T (a path with n
vertices has length n − 1). Prove that if d is even then all paths of length d have the same
middle vertex, called the center of T , and if d is odd, then all paths of length d have the
same middle edge; the path of length 1 consisting of this edge and its two endpoints is called
the bicenter of T .

(b) Show that if d is even, the species of labelled unrooted trees of diameter d is equivalent
to the species of labelled rooted trees of height d/2 with the property that at least two children
of the root are roots of subtrees of height d/2− 1.

(c) Show that if d is odd, the species of labelled unrooted trees of diameter d is equivalent
to the species of unordered pairs of disjoint rooted trees of height (d− 1)/2.

(d) Let Th be the species of labelled rooted trees of height h, and let T≤h = T0 + · · ·+Th.
Show that these are given by the recurrence

T0 = X

Th = X((E − 1) ◦ Th−1)(E ◦ T≤h−2) for h > 0.

(e) Using products and composition of species, express the species of labelled unrooted
trees of diameter d in terms the species Th for various h.
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(f) Use the above to calculate the number of labelled unrooted trees of diameter d on n
vertices, for n ≤ 5 and all d. Check your answer by summing over d.

Lecture 9

1. (a) Show that the exponential generating function for the species of labelled unrooted
forests is given by

F (x) = exp
∞∑
n=1

nn−2
xn

n!
.

(b) Use (a) to calculate the number of labelled unrooted forests on [n] for n ≤ 6.

(c) Modify (a) to get a mixed ordinary/exponential generating function F (t, x) for the
species of labelled unrooted forests, in which the coefficient of tk forest with k components.
Use this to refine your answer to (b) to count forests by number of components.

2. A leaf-labelled tree T is a rooted tree whose leaves are the elements of a given set S,
and whose other nodes are unlabelled. Let us require each non-leaf node of T to have at
least two children; then there are finitely many leaf-labelled trees on a given finite leaf set S.

Introduce indeterminates a2, a3, . . . and assign each leaf-labelled tree the weight w(T ) =∏
i a

ri
i , where ri is the number of non-leaf nodes in T with i children. Then show that the

mixed ordinary/exponential generating function enumerating leaf-labelled trees with these
weights is the functional composition inverse of x− A(x), where A(x) =

∑
n≥2 anx

n/n!.

3. Use Cayley’s formula to calculate that the number of strictly binary (i.e., rooted with
every non-leaf node having exactly two children) unlabelled ordered trees on 2n+ 1 vertices
(such a tree always has an odd number of vertices) is the Catalan number Cn.

4. Prove that the number of ordered rooted trees with n+1 vertices and j leaves is equal
to

1

n+ 1

(
n+ 1

j

)(
n− 1

n− j

)
.

5. Prove that the number of ways to subdivide an n-gon into k polygons by introducing
k − 1 diagonals that do not intersect except at their endpoints is equal to the number of
ordered rooted trees with n + k − 1 vertices, n− 1 leaves, and no vertices with exactly one
child. Derive the formula

1

n+ k − 1

(
n+ k − 1

n− 1

)(
n− 3

n− k − 2

)
for this number. In particular, taking k = n − 2, deduce that the number of triangulations
of an n-gon is the Catalan number Cn−2. In this problem the n-gon is regarded as fixed in
place, so for example the two triangulations of a square count as different even though they
are the same up to symmetry.

Lectures 10-11
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1. Given a formal series E(x) = e0 + e1x + e2x
2 + · · · , where e0 is invertible, let F (x)

be the functional composition inverse of G(x) = x/E(x), i.e., F (x) satisfies the functional
equation

F (x) = xE(F (x)).

We saw in the lecture that the coefficient 〈xn〉F (x) is the ordinary generating function
enumerating (unlabelled) ordered rooted trees (Stanley calls them plane trees) on n vertices,
with weight ∏

v∈T

ed(v),

where d(v) is the number of children of vertex v in T . We also gave a combinatorial proof
of the case k = 1 of the following more general form of the Lagrange inversion formula:

〈xn+k〉F (x)k =
k

n+ k
〈xn〉E(x)n+k. (1)

(a) Show that for any sequence (r1, . . . , rn+k) ∈ Nn+k such that r1 + · · · + rn+k = n,
exactly k of its rotations (s1, . . . , sn+k) = (rl+1, . . . , rn+k, r1, . . . , rl) satisfy

s1 + · · ·+ si + k > i for all 0 ≤ i < n+ k.

(b) Show that

k

n+ k

∑
r1+···+rn+k=n

er1 · · · ern+k =
∑

λ⊆(n+k−2,...,k−1)

n+k−1∏
i=0

eαi(λ),

where λ ranges over partitions whose Young diagram fits inside that of (n+k−2, . . . , k−1),
and αi(λ) is the number of parts equal to i in λ, with α0(λ) defined so that

∑
i αi(λ) = n.

(c) Use (b) to give a combinatorial proof of the generalized Lagrange inversion formula
above.

2. In the lecture we discussed a q-analog of functional composition defined by

F ◦q G(x) =
∑
k

fkG(x)G(qx) · · ·G(qk−1x),

where G(x) is a formal series without constant term and q is an element of the ground ring.

(a) Show that the operator Ψ on formal power series defined by Ψ(F ) = F ◦q G is con-
tinuous, linear over the ground ring and satisfies Ψ(1) = 1 and Ψ(xF ) = G(x) (Ψ(F )(qx)).

(b) Prove that the operator Ψ is determined by the properties in (a).

(c) Assume now that both q and the coefficient of the linear term of G(x) are invertible
in the ground ring. Prove that the operator Ψ has an inverse.

(d) Let H = Ψ−1(x), that is, H ◦q G = x. Prove the identity Ψ(HF ) = xΨ(F (qx)), for
all F .

12



(e) Prove Garsia’s Theorem, which states that Ψ−1 is given by Ψ−1(F ) = F ◦1/q H. In
particular, deduce that G ◦1/q H = x.

Lecture 12

1. A rooted forest is a disjoint union of rooted trees. Prove the identity∑
F

∏
j

x
cF (j)
j =

(
n− 1

k − 1

)
(x1 + · · ·+ xn)n−k,

where F ranges over rooted forests with k components on vertex set set [n]. In particular,
the number of such forests is

(
n−1
k−1

)
nn−k.

2. Let fm(r) be the number of rooted spanning forests with r roots in the graph Cm, a
cycle on m vertices (m > 1). Prove that

Fm(z) =
def

∑
r

fm(r)zr =
m−1∏
j=0

(z + 2− 2 cos(2πj/m)) =
m∑
r=1

m

r

(
m+ r − 1

2r − 1

)
zr.

3. The product G×H of two simple graphs (graphs without loops or multiple edges) is the
graph on vertex set V (G)×V (H) with edges {(v, w), (v′, w′)} for v = v′ and {w,w′} ∈ E(H)
or w = w′ and {v, v′} ∈ E(G). The adjacency matrix AG of a graph G on n vertices is
the n × n matrix with rows and columns labelled by the vertices, and entries (AG)v,w = 1
if {v, w} ∈ E(G), zero otherwise. Let DG be the diagonal matrix whose (v, v) entry is the
degree of v.

(a) Let fG(r) be the number of rooted spanning forests of G with r roots, and let FG(z) =∑
r fG(r)zr be the corresponding generating function. Show that FG(z) =

∏
i(z+αi), where

the αi’s are the eigenvalues of DG − AG.

(b) Show that FG×H(z) =
∏

i,j(z + αi + βj), where FG(z) =
∏

i(z + αi) and FH(z) =∏
j(z+βj). In particular, the numbers fG(r) and fH(r) for all r determine the corresponding

numbers fG×H(r).

(c) Show that if Qn is the graph formed by the vertices and edges of the n-cube, that is,
the product of n copies of the complete graph on 2 vertices, then

FQn(z) =
n∏
k=0

(z + 2k)(
n
k).

This generalizes Stanley, Exercise 5.6.10, which follows by taking the coefficient of z.

Lectures 13-14

1. Two parts:

(a) Verify by direct calculation that the cycle index ZC for the species of cyclic orderings
(i.e., permutations with one cycle) is given by

ZC =
∞∑
n=1

φ(n)

n
log

1

1− pn
,
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where φ is Euler’s totient function: φ(n) is the number of integers r ∈ [n] relatively prime
to n.

(b) Check that ZC(x, 0, . . .) and ZC(x, x2, . . .) agree, respectively, with the exponential
generating function for the species of cyclic orderings, and the ordinary generating function
for cyclic orderings up to isomorphism.

2. Recall that the cycle index of the trivial species is given by

ZE = exp
∞∑
n=1

pn/n.

Verify that the plethysm ZE ∗ZC agrees with the formula we obtained by direct calculation
for the cycle index of the species of permutations,

ZP =
∞∏
n=1

1

1− pn
.

Lecture 15

1. For 1 ≤ i < j ≤ n, define the raising operator Rij on Zn by

Rij(ν1, . . . , νn) = (ν1, . . . , νi + 1, . . . , νj − 1, . . . , νn).

(a) Show that the dominance order ≤ is the transitive closure of the relation on partitions
λ→ µ if µ = Rijλ for some i < j.

(b) We say that µ covers λ if λ < µ and there is no ν such that λ < ν < µ. Show that µ
covers λ if and only if µ = Rijλ, where i, j satisfy the following condition: either j = i+ 1,
or λi = λj (or both).

(c) Find the smallest n such that the dominance order on partitions of n is not a total
ordering, and draw its Hasse diagram (i.e., the graph of the covering relation).

2. Express mλ(1, 1, . . . , 1), with n ones, as a more familiar combinatorial quantity.

3. (a) Use the fundamental theorem of symmetric functions to show that if f(t) = tk +
a1t

k−1+· · ·+ak and g(t) = tl+b1t
l−1+· · ·+bl, there is a polynomial Rf,g(a1, . . . , ak, b1, . . . , bl)

such that Rf,g = 0 if and only if f and g have a common root. The minimal such polynomial
(which is unique up to a constant factor) is called the resultant of f and g. Calculate Rf,g

for k = 2 and l = 3.

(b) Show that Rf,g is the determinant of the (k + l)× (k + l) matrix

1 a1 . . . al 0 . . . 0 0
0 1 a1 . . . al 0 . . . 0

...
0 0 . . . 0 1 a1 . . . al
1 b1 . . . bk 0 . . . 0 0
0 1 b1 . . . bk 0 . . . 0

...
0 0 . . . 0 1 b1 . . . bk
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Lecture 16

1. Prove the formula for complete homogeneous symmetric functions in terms of elemen-
tary symmetric functions

hn =
∑
|λ|=n

(−1)n−l(λ)
(

l(λ)

r1, r2, . . . , rk

)
eλ,

where λ = (1r1 , 2r2 , . . . , krk).

2. The symmetric functions fλ = ωmλ are sometimes called the “forgotten” symmetric
functions. Show that the matrix of coefficients of the forgotten symmetric functions fλ
expressed in terms of monomial symmetric functions mλ is the transpose of the matrix of
the elementary symmetric functions eλ expressed in terms of the complete homogeneous
symmetric functions hλ.

3. From Macdonald’s book:

(a) Recall from class that hn =
∑
|λ|=n pλ/zλ, where zλ =

∏
i i
riri! for λ = (1r1 , 2r2 , . . .).

Show that this is equivalent to Newton’s determinant formula

hn =
1

n!
det


p1 −1 0 . . . 0
p2 p1 −2 . . . 0
...

...
...

...
pn−1 pn−2 . . . . −(n− 1)
pn pn−1 . . . . p1


(b) Show that en is given by the same determinant without the minus signs.

Lectures 17-18

1. For any symmetric polynomial f , let f⊥ be the operator adjoint to multiplication by
f with respect to the Hall inner product, that is, 〈f⊥g, h〉 = 〈g, fh〉 for all g, h.

(a) Find a formula for h⊥kmλ, expressed again in terms of monomial symmetric functions
mµ.

(b) Show that the basis of monomial symmetric functions is uniquely characterized by
the formula from part (a).

2. Let ∂pk be the operator on symmetric functions given by partial differentiation with
respect to pk, under the identification of the algebra of symmetric functions with the poly-
nomial ring Q[p1, p2, . . .]. Show that ∂pk is adjoint with respect to the Hall inner product to
the operator of multiplication by pk/k.

Lecture 19

1. If A is an algebra over a field k, then A ⊗k A is an algebra with multiplication
characterized uniquely by (a⊗ b)(c⊗d) = ac⊗ bd. A coproduct is an algebra homomorphism
∆: A → A ⊗ A which is coassociative in the sense that the two maps (1 ⊗ ∆) ◦ ∆ and
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(∆ ⊗ 1) ◦∆ from A to A ⊗ A ⊗ A are equal. This axiom is dual to the associative law for
multiplication µ : A ⊗ A → A, which can be formulated as µ ◦ (1 ⊗ µ) = µ ◦ (µ ⊗ 1). Here
1 : A→ A denotes the identity map.

Taking Λ to be the algebra of symmetric functions with coefficients in k = Q, and
identifying Λ⊗ Λ with Λ(X)Λ(Y ), show that ∆(f) = f [X + Y ] defines a coproduct on Λ.

Remark: An algebra equipped with a coproduct is called a bialgebra. If we also define
the counit ε : Λ → Q by ε(f) = 〈f, 1〉 = f [0] and the antipode S : Λ → Λ by Sf = f [−X],
these together with ∆ can be shown to satisfy the axioms of a Hopf algebra.

2. Consider an alphabet A = {x1, y1, x2, y2, . . .} of two kinds of variables. Fix any
ordering of A and define the “super” Schur function sλ(x; y) to be the generating function
for “super” semistandard Young tableau of shape λ. Such a tableau is a filling of the
diagram of λ by variables from A, weakly increasing along rows and columns as usual, with
the requirement that no xi is repeated in any column and no yi is repeated in any row. In
particular, sλ(x; 0) = sλ(x) and sλ(0; y) = sλ′(y).

(a) Prove that sλ(x; y) is symmetric in the xi’s and the yi’s separately, and does not
depend on the ordering chosen for A.

(b) Prove that if y1 = x1, then sλ(x1, x2, . . . ;−y1,−y2, . . .) = sλ(x2, . . . ;−y2, . . .).
(c) Prove that, in plethystic notation,

sλ(x;−y) = sλ[X − Y ].

(d) Prove that

s(nm)(x1, . . . , xn;−y1, . . . ,−ym) =
n∏
i=1

m∏
j=1

(xi − yj).

(e) Prove that the resultant Rf,g from Lecture 15, Problem 3 is given by the expansion
of s(kl)[X − Y ] in terms of elementary symmetric functions ej[X] and ej[Y ], where these are
equated with the coefficients of f and g by the rule aj = (−1)jej[X], bj = (−1)jej[Y ].

3. Let ε be a fictitious alphabet such that pk[ε] = δ1,k. Stated more correctly, this means
we are to interpret f [ε] as the image of f under the homomorphism Λ → Q mapping pk to
δ1,k.

(a) Prove the identity f [ε] = 〈f, exp(p1)〉.
(b) Prove the identity f [ε] = limn→∞(f [nx])x 7→1/n.

(c) Show that ek[ε] = hk[ε] = 1/n!.

(d) More generally, show that sλ[ε] = fλ/n!, where |λ| = n and fλ is the number of
standard Young tableaux of shape λ.

Lecture 20

1. From Macdonald’s book: prove the identity s(n−1,n−2,...,1)(x1, . . . , xn) =
∏

1≤i<j≤n(xi +
xj).
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2. Let λ be a partition whose diagram has m cells on the main diagonal. Let αi be the
number of cells to the right of the i-th diagonal cell, and βi be the number above it. The
Frobenius notation for λ is the sequence (α1, . . . , am|β1, . . . , βm). For example, the partition
(6, 4, 2, 2) is denoted (5, 2|3, 2) in Frobenius notation. Let s(a|b)(x) = s(a+1,1b)(x) be the Schur
function corresponding to a partition of “hook” shape.

Prove the Giambelli formula

s(α|β) = det
[
s(αi|βj)

]
1≤i,j≤m .

Hints:

(a) Show that s(a|b) = ha+1eb − ha+2eb−1 + · · · , and extend its definition to all integers a,
b by this formula, with the usual convention that hk = ek = 0 for k < 0. Next show that
s(a|b) = (−1)b for b ≥ 0 and a = −b− 1, and that s(a|b) = 0 in all other cases when a or b is
negative.

(b) Choose M ≥ max(λ1, l(λ)) and let H be the matrix

H =
[
hλi+j−i

]
1≤i,j≤M ,

so det(H) = sλ. Let E be the matrix

E =
[
(−1)i−1ej−i

]
1≤i,j≤M .

Let S be the matrix in the Giambelli formula. Show that there is a permutation matrix P
such that HE = XP , where X is the M ×M block diagonal matrix

X =

[
S 0
0 IM−m

]
.

Lecture 21

1. Show that G is abelian if and only if all the irreducible representations of G are
one-dimensional.

2. Use Maschke’s theorem to prove that if a square matrix A over C satisfies Am = I
for some m, then A is diagonalizable. More generally, given several matrices Ai such that
Amii = I and AiAj = AjAi for all i, j, prove that they are simultaneously diagonalizable.

3. Find the character tables of

(a) the dihedral group D8 of order 8;

(b) the quaternion group Q8 = {±1,±i,±j,±k}, where i2 = j2 = k2 = ijk = −1, and
signs multiply according to the usual rules.

Show that Q8 and D8 are not isomorphic, and conclude that the character table of a
finite group need not determine the group.

4. Show that all the characters of G are real if and only if g is conjugate to g−1 for all
g ∈ G.
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5. Let k be the finite field with p elements. The upper unit-triangular 2 × 2 matrices
over k form a matrix representation of G = Z/pZ. Show that the corresponding G-module
V is indecomposable but not irreducible, providing a counterexample to Maschke’s theorem
over a field of prime characteristic.

Lecture 22

1. From Macdonald’s book: let |λ| = |µ| = n. Show that 〈hλ, hµ〉 is equal to the number
of double cosets SλwSµ in the symmetric group Sn, where Sλ and Sµ are Young subgroups
of Sn.

2. Compute the character table of S5.

3. Let Kλµ = 〈sλ, hµ〉 be the number of semistandard Young tableaux of shape λ and

content µ. Show that Kλµ is equal to the dimension of the space of invariants V
Sµ
λ , where

Vλ is the irreducible representation of Sn indexed by the partition λ, and Sµ is the Young
subgroup Sµ1 × · · · × Sµl ⊆ Sn.

4. Prove that the Frobenius characteristic map is given by

FχV =
∑
µ

dim(V Sµ)mµ,

where V is an Sn module and Sµ is as in the preceding problem.

5. Two parts:
(a) Prove that V(n−1,1) is the irreducible submodule of dimension of dimension n − 1 in

the defining representation of Sn on Cn.

(b) Prove that V(n−k,1k) is isomorphic to the k-th exterior power of V(n−1,1).

6. Describe explicitly a 5-dimensional irreducible representation ρ : S5 → GL5, by giving
matrices ρ(σ) for some elements σ that generate S5. [Labor-saving hint: Sn can be generated
by two elements.]

Lectures 23-25

1. If V is a G-module and H is a subgroup of G, then H acts on V , so we can consider
V as an H-module, called the restriction of V to H, and denoted V |H . For this problem
we will take G = Sn and H = An, the alternating group. Denote by Vλ the irreducible
representation of Sn whose character χλ corresponds to sλ via the Frobenius characteristic
map.

(a) Show that Vλ|An ∼= Vλ′ |An .

(b) Show that Vλ|An is irreducible if λ 6= λ′, and that it is the direct sum of two inequiv-
alent irreducible representations if λ = λ′. Also show that the irreducible constituents of
Vλ|An are not isomorphic to those of Vµ|An if {λ, λ′} 6= {µ, µ′}. [Hint: relate the character χ
of Vλ|An to the Sn character χλ + χλ′ .]

(c) Describe the restriction of the regular representation of Sn to An. Deduce that every
irreducible representation of An occurs in the restriction of some irreducible representation
of Sn.
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(d) Show that each conjugacy class of even permutations in Sn is a conjugacy class in An,
with the following exceptions: a class consisting of permutations whose cycles have distinct,
odd lengths splits into two conjugacy classes in An.

(e) Let p(n) be the number of partitions of n, pee(n) the number with an even number of
even parts, and k(n) the number of self-conjugate partitions, i.e., such that λ = λ′. Recall
that k(n) is also equal to the number of partitions of n with distinct, odd parts. Show that
the result pee(n) = (p(n) +k(n))/2, previously obtained from partition generating functions,
is equivalent to the special case for the group An of the equality between the number of
irreducible characters and the number of conjugacy classes.

2. Compute the character table of A5.

3. Three parts:

(a) Let V be a representation of G with character χ. Prove that g ∈ G acts trivially on
V if and only if χ(gk) = χ(1) for all k.

(b) Show that every proper normal subgroup H ⊆ G acts trivially on some non-trivial
irreducible representation of G.

(c) Read off a proof that A5 is simple from its character table.

Lecture 26

1. Prove that standard tableaux S and T are dual equivalent if and only if there exist
standard tableaux S ′ and T ′ of some straight shape λ and a tableau X (of a shape ν for
which λ t ν makes sense) such that JX(S ′) = S and JX(T ′) = T .

2. Two parts:

(a) Let S and T be standard tableau of the same (skew) shape ν, where |ν| = 3. Verify
directly that if there exists a slide into the same cell that gives tableaux of different shapes
when applied to S and T , then the reading words of S and T must differ by a switch of entries
in adjacent positions in the word. In particular, they cannot be {213, 312} or {132, 231}.

(b) Use part (a) and the fact that jeu-de-taquin preserves descent sets to show that if
if S and T have reading words {213, 312} or {132, 231}, then any slide into the same cell
applied to S and T yields another pair of tableaux S ′, T ′ with the same shape and reading
words {213, 312} or {132, 231}. Deduce that any such pair is dual equivalent. [This avoids
the case checking needed for the proof indicated in the lecture.]

3. Let P be a partially ordered set with a least element 0. Assume P locally finite, which
means that every interval [0, x] is finite. Define a shape to be a finite subset ν ⊆ P such
that x ≤ y ≤ z and x, z ∈ ν imply y ∈ ν; define a standard tableau of shape ν to be an
order-preserving bijection ν → [n], where n = |ν|. If P is N × N, these reduce to the usual
notions of (skew) shapes and tableaux. Define foward jeu-de-taquin slides for tableaux on P
analogously to the definition for P = N× N.

One says that P has the jeu-de-taquin property if for every tableau T and every sequence
of forward slides that carries T into a shape containing 0, the resulting tableau S depends
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only on T and not on the sequence of slides chosen. The fundamental theorem of jeu-de-
taquin states that P = N×N has the jeu-de-taquin property. Show that the following posets
have the jeu-de-taquin property.

(a) Trees (this is easy).

(b) The subset Rk ⊆ Z × Z which is the union of N × N and the set
{(1,−1), (0,−1), (0,−2), . . . , (0,−k)}.

(c) The subset Q = {(i, j) : i ≤ j} ⊆ N× N. This poset is called the shifted plane. Hint:
set up a theory of dual equivalence for tableaux on Q in which the elementary dual
equivalences involve tableaux of size 4. You can find them all by starting with the
unique shape of size 4 that contains 0 and posseses two distinct tableaux.

[All of the above are special cases of Proctor’s notion of d-complete posets (see J. Algebra
213 (1999), 272–303; J. Alg. Combinatorics 9 (1999), 61–94.]

4. Let a < b < c be consecutive entries in a standard tableau T . Suppose that in the
word of T (reading row by row from top to bottom in French style notation) they occur in
one of the orders bac, cab, acb, or bca. Then we can always switch the outer two of these
three entries in T to get another standard tableau S (verify). By a lemma in the lecture, S
and T are dual equivalent. We call this situation an elementary dual equivalence.

(a) Prove that dual equivalence is the transitive closure of elementary dual equivalence.

(b) Deduce that tableaux S and T of the same shape are dual equivalent if and only
if their reading words are connected by a sequence of “dual Knuth relations” of the form
bac ↔ cab or acb ↔ bca, where a < b < c are consecutive and appear in the specified order
in the reading word, but not necessarily in adjacent positions.

5. Call a skew shape anti-straight if it is a 180◦ rotation of a straight (non-skew) shape.
Equivalently, a skew shape is anti-straight if it can be written as λ/µ, where λ is a rectangle.

(a) Show that if X has anti-straight shape and T t X makes sense, then JX(T ) has
anti-straight shape and depends only on T , not on X. Denote this tableau by J�(T ).

(b) Show that if T has straight shape λ, then the shape of J�(T ) is the 180◦ rotation of
λ. [Hint: using dual equivalence, it suffices to do this for one specially chosen T of the given
shape.]

(c) Schütenzerger’s evacuation operator T → ev(T ) is defined as follows. Given T of
straight shape, ev(T ) is the tableau obtained from J�(T ) by rotating it 180◦ and renumbering
the entries in reverse order, 1, 2, . . . , n 7→ n, . . . , 2, 1. Show that evacuation is an involution.

6. Consider the following sequence of operations on a tableau T of straight shape λ:

(1) delete the smallest entry;
(2) perform a jeu-de-taquin slide into the now empty cell (0, 0);
(3) repeat steps (1) and (2) until all entries have been removed;
(4) form the tableau S whose entries n, . . . , 2, 1 occupy the cells of λ in the order they

are vacated by step (2).
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Show that the resulting tableau S is equal to the evacuation ev(T ).

Lecture 27

1. Use the adjointness between multiplication and substitution f 7→ f [X + Y ] to prove
that the Schur function attached to a skew diagram λ/µ satisfies (and is determined by) the
identity

〈sλ/µ, g〉 = 〈sλ, sµg〉.

2. Consider the partition (ab) whose diagram is an a× b rectangle. Prove that

s2(ab) =
∑
µ

sµ,

where all coefficients are equal to 1 and the sum ranges over partitions µ containing (ab)
and such that µ/(ab) is the disjoint union of (translates of) partition diagrams ρ, ν ⊆ (ab),
satisfying ν = ((ab)/ρ)⊥. Here (−)⊥ denotes rotation of a diagram through 180◦.
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