
Math 249, Fall 2017
Problem Set 1

Due: Wednesday, Nov. 8

1. Recall that a sequence of formal power series Fk(x) =
∑

n a
(k)
n xn over a ring R

converges to G(x) =
∑

n bnx
n if for each n the sequence (a

(1)
n , a

(2)
n , . . .) converges to bn in the

discrete topology, i.e., if a
(k)
n = bn for all sufficiently large k.

Assume that the coefficient ring R is commutative and has a unit element 1.

(a) Prove that the partial sums a0 + a1x+ · · ·+ anx
n converge to

∑
n anx

n.

(b) Prove that the sum
∑∞

k=1 Fk(x) converges if and only if the terms Fk(x) converge to
zero, and that this property and the value of the limit do not depend on the order of the
terms.

(c) Prove that if the factors Fk(x) converge to 1, then the product
∏∞

k=1 Fk(x) converges,
and its value does not depend on the order of the factors. Prove also that if the constant
term a

(k)
0 of Fk(x) is a non-zero-divisor in R for every k, then

∏∞
k=1 Fk(x) converges if and

only if the Fk(x) converge to 1.

(d) Prove that if infinitely many of the factors Fk(x) have zero constant term, or if any
of the factors Fk(x) is identically zero, then

∏∞
k=1 Fk(x) converges to zero, independent of

the order of the factors.

(e) Assume that the coefficient ring R is integral domain. Prove that
∏∞

k=1 Fk(x) con-
verges to zero only in the cases in part (d), and that it converges to a non-zero limit if and
only if the Fk(x) converge to 1 and none of them is identically zero.

(f) Prove that a sum or product of limits of convergent sequences is the limit of the
sums or products term by term. Show that this also holds for convergent infinite sums and
products.

2. Show that F (x) ∈ R[[x]] has a multiplicative inverse if and only if its constant term
F (0) has a multiplicative inverse in R.

3. If F (x) and G(x) are formal power series and F (0) = 0, i.e., F (x) has zero constant
term, their formal composition is defined by

(G ◦ F )(x) =
∞∑
k=0

gkF (x)k,

where G(x) =
∑∞

k=0 gkx
k. Note that the sum converges by part (b) of the preceding problem.

We also write G(F (x)) for (G ◦ F )(x).

(a) Show that composition is associative, i.e., if F (0) = 0 and G(0) = 0, then (H◦G)◦F =
H ◦ (G ◦ F ).

(b) Show that composition with a fixed F , considered as a function of G, is a ring
homomorphism.
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(c) Show that F (x) ∈ R[[x]] such that F (0) = 0 has a formal compositional inverse if
and only if the coefficient 〈x〉F (x) has a multiplicative inverse in R.

4. Assume we are working in a formal power series ring R[[x]] over a coefficient ring R
containing Q. Define exp(x) and log(1 + x) by their usual Taylor series.

(a) Given F (x), G(x) ∈ R[[x]] such that F (0) = 1, show that there is a well-defined
formal power series

F (x)G(x) =
def

exp(G(x) logF (x)).

(b) Show that the above definition satisfies the usual laws of exponents, namely,
F (x)G(x)+H(x) = F (x)G(x)F (x)H(x), F (x)G(x)H(x) = (F (x)G(x))H(x), F (x)0 = 1, F (x)1 = F (x).

5. Defining the formal derivative d
dx
F (x) of a formal power series term by term in the

obvious way, show that the usual sum and product rules and the chain rule hold. Show that
Taylor’s formula holds if the coefficient ring contains Q.

6. Express each of the following as a binomial coefficient: (a) the number of monomials
of degree exactly d in a (commutative) polynomial ring in n variables; (b) the number of
monomials of degree ≤ d.

7. Find the number of monotone maps f : {1, . . . , k} → {1, . . . , n}, where monotone
means f(i) ≤ f(j) for i ≤ j.

8. Show that
〈
n
k

〉
=
∑k

j=0

〈
n−1
j

〉
. Using this, evaluate

∑k
j=0

(
n+j
j

)
as a single binomial

coefficient.

9. (a) Give two proofs of the binomial coefficient identity, called the convolution formula,∑
j

(
m

j

)(
n

k − j

)
=

(
m+ n

k

)
.

One proof should use generating functions, the other should be a direct combinatorial proof.

(b) Discover and prove in the same two ways an analogous identity for multiset coefficients〈
n
k

〉
.

10. Find a simple expression for the ordinary generating function in two variables∑
n,k≥0

(
n

k

)
xnyk,

and use it to deduce the identity∑
r

(
r

k

)
xr =

xk

(1− x)k+1
.

11. Show that a finite group G is abelian if and only if all the irreducible representations
of G (over C) are one-dimensional.
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12. Use characters to show that if V is an irreducible representation of G and W is an
irreducible representation of H, then V ⊗W is an irreducible representation of G×H (over
C, for finite groups).

13. Find the character tables of

(a) the dihedral group D8 of order 8;

(b) the quaternion group Q8 = {±1,±i,±j,±k}, where i2 = j2 = k2 = ijk = −1, and
signs multiply according to the usual rules.

Show that Q8 and D8 are not isomorphic, and conclude that the character table of a
finite group need not determine the group.

14. Let G be a finite group and V1, . . . , Vk a list of its irreducible representations (one
from each isomorphism class). Recall that the actions CG → EndC(Vi) of CG on each Vi
induce an isomorphism CG ∼=

∏
i EndC(Vi). Let ei ∈ CG be the element that acts as the

identity on Vi and as zero on Vj for all j 6= i.

(a) Show that the elements ei are a basis of the center of CG.

(b) Use orthogonality of characters to derive the explicit formula

ei =
dim(Vi)

|G|
∑
g∈G

χi(g
−1) g,

where χi is the character of Vi. Hint: first verify that the formula gives an element in the
center of CG.

15. For 1 ≤ i < j ≤ n, define the raising operator Rij on Zn by

Rij(ν1, . . . , νn) = (ν1, . . . , νi + 1, . . . , νj − 1, . . . , νn).

(a) Show that the dominance order ≤ is the transitive closure of the relation on partitions
λ→ µ if µ = Rijλ for some i < j.

(b) We say that µ covers λ if λ < µ and there is no ν such that λ < ν < µ. Show that µ
covers λ if and only if µ = Rijλ, where i, j satisfy the following condition: either j = i+ 1,
or λi = λj (or both).

(c) Find the smallest n such that the dominance order on partitions of n is not a total
ordering, and draw its Hasse diagram (i.e., the graph of the covering relation).

16. Show that the dominance partial order on partitions of n satisfies

λ ≤ µ ⇔ λ∗ ≥ µ∗,

where λ∗ denotes the transpose partition of λ.

17. Prove the formula for complete homogeneous symmetric functions in terms of ele-
mentary symmetric functions

hn =
∑
|λ|=n

(−1)n−l(λ)
(

l(λ)

r1, r2, . . . , rk

)
eλ,
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where λ = (1r1 , 2r2 , . . . , krk).

18. We know that if µ 6≤ λ, then Kλµ = 0, where Kλµ = 〈sλ, hµ〉 = |SSY T (λ, µ)| is the
number of semi-standard tableaux of shape λ and weight µ. Prove that, conversely, if µ ≤ λ,
then Kλµ 6= 0.

19. The symmetric functions fλ = ωmλ are sometimes called the “forgotten” symmetric
functions. Show that the matrix of coefficients of the forgotten symmetric functions fλ
expressed in terms of monomial symmetric functions mλ is the transpose of the matrix of
the elementary symmetric functions eλ expressed in terms of the complete homogeneous
symmetric functions hλ.

20. For any symmetric polynomial f , let f⊥ be the operator adjoint to multiplication by
f with respect to the Hall inner product, that is, 〈f⊥g, h〉 = 〈g, fh〉 for all g, h.

(a) Find a formula for h⊥kmλ, expressed again in terms of monomial symmetric functions
mµ.

(b) Show that the basis of monomial symmetric functions is uniquely characterized by
the formula from part (a).

21. Let ∂pk be the operator on symmetric functions given by partial differentiation
with respect to pk, under the identification of the algebra of symmetric functions with the
polynomial ring Q[p1, p2, . . .]. Show that ∂pk is adjoint with respect to the Hall inner product
to the operator of multiplication by pk/k.

22. [From I. G. Macdonald, Symmetric Functions and Hall Polynomials] (a) Recall from
class that hn =

∑
|λ|=n pλ/zλ, where zλ =

∏
i i
riri! for λ = (1r1 , 2r2 , . . .). Show that this is

equivalent to Newton’s determinant formula

hn =
1

n!
det


p1 −1 0 . . . 0
p2 p1 −2 . . . 0
...

...
...

...
pn−1 pn−2 . . . . −(n− 1)
pn pn−1 . . . . p1


(b) Show that en is given by the same determinant without the minus signs.

23. [From Macdonald] Prove the identity s(n−1,n−2,...,1)(x1, . . . , xn) =
∏

1≤i<j≤n(xi + xj).

24. [From Macdonald] |λ| = |µ| = n. Show that 〈hλ, hµ〉 is equal to the number of double
cosets SλwSµ in the symmetric group Sn, where Sλ and Sµ are Young subgroups of Sn.

25. Prove that the Frobenius characteristic map is given in terms of monomial symmetric
functions by

F (χV ) =
∑
µ

dim(V Sµ)mµ,

where χV is the character of an Sn module V , Sµ is the Young subgroup Sµ1×· · ·×Sµl ⊆ Sn,
and V Sµ ⊆ V denotes the subspace of elements invariant under the action of Sµ.

4



26. Let λ = (lk) and µ = (nm) be partitions whose diagrams are rectangular. Suppose
that k ≤ m and l ≤ n, that is, the diagram of λ is contained in that of µ. Prove that
sλsµ =

∑
ν sν , where ν ranges over partitions whose diagram contains the m×n rectangular

diagram of µ, and the portion of the diagram of ν outside this rectangle consists of a diagram
α on top of the rectangle and a diagram β to the right of the rectangle, such that α and the
180◦ rotation of β fit together in a k × l rectangle.
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