
Math 249 Fall 2016—Problem Set 1

1. Recall that a sequence of formal power series Fk(x) =
∑

n a
(k)
n xn over a ring R

converges to G(x) =
∑

n bnx
n if for each n the sequence (a

(1)
n , a

(2)
n , . . .) converges to bn in the

discrete topology, i.e., if a
(k)
n = bn for all sufficiently large k.

Assume that the coefficient ring R is commutative and has a unit element 1.

(a) Prove that the partial sums a0 + a1x + · · ·+ anx
n converge to

∑
n anx

n.

(b) Prove that the sum
∑∞

k=1 Fk(x) converges if and only if the terms Fk(x) converge to
zero, and that this property and the value of the limit do not depend on the order of the
terms.

(c) Prove that if the factors Fk(x) converge to 1, then the product
∏∞

k=1 Fk(x) converges,
and its value does not depend on the order of the factors. Prove also that if the constant
term a

(k)
0 of Fk(x) is a non-zero-divisor in R for every k, then

∏∞
k=1 Fk(x) converges if and

only if the Fk(x) converge to 1.

(d) Prove that if infinitely many of the factors Fk(x) have zero constant term, or if any
of the factors Fk(x) is identically zero, then

∏∞
k=1 Fk(x) converges to zero, independent of

the order of the factors.

(e) Assume that the coefficient ring R is integral domain. Prove that
∏∞

k=1 Fk(x) con-
verges to zero only in the cases in part (d), and that it converges to a non-zero limit if and
only if the Fk(x) converge to 1 and none of them is identically zero.

(f) Prove that a sum or product of limits of convergent sequences is the limit of the
sums or products term by term. Show that this also holds for convergent infinite sums and
products.

2. If F (x) and G(x) are formal power series and F (0) = 0, i.e., F (x) has zero constant
term, their formal composition is defined by

(G ◦ F )(x) =
∞∑
k=0

gkF (x)k,

where G(x) =
∑∞

k=0 gkx
k. Note that the sum converges by part (b) of the preceding problem.

We also write G(F (x)) for (G ◦ F )(x).

(a) Show that composition is associative, i.e., if F (0) = 0 and G(0) = 0, then (H◦G)◦F =
H ◦ (G ◦ F ).

(b) Show that composition with a fixed F , considered as a function of G, is a ring
homomorphism.

(c) Show that F (x) ∈ R[[x]] such that F (0) = 0 has a formal compositional inverse if
and only if the coefficient 〈x〉F (x) has a multiplicative inverse in R.

3. Show that F (x) ∈ R[[x]] has a multiplicative inverse if and only if its constant term
F (0) has a multiplicative inverse in R.
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4. Assume we are working in a formal power series ring R[[x]] over a coefficient ring R
containing Q. Define exp(x) and log(1 + x) by their usual Taylor series.

(a) Given F (x), G(x) ∈ R[[x]] such that F (0) = 1, show that there is a well-defined
formal power series

F (x)G(x) =
def

exp(G(x) logF (x)).

(b) Show that the above definition satisfies the usual laws of exponents, namely,
F (x)G(x)+H(x) = F (x)G(x)F (x)H(x), F (x)G(x)H(x) = (F (x)G(x))H(x), F (x)0 = 1, F (x)1 = F (x).

5. Express each of the following as a binomial coefficient: (a) the number of monomials
of degree exactly d in a (commutative) polynomial ring in n variables; (b) the number of
monomials of degree ≤ d.

6. Find the number of monotone maps f : {1, . . . , k} → {1, . . . , n}, where monotone
means f(i) ≤ f(j) for i ≤ j.

7. (a) Give two proofs of the binomial coefficient identity, called the convolution formula,∑
j

(
m

j

)(
n

k − j

)
=

(
m + n

k

)
.

One proof should use generating functions, the other should be a direct combinatorial proof.

(b) Discover and prove in the same two ways an analogous identity for multiset coefficients〈
n
k

〉
.

8. Find a simple expression for the ordinary generating function in two variables∑
n,k≥0

(
n

k

)
xnyk,

and use it to deduce the identity∑
r

(
r

k

)
xr =

xk

(1− x)k+1
.

9. Show that
〈
n
k

〉
=
∑k

j=0

〈
n−1
j

〉
. Using this, evaluate

∑k
j=0

(
n+j
j

)
as a single binomial

coefficient.

10. Regarding
(
x
k

)
as a polynomial of degree k in the variable x, prove that a polynomial

f ∈ Q[x] has the property that f(n) is an integer for all integers n if and only if the coefficients
of f with respect to the basis {

(
x
k

)
: k ∈ N} are integers.

Hint: for “only if,” express the coefficients ak such that f(x) =
∑

k ak
(
x
k

)
in terms of the

iterated differences (∆mf)(0), where ∆f(x) = f(x + 1)− f(x).
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11. Prove that the q-multinomial coefficients satisfy the following recurrence. A combi-
natorial proof is preferred.(

n

k1, k2, . . . , kr

)
q

=

(
n− 1

k1 − 1, k2, . . . , kr

)
q

+ qk1
(

n− 1

k1, k2 − 1, . . . , kr

)
q

+ · · ·+ qk1+···+kr−1

(
n− 1

k1, k2, . . . , kr − 1

)
q

.

12. Prove the following q-analog of the convolution formula for binomial coefficients. A
combinatorial proof is preferred.(

m + n

k

)
q

=
∑
i+j=k

q(m−i)j
(
m

i

)
q

(
n

j

)
q

13. (a) Show that for each k there is a unique polynomial Qk(x) of degree k, with
coefficients in the field of rational functions Q(q), such that Qk(qn) =

(
n
k

)
q

for all n.

(b) Prove that a polynomial f ∈ Q(q)[x] has the property that f(qn) ∈ Z[q, q−1] for all n
if and only if the coefficients of f with respect to the basis {Qk : k ∈ N} belong to Z[q, q−1].
Hint: evaluate f at roots of the polynomials Qk(x).

14. Construct a formula for the generating function
∑

n anx
n, where an is the number of

combinations of states and the District of Columbia having a combined number n of electoral
votes (you can find the electoral vote distribution on the Wikipedia “Electoral College” page).
Using a computer algebra system, evaluate the generating function explicitly and answer the
following question: in a presidential election with two candidates, how many combinations
lead to a tie in the electoral college, and how many to a win for either candidate?

To get it precisely right, you should take into account that Maine and Nebraska have
district systems allowing them to split their electoral votes (Maine’s 4 votes cannot split 2
and 2, however).

A news reporter contacted the MIT math department with this question when I was a
grad student there. The department chair passed the problem along to us combinatorics
grad students to solve.

15. A perfect matching on a set S of 2n elements is a partition of S into n blocks of 2
elements each. Taking S = [2n] = {1, 2, · · · , 2n}, and thinking of the blocks in a matching
as the edges of a graph, call edges of the form {i, i + 1} short, and all other edges long.

(a) Show that the number of perfect matchings on a 2n-element set is

(2n− 1)(2n− 3) · · · 3 · 1.

(b) Let Mn(x) be the ordinary generating function that counts perfect matchings on [2n]
with weight xs, where s is the number of short edges, so for instance M2(x) = 1 + x + x2.
Prove the recurrence

Mn(x) = (x + 2n− 2)Mn−1(x) + (1− x)
d

dx
Mn−1(x).
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16. The Fibonacci numbers are defined by F0 = 0, F1 = 1, Fn = Fn−1 + Fn−2 for n ≥ 2.

(a) Derive the ordinary generating function∑
n

Fnx
n =

x

1− x− x2
.

(b) By finding the roots of 1− x− x2 = 0 and expanding (a) in partial fractions, obtain
the explicit formula

Fn =
1√
5

((1 +
√

5

2

)n − (1−
√

5

2

)n)
(c) Prove that the number of subsets S ⊆ {1, . . . , n} such that no two elements of S are

consecutive is Fn+2.

(d) Prove the identity

Fn+2 =
∑
k

(
n− k + 1

k

)
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