
Math 249 Fall 2016—Problem Set 2

1. Prove that the number of partitions of n with no parts divisible by d is equal to the
number of partitions of n with no part repeated d or more times, for all n and d.

2. Let p+(n) be the the number of partitions of n with an even number of parts and
p−(n) the number with an odd number of parts. Let pDO(n) be the number of partitions of
n with distinct odd parts, and let k(n) be the number of partitions λ of n such that λ = λ∗.
Prove that

k(n) = pDO(n) = (−1)n(p+(n)− p−(n)).

Hint: if λ = λ∗, dissect the diagram of λ into ‘hooks’ whose sizes are odd and distinct.

3. The following two identities are due to Gauss:∑
n∈Z

(−1)nqn
2

=
∏
i≥1

1− qi

1 + qi
;

∑
n≥0

q(
n+1
2 ) =

∏
i≥1

1− q2i

1− q2i−1
.

(a) Interpret them combinatorially as partition identities.

(b) Prove them, either combinatorially (not so easy) or using Jacobi’s triple product
identity.

4. The Durfee square of a partition λ is the largest k×k square that fits inside its Young
diagram. Use Durfee squares to prove the following identities [Stanley, 2nd Ed., Proposition
1.8.6(b) and Ex. 1.76]:

(a) ∏
i≥1

1

1− txi
=
∑
k≥0

tkxk
2

(1− x) · · · (1− xk) (1− tx) · · · (1− txk)

(b) ∏
i≥1

1 + tx2i−1 =
∑
k≥0

tkxk
2

(1− x2) · · · (1− x2k)

5. (a) Use Durfee squares to obtain an identity analogous to part (a) of the previous
problem, but enumerating partitions with distinct parts.

(b) Deduce Sylvester’s identity

∏
i≥1

(1− tqi) = 1 +
∑
n≥1

(−1)ntn

(
q(3n

2+n)/2

n∏
i=1

1− tqi

1− qi
+ q(3n

2−n)/2
n−1∏
i=1

1− tqi

1− qi

)
,

a generalization of Euler’s pentagonal number theorem.
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6. Show that the Stirling numbers of the second kind S(n, k) have a q-analog Sq(n, k)
characterized by any of the following properties, where [k]q = (1− qk)/(1− q) = 1 + q+ · · ·+
qk−1 is the q analog of k.

(a) They satisfy the recurrence

Sq(n, k) = [k]qSq(n− 1, k) + qk−1Sq(n− 1, k − 1),

with inital condition Sq(0, n) = Sq(n, 0) = δ0,n.

(b) They satisfy the following q-analog of the classical formula xn =
∑

k S(n, k)(x)k:

[r]nq =
∑
k

Sq(n, k)[r]q[r − 1]q · · · [r − k + 1]q

(c) For each k, they are given by the ordinary generating function

∑
n

Sq(n, k)xn =
q(

k
2)xk

(1− x)(1− [2]qx) · · · (1− [k]qx)
.

(d) Given a partition π = {B1, . . . , Bk} of [n], with the blocks numbered so that
min(Bi) < min(Bj) for i < j, define ν(π) =

∑
i(i − 1)|Bi|. Then Sq(n, k) =

∑
π q

ν(π),
where the sum is over partitions of [n] into k blocks.

7. One way to define a q-analog of the Eulerian polynomial An(x) is

An(x, q) =
∑
σ∈Sn

xd(σ)+1qmaj(σ).

(a) Show that with this definition we have∑
r

[r]nqx
r =

An(x, q)

(1− x)(1− qx) · · · (1− qnx)

(b) Deduce the formula

An(x, q) =
∑
k

[k]q!Sq(n, k)xk
n∏

i=k+1

(1− xqi),

where Sq(n, k) are the q-analogs of Stirling numbers defined in the previous problem.

8. Define the descent set of a word w ∈ Nn to be D(w) = {i ∈ [n− 1] : w(i) > w(i+ 1)},
just as one does for permutations. Similarly, define maj(w) =

∑
d∈D(w) d.

(a) Show that if w ∈ [r]n and w(n) = s, then w′ = (1 2 · · · r)r−s ◦ w has maj(w′) =
maj(w)− (ks+1 + · · ·+ kr), where ki is the number of occurences of i in the word w.
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(b) Use (a) and the recurrence for q-multinomial coefficients in Problem Set 1, Problem
11 to prove that ∑

w∈Sn·(1k1 , 2k2 , ..., rkr )

tmaj(w) =
∑

w∈Sn·(1k1 , 2k2 , ..., rkr )

tinv(w),

for all k1 + · · ·+ kr = n.

(c) Use (b) to prove that for all D ⊆ [n− 1],∑
π∈Sn

D(π−1)=D

tmaj(π) =
∑
π∈Sn

D(π−1)=D

tinv(π),

that is, inv and maj are equidistributed on inverse descent classes.

(d) Deduce that ∑
π∈Sn

qinv(π)tmaj(π) =
∑
π∈Sn

qmaj(π−1)tmaj(π).

This gives a different proof than the one we did in class that the sum on the left-hand side
is symmetric in q and t.

Remark: part (c) implies that
∑

π∈Sn
xd(π)+1qmaj(π−1) =

∑
π∈Sn

xd(π)+1qinv(π), which sug-
gests that the common value of these two expressions might be a ‘better’ q-analog of An(x)
than the one Problem 7. However, I don’t know of nice identities for this alternative q-
Eulerian polynomial like those in Problem 7.

9. A distribution is a function together with a linear ordering on the preimage of each
element of the codomain. Use exponential generating functions to obtain the formula

(n)k(n− 1)n−k.

for the number of surjective distributions from a set of n labelled objects to a set of k labelled
places.

10. An at most binary tree is an unordered rooted tree in which each node has at most
two children.

(a) Find the exponential generating function for the number of at most binary trees on
n labelled nodes.

(b) Find the ordinary generating function for the number of at most binary trees on n
unlabelled nodes.

In the next three problems we use the ‘double factorial’ notation

n!! = (2n− 1)(2n− 3) · · · 3 · 1.

11. Use the exponential generating function for the species of perfect matchings to show
that the number of perfect matchings on a set of size 2n is n!! (as seen by a direct counting
argument in Problem Set 1, Problem 15(a))
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12. Let e2n be the number of permutations w ∈ S2n such that every cycle of w has even
length.

(a) Find the exponential generating function
∑

n e2nx
2n/(2n)!, and deduce that e2n =

(n!!)2.

(b) It follows that if S is a set of size 2n, the number of permutations of S with only
even cycles is equal to the number of pairs of perfect matchings on S. Construct a direct
bijection between the two. You will probably need to fix S to be {1, 2, . . . , 2n} and use the
numerical values of its elements to make some auxiliary choices.

(c) Show that the species of permutations with even-length cycles and the species of pairs
of perfect matchings are not equivalent. This can be understood as explaining the need for
auxiliary choices in part (b).

13. Find the exponential generating function
∑

n rnx
n/n!, where rn is the number of

permutations of odd order of an n element set. Deduce that r2n = (n!!)2 and r2n+1 =
(2n+ 1)(n!!)2.

14. Let g+(n), g−(n) denote the number of connected simple graphs on the vertex set
[n] with an even or an odd number of edges, respectively. Prove that g+(n) − g−(n) =
(−1)n(n− 1)!.

15. As part of the computer demonstration in class, we counted unrooted trees by
counting connected graphs with n vertices and e edges, then picking out the terms with
e = n− 1. In this problem, we outline a different method of counting unrooted trees.

(a) The diameter d of a tree T is the maximum length of a path in T (a path of length n
has n edges and n + 1 vertices). Prove that if d is even then all paths of length d have the
same middle vertex, called the center of T , and if d is odd, then all paths of length d have
the same middle edge, called the bicenter of T .

(b) Show that if d is even, the species of labelled unrooted trees of diameter d is equivalent
to the species of labelled rooted trees of height d/2 with the property that at least two children
of the root are roots of subtrees of height d/2− 1.

(c) Show that if d is odd, the species of labelled unrooted trees of diameter d is equivalent
to the species of unordered pairs of disjoint rooted trees of height (d− 1)/2.

(d) Let Th be the species of labelled rooted trees of height h, and let T≤h = T0 + · · ·+Th.
Show that these are given by the recurrence

T0 = X

Th = X((E − 1) ◦ Th−1)(E ◦ T≤h−2) for h > 0.

(e) Use (a), (b) and (c) to express the species Ud of labelled unrooted trees of diameter
d in terms the species Th.

(f) Use (d) and (e) to calculate the number of labelled unrooted trees of diameter d on n
vertices, for n ≤ 5 and all d. Check that your answers summed over d agree with the known
formula nn−2.
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(g) Use (d) and (e) to calculate the number of unlabelled unrooted trees of diameter d
on n vertices, for n ≤ 5 and all d. Check your answers by listing the trees.

16. (a) Find an explicit formula for the cycle index ZI of the species of involutions,
I(S) = {σ ∈ SS : σ2 = 1}.

(b) Evaluate ZI [x] and verify that it agrees with the obvious ordinary generating function
counting involutions up to conjugacy.

17. (a) From Cayley’s tree generating function derive the identity

∑
F

n∏
i=1

x
cF (i)
i =

(
n− 1

k − 1

)
(x1 + · · ·xn)n−k,

where the sum is over rooted forests F with k components on vertices {1, . . . , n}, and cF (i)
denotes the number of children of vertex i in F .

(b) Deduce the identity

∑
F

n∏
i=1

hcF (i) =

(
n− 1

k − 1

)
〈 xn−k

(n− k)!
〉H(x)n,

where H(x) =
∑

m hmx
m/m! is a generic formal power series written in exponential form

and 〈·〉 denotes taking a coefficient.

(c) Let H be the ‘generic species’ with exponential generating function H(x), that is, the
trivial species, but enumerated by assigning weight hn to the one structure on any set with
n elements. Let F (x) be the solution of the formal functional equation

F (x) = xH(F (x))

(that is, assuming h0 invertible, the functional composition inverse of x/H(x)). Using (b)
and the species interpretation of F (x), obtain the generalized Lagrange inversion formula

〈x
n

n!
〉F (x)k/k! =

(
n− 1

k − 1

)
〈 xn−k

(n− k)!
〉H(x)n,

or equivalently,

〈xn〉F (x)k =
k

n
〈xn−k〉H(x)n

(we did the case k = 1 in class).

18. Prove that the number of ordered rooted trees with n + 1 vertices and j leaves is
equal to

1

n+ 1

(
n+ 1

j

)(
n− 1

n− j

)
.

19. The product G ×H of two simple graphs (graphs without loops or multiple edges)
is defined to be the graph on vertex set V (G)× V (H) with edges {(v, w), (v′, w′)} for v = v′
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and {w,w′} ∈ E(H) or w = w′ and {v, v′} ∈ E(G). The adjacency matrix AG of a graph G
on n vertices is the n×n matrix with rows and columns labelled by the vertices, and entries
(AG)v,w = 1 if {v, w} ∈ E(G), zero otherwise. Let DG be the diagonal matrix whose (v, v)
entry is the degree of v.

(a) Let fG(r) be the number of rooted spanning forests of G with r roots, and let FG(z) =∑
r fG(r)zr be the corresponding generating function. Show that FG(z) =

∏
i(z+αi), where

the αi’s are the eigenvalues of DG − AG.

(b) Show that FG×H(z) =
∏

i,j(z + αi + βj), where FG(z) =
∏

i(z + αi) and FH(z) =∏
j(z+βj). In particular, the numbers fG(r) and fH(r) for all r determine the corresponding

numbers fG×H(r).

(c) Show that if Qn is the graph formed by the vertices and edges of the n-cube, that is,
the product of n copies of the complete graph on 2 vertices, then

FQn(z) =
n∏
k=0

(z + 2k)(
n
k).

This generalizes Stanley, Exercise 5.6.10, which follows by taking the coefficient of z.

20. Let fm(r) be the number of rooted spanning forests with r roots in the graph Cm, a
cycle on m vertices (m > 1). Prove that

Fm(z) =
def

∑
r

fm(r)zr =
m−1∏
j=0

(z + 2− 2 cos(2πj/m)) =
m∑
r=1

m

r

(
m+ r − 1

2r − 1

)
zr.
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